Proceedings of the 2008 Winter Simulation Conference

S. J. Mason, R. R. Hill, L. Ménch, O. Rose, T. Jefferson, J. W. Fowler eds.

IMPROVING PERFORMANCE BY REPLICATING SIMULATIONS
WITH ALTERNATIVE SYNCHRONIZATION APPROACHES

Zengxiang Li
Wentong Cai
Stephen John Turner
Ke Pan

School of Computing Engineering
Nanyang Technological University
Singapore 639798

ABSTRACT

Parallel and distributed simulation facilitates the construc-
tion of a simulation application (i.e., federation in HLA
terminology) with a number of simulation components (fed-
erates). Recently, an approach based on active replication
technique has been proposed to improve the performance of
simulations by exploring software diversity. To guarantee
the correctness of the approach, all replicas of the same fed-
erate are required to be Piece-Wise-Deterministic (PWD).
However, the PWD restriction will not be satisfied if the
replicas achieve software diversity by employing different
kinds of synchronization approaches. A replication structure
is proposed in this paper, which can transparently handle the
federate replicas that use either conservative or optimistic
synchronization approach. The execution speed of the fed-
eration is increased by always choosing the fastest replica to
represent the federate in the federation. Besides presenting
the implementation details, we also report the experimental
results to demonstrate the performance improvement of the
replication structure.

1 INTRODUCTION

Parallel and distributed simulation facilitates the construc-
tion of a simulation application (federation) with a group
of simulation components (federates), which can be devel-
oped independently and executed on either a computation
environment with parallel processors or geographically dis-
tributed computing resources. In many problem domains,
simulation applications are time consuming and computation
intensive, e.g., traffic simulation, supply chain simulation
and simulation of computer networks. Hence, speedup of
simulation execution is important. Recently, the active repli-
cation technique has inspired a novel direction to enhance the
performance of simulation. Generally, more resources are
needed in an active replication scheme, since each federate
has multiple replicas. However, due to the rapid develop-
ment of Grid technology (Foster et al. 2001) during the

978-1-4244-2708-6/08/$25.00 ©2008 IEEE

last decade, the resources can be obtained more and more
easily.

A typical active replication approach has been proposed
in (Quaglia 2006) to increase the execution speed of a fed-
eration by employing software diversity in the replication of
federates. Software diversity can be achieved by employ-
ing different data structures, libraries and algorithms in the
development of multiple programs that are functionally the
same. In (Quaglia 2006), multiple replicas are developed
for the same federate using different state saving mecha-
nisms. An Active Replication Management Layer (ARML)
is developed to support the concurrent execution of these
replicas. ARML is a kind of message proxy layer. For a
message sent by a federate, ARML only sends other fed-
erates in the federation the first instance of the message
generated by the replicas of the federate; for a message
destined for a federate, ARML distributes it to all replicas
of the federate in the correct order and buffer the message
if necessary. The performance of a federation is improved,
because the simulation time of a federate is always advanced
by the fastest running replica. However, ARML requires
Piece-Wise-Deterministic (PWD) is satisfied by all replicas
of the same federate to guarantee the correctness of the sim-
ulation execution. That is, all replicas must execute events
in the same order and send out the same messages following
the same sequence; and messages are also delivered to all
replicas of the federate following the same sequence.

The other well studied direction to improve the perfor-
mance of parallel and distributed simulation is to reduce
the synchronization overhead. Two kinds of synchroniza-
tion approaches are commonly used: conservative (e.g.,
CMB protocol (Bryant 1977, Chandy and Misra 1979)) and
optimistic (e.g., Time Warp protocol (Jefferson 1985)) ap-
proaches. Conservative approaches preserve the causality
constraint by ensuring that each federate processes events
in strictly non-decreasing order. In contrast, optimistic
approaches allow free processing of events and thus poten-
tially have better exploitation of parallelism among feder-

Li, Cai, Turner and Pan

ates. However, some additional mechanisms are needed to
recover a federate from a causality error.

A great amount of research has been done on evaluating
the performance of conservative approaches and optimistic
approaches (Niewiadomska-Szynkiewicz and Sikora 2002).
The efficiency of a conservative approach is critically re-
liant on lookahead extraction, which is simulation model
dependant. An optimistic approach may outperform a con-
servative one if causality errors seldom occur. Therefore,
different simulation applications may need to use different
synchronization approaches to achieve higher efficiency.
Even for the same simulation application, different inputs
and parameters may lead to different suitable synchroniza-
tion approaches. It may also happen that some federates
in the federation are executed efficiently using conserva-
tive approach, while others are executed efficiently using
optimistic approach. Moreover, the suitability of a syn-
chronization approach for the same federate may change
dynamically. A number of protocols have been proposed to
reduce the synchronization overhead via taking advantages
of both conservative and optimistic approaches. These will
be further discussed in section 2.

Inspired by the concept of active replication and employ-
ing the diversity of synchronization approaches, we propose
to enhance the performance of a federation by concurrently
running multiple replicas with alternative synchronization
approaches for the same federate. These replicas are likely
to exhibit different runtime performances, as different syn-
chronization approaches may perform diversely for the same
federate. The performance is enhanced by always choosing
the fastest replica to represent the behavior of the federate in
the federation. As PWD cannot be guaranteed when repli-
cas use different synchronization approaches, the ARML
proposed in (Quaglia 2006) cannot be used. In this paper, a
replication structure is introduced, which can transparently
handle the federate replicas that employ either conservative
or optimistic approach.

Some background knowledge that is necessary for the
understanding of our replication structure is introduced in
section 3. Section 4 presents the implementation details
of our method to replicate federates with alternative syn-
chronization approaches. Experimental results are reported
and discussed in section 5. Finally, section 6 concludes the
paper and outlines the future work.

2 RELATED WORK

As mentioned above, a conservative approach cannot out-
perform an optimistic approach in every situation, and vice
versa. Since the beginning of 1990s, a number of protocols
have been proposed to obtain higher efficiency by taking
advantages of both conservative and optimistic approaches.
These protocols can be classified into two groups as follows.

1113

Find the compromise between conservative and opti-
mistic approaches: conservative and optimistic approaches
go towards two extremes: conservative approaches impose
strict constraint on simulation components in simulation
time advancement and event processing; whereas optimistic
approaches allow free processing of events with the price
of error recovery. To reach the compromise, one can ei-
ther introduce optimism in a conservative approach (e.g.,
the optimistic-conservative synchronization proposed by Xu
and McGinnis (2006)), or introduce conservatism in an opti-
mistic approach (e.g., Moving Time Window protocol (Sokol
et al. 1988) and Adaptive Time Warp protocol (Ball and
Hoyt 1990)).

Mix and switch between different synchronization ap-
proaches: the Local Time Warp method proposed by (Rajaei
et al. 1993) enables mixing of synchronization approaches
hierarchically in a simulation. At the lower level, an opti-
mistic approach is used to exploit parallelism, while a con-
servative approach is adopted to control cascaded rollbacks
at the higher level. The parallel simulation protocol pro-
posed by Jha and Bagrodia (1994) not only allows different
simulation components to apply different synchronization
approaches, but also supports the simulation components to
switch among different approaches dynamically.

Different from the above existing approaches, our pro-
posal allows federate replicas to employ alternative synchro-
nization approaches. The replication structure can transpar-
ently support the concurrent execution of federate replicas
and automatically choose the fastest replica to represent the
federate. In other words, alternative synchronization ap-
proaches are enabled simultaneously for a federate, and the
federate can switch among these approaches automatically,
depending on their runtime performance.

3 HLA AND SOHR ARCHITECTURE

The replication structure is developed for High Level Ar-
chitecture (HLA) based simulations and implemented in
a totally transparent manner by exploiting the decoupled
federate architecture in SOHR (Pan et al. 2007), a service-
oriented HLA RTI.

3.1 Time Management in HLA

The HLA was developed initially by the DMSO (Defense
Modeling and Simulation Office), and was adopted as IEEE
1516 standard (IEEE 2000) in September 2000. HLA pro-
vides a general architecture for developing large-scale dis-
tributed simulation (federation) and supports the reusability
and interoperability of simulation components (federates).
The Runtime Infrastructure (RTI) communication middle-
ware is an implementation of the HLA interface specification.
Federates in the same federation can only communicate with
each other through the underlying RTI.

Li, Cai, Turner and Pan

A group of time management (TM) services are defined
in HLA to control the time advancement of each joined
federate along the HLA time axis (IEEE 2000). There are
two types of messages in a federation: Time-Stamp Order
(TSO) and Receive Order (RO) messages. Federates can be
divided into four categories based on their time regulating
and time constrained status. The federates discussed in
this paper are both time regulating and constrained, among
which only TSO messages are exchanged.

The Next Messages Request (NMR) service with param-
eter ¢ is intended to be used for conservative synchronization
of event driven federates, where ¢ is typically the time stamp
(TS) of the next local event. A Time Advance Grant (TAG)
shall complete this request. The federate is granted to ¢
and no TSO message is delivered, if ¢ is smaller than the
minimum TS of the TSO messages that will ever be received
by the federate. Otherwise, the federate is granted to this
minimum TS, and the TSO messages with TS equals to the
minimum TS are eligible to be delivered to the federate.

Optimistic synchronization is supported by Flush Queue
Requests (FQR) service. It forces the RTI to deliver all TSO
messages. An FQR can always be granted without waiting
for other federates to advance. The granted time is the
upper bound for fossil collection, which can be smaller
than the current simulation clock of the federate. When
causality error happens, an optimistic federate can use the
Retract service to retract a perviously sent message. If
the message has already been delivered to a federate, the
RTI will invoke the Request Retraction callback to inform
the federate to remove the message. This may cause the
federate to rollback.

As for message exchange among federates in the fed-
eration, Send Interaction (SI) service is used to send an
interaction to remote federates, while Update Attribute Val-
ues (UAV) service is used to supply object instance attribute
values to other interested federates. The messages are re-
ceived by the federate invoking the Receive Interaction (RI)
or the Reflect Attribute Values (RAV) callbacks.

3.2 SOHR Architecture

SOHR is a service-oriented architecture which provides
the functionalities of the HLA RTI via the cooperation of
a group of predefined Grid services (Foster et al. 2001).
The overview of the architecture is shown in Figure 1.
HLA RTI Management Services implement the six service
groups defined by the HLA interface specification. The
RTI Index Service provides a system-level registry of all
other Grid services.

In SOHR, a federate is decoupled into two compo-
nents: federate simulation model and Local Service (LS).
The design of LS follows the WS-Resource factory design
pattern. It consists of factory service LFS, instance service

1114

Machine 1 Machine 2
Federate Federate Federate Federate
LRC LRC LRC LRC
¥) 4) 4 v
LS LS
LFS LIS LFS Lis
=, (=]

A A
¥ L 4

HLA RTI Management Services
RTI Index Service

Figure 1: SOHR architecture.

LIS and multiple resource instances LRIs. LFS creats a
LRI when a federate joins a federation and destroys the LRI
when the federate resigns from the federation. The LRI is
a stateful class that is used to keep the RTI state concerned
with the federate, such as TM information and TSO/RO
callbacks. The LIS provides service to the federates by ac-
cessing the LRI state and communicating with the HLA RTI
Management Services and LISes of other federates. The
RTT services initiated by the federate are translated into
Grid service invocations of the LIS by the LRC (Local RTI
Component). When the LIS receives a message from other
LISes, a corresponding callback will be generated and saved
in a message queue depending on the message type. Finally,
federate requests for callbacks by calling Evoke Multiple
Callbacks (IEEE 2000), and LRC obtains callbacks from
the LRI by invoking the getcallbacks() service of the LIS
and delivers the callbacks to the federate. In summary, the
federate only deals with the local computation; whereas the
LIS/LRI handles the distributed part, playing the role of
the LRC in the traditional HLA RTI implementations (e.g.,
RTI NG (Defense Modeling and Simulation Office)).

4 REPLICATING FEDERATES WITH
ALTERNATIVE SYNCHRONIZATION
APPROACHES

4.1 Replication Structure

The replication structure in SOHR is shown in Figure 2.
Multiple replicas, which are developed for the same
federate, can be executed concurrently. These replicas can
employ either a conservative approach or an optimistic
approach, which are denoted as CON and OPT respectively.
Due to the decoupled federate architecture in SOHR, it is
the LIS/LRI instead of the federate replicas that connects
to the federation directly. Therefore, multiple replicas of

Li, Cai, Turner and Pan

the same federate can connect to a single LIS/LRI, while
the LIS/LRI takes care of time advancement requirement
and message exchanges with other federates. The LIS/LRI
can transparently support the concurrent execution of
federate replicas and improve the performance by always
choosing the fastest replica to connect to the federation,
i.e., communicating with the LIS/LRIs of other federates
and the HLA RTI management services.

LISLRI r-1

Communication amaong LISILRIs

A

- Pt S
i

'\._ Federaten .~

Figure 2: Replication structure.

The replication structure is designed in a totally trans-
parent manner. Firstly, the replication of a federate is
transparent to the federate itself. The federate replica does
not know the existence of other replicas of the same feder-
ate. Secondly, the replication of a federate is transparent to
remote federates. They have no idea about which federate
replica they are actually communicating with.

The LIS/LRI plays a similar role as ARML, and thus
there is no need to insert an additional layer between federate
and RTI. Unlike ARML the PWD restriction is no longer
required in our replication structure. CON and OPT behave
differently due to the characteristics of the employed syn-
chronization approaches. They use different RTI services
to request time advancement. Moreover, OPT may pro-
cess events in wrong order and incorrect messages might
be generated as a result. To maintain its consistency with
CON, OPT needs to rollback to a correct sate and retract
the incorrect messages which were generated previously.
Therefore, to correctly deal with these different behaviors
between CON and OPT, the LIS/LRI in SOHR should be
modified to:

1. Filter the messages sent by both CON and OPT
and deliver only the first instance of the message
to the subscribers;

Handle the additional messages sent by OPT, in-
cluding the incorrect messages and the correspond-
ing Retract service;

1115

Table 1: Additional variables and flags

Name Description
ConLGT Last Granted Time of CON
OptLGT Last Granted Time of OPT
LGT Max(ConLGT, OptLGT)
ConReqTime Requested time from CON
OptReqTime Requested time from OPT
ConInTAS | CON is in time advancing state
OptInTAS OPT is in time advancing state

3. Deliver eligible TSO callbacks to CON and OPT,
according to the HLA interface specification;

4. Prevent any incorrect message and Retract ser-
vice to be delivered to the CON replica of the
subscribers; and

5. Handle time advancement request from CON and

OPT and grant time request to them individually.

To perform the above tasks, the LIS/LRI should have
two major functions: Firstly, it must guarantee the cor-
rectness and efficiency of message exchanges among fed-
erates. Secondly, it must coordinate correctly the execution
of conservative and optimistic replicas of the same feder-
ate. Currently, the replication structure is implemented to
support two replicas of the same federate: one is CON
while the the other is OPT. They are assumed to use NMR
and FQR respectively to request time advancement. It is
also assumed that the two replicas have the same value of
lookahead (denoted as LA).

Some additional variables and flags are defined in the
LIS/LRI, which are shown in Table 1. ConLGT represents
the last granted time of CON, which defines the upper bound
of the logical time to which CON can advance. OptLGT
represents the last granted time of OPT, which defines the
lower bound of logical time of any future rollbacks. ConLGT
and OptLGT may have different values, as their calculation
depends on the relative performance of CON and OPT (as
to be discussed in section 4.3). LGT represents the logical
time of the federate, which is maintained by the LIS/LRI.
Since the faster federate replica is chosen to represent the
federate, LGT is set to the bigger value between ConLGT
and OptLGT.

4.2 Message Exchange

The mechanism of message exchange among replicated
federates is shown in Figure 3. The solid lines represent
the trace of outgoing messages from the federate, while
the dashed lines show the flow of incoming messages to

Li, Cai, Turner and Pan

the federate.

OpthsgFilter

Reoewe Gei
Msg \ Callhacks
OptTSOOusus

I
1
|R1
I
1

Figure 3: Mechanism of message exchange.

In the replication structure, outgoing messages can be
generated by both CON and OPT (step S1). Different mes-
sages might be generated by CON and OPT in different
order. When a message is generated by one replica, the
LIS/LRI needs to determinate whether the message has
already been generated by the other replica. Two mes-
sage filters are deployed for CON (ConMsgFilter) and OPT
(OptMsgFilter) to buffer the messages that have been sent
by the LIS/LRI to other federates respectively. After a mes-
sage is generated by a federate replica, the LIS/LRI will
search the same instance of the message in the message
filter of the other replica (step S2). If the same instance
is found, which indicates the message has been sent, the
message is ignored and the same instance of the message is
removed from the message filter of the other replica (step
S3). Otherwise, the message is sent out by the LIS/LRI
and buffered in the message filer of the replica (step 3).

As LGT is the logical time of the federate, the LIS/LRI
will never send out any messages with TS less than LGT
+ LA. Thus, the generated message can be ignored by
the LIS/LRI, if its TS is smaller than LGT+LA. In this
way, many comparisons are avoided and the message filters
can be reclaimed when LGT is updated. The comparison
overhead is also reduced by sorting the messages in the
message filters by TS.

As described above, for a message sent by both CON
and OPT, the first instance of the message is sent out to
the subscribers, while the second one is simply ignored by
the LIS/LRI. The message generated only by OPT must
be an incorrect message and should be retracted latter by
OPT using the Retract service. Therefore, an incorrect
message can be identified, if the LIS/LRI can ensure that
the CON replica never ever sends the same instance of the
message. The incorrect message, if identified, is simply
ignored by the LIS/LRI. Otherwise the message generated

1116

by OPT is sent out to the subscribers and buffered in the
OptMsgFilter. When handling the Retract service invoked
by OPT, the LIS/LRI checks whether the corresponding
message is kept in the OptMsgFilter. If not, the Retract
service is ignored simply. Otherwise, the LIS/LRI sends
retraction of the message to the subscribers and removes the
message from the OptMsgFilter. In this way, the incorrect
messages sent by OPT are handled properly. They and their
corresponding retraction requests are either ignored or sent
to the subscribers.

To deliver eligible TSO callbacks to CON and OPT,
two individual TSO queues are deployed in the LIS/LRI:
one for CON (ConTSOQueue), and the other for OPT
(OptTSOQueue). Asshownin Figure 3, after a TSO message
is received (step R1), a corresponding TSO callback is
generated and buffered in both TSO queues (step R2).
Federate replicas get TSO callbacks from their own TSO
queue according to the HLA interface specification (step
R3). All TSO callbacks in OptTSOQueue can be delivered
to OPT; whereas only the TSO callbacks with TS equal to
ConLGT can be delivered to CON. Similarly, two individual
Non-message Callback Queues (not shown in the figure)
are deployed in the LIS/LRI: one for CON to buffer the
TAG callbacks, and the other for OPT to buffer the TAG
and Request Retraction callbacks. Hence, the LIS/LRI can
grant the time request from CON and OPT individually and
avoid delivering Request Retraction callbacks to CON.

4.3 TM in Replication Structure

A synchronous TM algorithm has been proposed in (Pan
et al. 2008) to control the time advancement of the federates
along the federation time axis. Federates discussed in that
algorithm have only a single instance. Each federate propa-
gates Conditional Information Report (CI) (Fujimoto 2000)
with a sequence number (denoted as CI-CISeqNum) to all
other federates in the federation. The Greatest Available
Logical Time (GALT) is calculated as the minimum value
of all CIs with the same sequence number from all federates
in the federation. The synchronous TM algorithm proposed
in (Pan et al. 2008) is modified to handle the NMR and
FQR requests from the replicas. the CISeqNum and GALT
are managed by the LIS/LRI. The CI is sent and GALT is
calculated by the LIS/LRI when it handles NMR or FQR
service from replicas or receives CI from other LIS/LRIs.

The LIS/LRI will send out a CI-CISeqNum when the
request of time advancement from either CON or OPT
cannot be granted by the current value of GALT. Meanwhile
the sequence number of CI (CISeqNum) will be increased
by one. This conditional information guarantees that the
LIS/LRI will not send out any additional TSO messages or
retraction of message with TS less than CI, if it does not
receive any new TSO message or retraction of message with
TS less than CI — LA. After the Cls with the same sequence

Li, Cai, Turner and Pan

number are received from all LIS/LRIs, the GALT can be
calculated as the minimum value of these CIs. The GALT
defines the lower bound of TS of messages or retraction of
messages that the LIS/LRI may receive in the future. By
using this value, the LIS/LRI can handle the NMR and
FQR services according to the HLA interface specification
and grant the time advancement request to CON and OPT
accordingly. In general, the LIS/LRI is likely to send
out CI and increase the value of GALT while handling
the time advancement request from the faster federate
replica. With the increased GALT, the time advance-
ment request from the slower replica will be granted directly.

void NMR(t)

1 if{ Conln'T AS==true)
2, throw InTimeAdvancingStateException;
3. ConInTAS=true;
4 ConReqTime=t;
5, if (GALT=min{ConReqTime,ConTSOHead}))
{

6. ConGranted(min(ConReqTime, ConTSOHead));
7. return;
3
8. if (OptInTAS==true||CISeqNum>GALTSeqgNum)
9, return;
10. while(OptMsgHead<min(ConReqTime,ConTSOHead)+LA)

Retract messages in OptMsgFilter with TS==0ptMsgHead;
Cl=min{ConReqTime, ConTSOHead)+LA;
Cl=min(CT, minTSOfTransientMessages):
ClSeqNum-++;
send CI-CISeqNum to other LIS/LRIs by invoking
their receiveCl services;
reset minTSOfTransientMessages;
if (CI-C1SeqNum from a LIS/LRI is not ready)
return;
update GALT by taking the minimum of all CI-C1SeqNum;
GALTSeqNum=CISeqNum;
if (GALT=min{ConReqTime,ConTSOHead))
{
ConGranted(min(ConReqTime, ConTSOHead)):
return;
H
Cl=min{ConReqTime,ConTSOHead)+LA;
ClSeqNum++;
send CI-CISeqgNum to other LIS/LRIs by invoking
their receiveCl services;

void ConGranted(t)
{

27.
28.
29,
30,
3.
}

ConLGT=t;

LGT=max(ConLGT, OptLGT);

reclaimMsgFilter{LGT+LA);

buffer TAG(ConLGT) in Non-Message Callback Queue of CON;
ConInTAS=false;

Figure 4: Implementation details of NMR.

The pseudo code of NMR is shown in Figure 4. Con-
TSOHead refers to the minimum TS of messages in the
ConTSOQueue, and OptMsgHead denotes the minimal TS
of the messages in the OptMsgFilter. When the NMR is
invoked by CON, GALT is compared with ConReqTime
and ConTSOHead to check whether a TAG can be delivered
to CON directly (Lines 5-7). If not, the LIS/LRI will send
a CI with CISeqNum to LIS/LRIs of other federates (Lines

1117

12-15). In the case where the LIS/LRI has received CI-
CISeqNum from LIS/LRIs of all other federates, the value
of GALT can be calculated by taking the minimum value
of all CI-CISeqNum, including the one sent by the LIS/LRI
itself (Lines 17-20). After the GALT has been updated, the
LIS/LRI will check again whether a TAG can be delivered
to CON (Lines 21-23). If not, CON remains in time advanc-
ing state and the LIS/LRI has to send out another CI and
carry out a new round of GALT calculation (Lines 24-26).
When a TAG is delivered to CON (Lines 27-31), ConLGT
and LGT must be updated. Meanwhile, both ConMsgFilter
and OptMsgFilter are reclaimed by removing the buffered
messages with TS smaller than LGT+LA.

Before sending out a CI, the LIS/LRI has to guarantee
that the other replica is not in time advancing state (Line
8). In the case where the other replica is in time advanc-
ing state, which implies GALT calculation is in progress,
it is unnecessary for the replica to send out another CI
and calculate the value of GALT. In the synchronous TM
algorithm, it is also unnecessary for the LIS/LRI to send
out a new CI, if its previous CI has not been used for the
GALT calculation, that is, CISeqNum is still larger than
GALTSeqNum (i.e., the sequence number of GALT cal-
culation) (Line 8). The transient message problem, which
might happen in synchronous TM algorithms, is solved us-
ing acknowledgements in a similar way to Samadis Global
Virtual Time (GVT) algorithm (Samadi 1985). The vari-
able minTSOfTransientMessages (i.e., the Minimum TS of
transient messages sent by the LIS/LRI) keeps track of
the minimum TS of transient messages sent by the local
LIS/LRI. It is included in the CI calculation (Line 13) to
ensure that the transient messages are considered in the
GALT calculation.

Before Cl is sent to other LIS/LRIs (Lines 10, 11), mes-
sages in the OptMsgFilter with TS < min(ConReqTime,
ConTSOHead)+LA are identified as incorrect messages and
retractions of these messages are sent to the receivers. CON
can be granted to ConLGT = min(ConReqTime, ConTSO-
Head), if the LIS/LRI will not receive any new message with
TS < min(ConReqTime, ConTSOHead) after CI is sent.
Otherwise, CON is granted to ConLGT < min(ConReqTime,
ConTSOHead). In the first case, CON will not send any
message with TS < min(ConReqTime, ConTSOHead)+LA
in the future. Thus, the messages in the OptMsgFilter with
TS < min(ConReqTime, ConTSOHead)+LA are only sent
by OPT and can be identified as incorrect messages. In
the second case, CON may generate messages with TS
< min(ConReqTime, ConTSOHead)+LA. However, these
messages must be generated as a result of handling the new
messages received by the LIS/LRI. Obviously, these gener-
ated messages are different from those messages already in
the OptMsgFilter that have TS < min(ConReqTime, Con-
TSOHead)+LA, since the latter were generated by OPT
before the new messages were received. Thus, in the sec-

Li, Cai, Turner and Pan

ond case, the messages kept in the OptMsgFilter with TS
< min(ConReqTime, ConTSOHead)+LA can also be iden-
tified as incorrect messages. Similarly, messages generated
by OPT with TS < min(ConReqTime, ConTSOHead)+LA
are identified as incorrect messages and ignored simply by
the LIS/LRI, if CON is in time advancement state.

Retracting the incorrect messages before sending out CI
is also important to avoid delivering incorrect messages to
CON replica of the receiving federate. From the perspective
of the sending federate, it is obvious that the following is
true for the CI it sends to the other LIS/LRIs: the value of CI
< min(ConReqTime, ConTSOHead)+LA < OptMsgHead
< the minimal TS of all unretracted incorrect messages in
the OptMsgFilter (if any). From the perspective of receiving
federate, it is also obvious that GALT < the value of CI
sent by the sending federate and ConLGT < GALT. By
combining the above inequations, we can finally derive that
the minimal TS of any unretracted incorrect messages from
the sending federate must be greater than ConLGT of the
receiving federate. Since the LIS/LRI only delivers CON
the callbacks with TS equal to ConLGT, the unretracted
incorrect messages, if any, from the sending federate will
not be delivered to CON of the receiving federate.

Figure 5 shows the pseudo code of FQR, in which
OptTSOHead refers to the minimum TS of messages in
OptTSOQueue. Similarly, GALT is compared with OptRe-
qTime and OptTSOHead to check whether the OPT’s logical
time can be advanced to min(OptReqTime, OptTSOHead)
(Lines 5-7). If not, the LIS/LRI will try to update the value
of GALT by sending a CI to LIS/LRIs of other federates
(Lines 11-19). The minRequestRetraction (i.e., the minimal
TS of TSO messages that will be removed by the Request
Retraction callbacks buffered in OPT Non-message Callback
Queue) must be taken into account in the CI calculation.
The reason is that, the OPT might retract a previously sent
TSO message with TS > minRequestRetraction + LA after
receiving the buffered Request Retraction callbacks. Af-
ter the GALT has been updated, the LIS/LRI will check
again whether the OPT’s logical time can be advanced to
min(OptReqTime, OptTSOHead). If the GALT is not up-
dated or GALT value is still less than OptReqTime and
OptTSOHead, then the OPT can only advance its logical
time to GALT (Lines 16-18, 24).

Figure 6 shows the pseudo code of ReceiveClI service,
which is invoked when the local LIS/LRI receives a CI form
other LIS/LRIs. A new value of GALT can be calculated
if the local LIS/LRI has sent out CI-seqNumOfNewCI and
has received Cl-seqNumOfNewCI from LIS/LRIs of all
other federates (Lines 1-4). If CON is in time advancing
state, the new GALT is compared with ConReqTime and
ConTSOHead to check whether a TAG can be delivered
(Lines 5-9). If a TAG cannot be delivered, CON remains
in time advancing state and the LIS/LRI has to send a CI
out for a new round of GALT calculation (Lines 12-15).

1118

void FQR(t)

if(OptlnTAS=—true)

1

2, throw InTimeAdvancingStateException;
3. OptInTAS=true;

4. OptReqTime=t;

5 if (GALT=min{OptReqTime,0ptTSOHead))

{
6. OptGranted(min(OptReqTime,OptTSOhead));
7. return;

i
8. if (ConInTAS==true||CISeqNum>=GALTSeqNum)

OptGranted(GALT);
return;

H
Cl=min{OptReqTime, OptTSOHead, minRequestRetraction)+LA;
Cl=min{CI, minTSOfTransientMessages):
CISegNum++;
send CI-CISeqNum to other LIS/LRIs by invoking
their receiveCl services;
reset minTSOfTransientMessages;
if (CI-CISeqNum from a LIS/LRI is not ready)
{
OptGranted(GALT);
return;
H
update GALT by taking the minimum of all CI-CISeqNum;
GALTSeqNum=CISeqNum;
if (GALT>min{OptReqTime,OptTSOHead))

OpiGranted(min(OptReqTime,Opi TSOhead));
return;

}
OptGranted(GALT);
return;

void OptGranted(t)

OptLGT=t;

LGT=max{ConLGT, OptLGT);

reclaimMsgFilter{LGT+LA):

buffer TAG(ConLGT) in Non-Message Callback Queue of OPT;
OptInTAS=false;

Figure 5: Implementation details of FQR.

Similar to the implementation of NMR, the LIS/LRI tries
to retract incorrect messages before sending out CI (Lines
10, 11).

5 EXPERIMENTS AND RESULTS

Experiments are designed to evaluate the performance of
our replication structure. The federation is composed of
two federates, each of which has a local event initially.
When processing a local event, in addition to generates a
local event, the federate may send an external event to the
other federate with TS equal to TS of current event + LA.
When processing an event received from other federate,
the federate simply outputs some information instead of
generating a local event and sending an external event.
The LA of both federate is set to 5. The probability of
generating an external event is denoted as PgyernEvens- 1he
simulation time of the generated local event is increased

Li, Cai, Turner and Pan

void receiveCl(sendingFederateHandle, seqNumOfNewCl, newCl)

if (Cl-seqNumOfNewCl from a LIS/LRI is not ready)
return;
update GALT by taking the minimum of all CI-seqNumOfNewCl;
GALTSegNum=seqNumOfNewClI ;
if{ConInTAS==false)
return;
if (GALT=min{ConReqTime,ConTSOHead))
{

U e

ConGranted(min(ConReqTime, ConTSOHead));
return;

© w

}

while(OptMsgHead<min(ConReqTime,ConTSOHead)}+1.A)
Retract messages in OptMsgFilter with TS=—0ptMsgHead;

Cl=min(ConReqTime,ConTSOHead)+LA;

Cl=min{CI, minTSOfTransientMessages);

CISeqNum-++;

15. send CI-CISeqNum to other LIS/LRIs by invoking

their receiveCl services;

reset minTSOfTransientMessags;

Figure 6: Implementation details of ReceiveCl.

by a random number between 10 and 50. The termination
time for both federates is set to 15000 simulation units. The
spin-loop for processing an event is set to 30 milliseconds.
To demonstrate variable performance between CON and
OPT, spin-loops (10 milliseconds) are also used to emulate
the cost of state saving and restoration mechanisms in OPT.

The experiments were carried out in a cluster, which
has an infiniBand connection. Each of its machines is
installed with 2*Dual core Xeon 3.0GHZ, 4G RAM and
Redhat Enterprise 4 OS. The RTI Index service and the
HLA RTI Management Services are executed on separate
machines. Two LSes are deployed on different machines,
each of which is connected with a CON and/or an OPT of
the same federate. The CON and OPT are also executed
on separate machines.

In Figure 7, we report the execution time of the sim-
ulation versus Pgyernevens- Different synchronization ap-
proaches are considered, including a conservative approach,
an optimistic approach, and the replicated approach pro-
posed in this paper. In the conservative approach, each
federate is implemented using a CON replica, and corre-
spondingly in the optimistic approach an OPT replica is
used to implement each federate. Each federate has a CON
and an OPT replicas in the replicated approach.

As we can see, when Pgyserngven 18 small, the optimistic
approach outperforms the conservative approach. The reason
is that the federates seldom send external events to each
other and only a small number of rollbacks occur in both
federates. However, with an increasing PgyrernEvent, the
number of rollbacks is also increased and the performance of
the conservative approach becomes better than the optimistic
approach.

The most important observation in this experiment is that
the replicated approach outperforms both conservative and
optimistic approaches. The slower replica in our replication

1119

ra
=
=

,_.
o
=

,_.
ra
=

o
=

.
=

Ezecution Time [Sec)

=

50 T3 100

P ot erneven (%)

[—+—rConservative —#—Optimistic —— Replicated |

Figure 7: Execution time for different synchronization ap-
proaches with constant PryternEvent-

Table 2: Variable PgyternEvent

Cases PrxternEven list

1 0%, 25%, 50%, 715%, 100%
100%, 75%, 50%, 25%, 0%
0%, 100%, 0%, 100%, 0%
0%, 50%, 100%, 50%, 0%

100%, 50%, 0%, 50%, 100%

(O RSN S)

structure can easily catch up or even become the faster one.
The request of time advancement from the slower replica
can be granted directly with the current value of GALT,
which has been increased by the faster replica. Experiments
have also shown that CON and OPT replicas are terminated
almost at the same time.

Based on the observation of the above experiment,
different values of PryrermEven: lead to different performance
for different synchronization approaches. If the value of
PExternEvens Varies in the same execution, the optimistic
approach can outperform the conservative approach during
one execution phase, while the conservative approach can
outperform the optimistic approach during another execution
phase. We expect the replicated approach can outperform
both conservative and optimistic approaches, as it always
chooses the faster replica to represent the federate during
the whole execution. In the second experiment, we measure
the performance of the federation with variable PryernEvent,
which is changed every 3000 simulation units. Five cases
are investigated, as shown in Table 2. The execution times
of different approaches are shown in Figure 8. Overall, the
replicated approach can improve the execution performance
by 11% to 14%, compared with the better result between
conservative and optimistic approaches in which federates
are not replicated.

Li, Cai, Turner and Pan

120

Execution Time (Sec)

Cage? Cageld Cazed Cageh

Caszel

|E|Conservative BAoptimistic @Replicated|

Figure 8: Execution time for different synchronization ap-
proaches with variable PgyernEvent-

6 Conclusions and Future Work

In this paper we have proposed to improve the performance of
a federation by replicating federates using conservative syn-
chronization and/or optimistic synchronization approaches,
and by automatically choosing the fastest replica to represent
the federate in the federation during the whole execution.
Besides presenting the implementation details of our repli-
cation structure based on the decoupled federate architecture
in SOHR, we have also reported the experimental results
to demonstrate the benefits of our approach in terms of
performance improvement. In the future, we will investi-
gate how fault tolerance can be supported by exploiting the
advantages of this replication structure.

REFERENCES

Ball, D., and S. Hoyt. 1990. The adaptive time-warp con-
currency control algorithm. In Procs of the SCS Mul-
ticonference on Distributed Simulation, 174-177.

Bryant, R. E. 1977. Simulation of packet communication
architecture computer systems. Technical report, MIT.
Cambridge, MA, USA.

Chandy, K. M., and J. Misra. 1979. Distributed simulation:
A case study in design and verification of distributed
programs. IEEE Trans. Software Eng. 5 (5): 440-452.

Defense Modeling and Simulation Office. High level archi-
tecture rti 1.3ng programmers guide version 5.

Foster, 1., C. Kesselman, and S. Tuecke. 2001. The anatomy
of the Grid - enabling scalable virtual organizations.
Int. J. High Perform. Comput. Appl. 15 (3): 200-222.

Fujimoto, R. M. 2000. Parallel and distributed simulation
systems. Wiley Interscience.

IEEE 2000. Standard 1516 (HLA rules), 1516.1 (feder-
ate interface specification) and 1516.2 (object model
template).

Jefferson, D. R. 1985. Virtual time. ACM Trans. Program.
Lang. Syst. 7 (3): 404-425.

1120

Jha, V., and R. L. Bagrodia. 1994. A unified framework
for conservative and optimistic distributed simulation.
ACM SIGSIM Simulation Digest 24 (1): 12—19.

Niewiadomska-Szynkiewicz, E., and A. Sikora. 2002. Al-
gorithms for distributed simulation - comparative study.
In Procs of International Conference on Parallel Com-
puting in Electrical Engineering, 261-266.

Pan, K., S. J. Turner, W. Cai, and Z. Li. 2007. A service
oriented HLA RTI on the Grid. In Procs of International
Conference on Web Services, 984-992.

Pan, K., S. J. Turner, W. Cai, and Z. Li. 2008. A hy-
brid HLA time management algorithm based on both
conditional and unconditional information. In Procs of
22th Workshop on Parallel and Distributed Simulation,
203-211.

Quaglia, F. 2006. A middleware level active replication
manager for high performance HLA-based simulations
on smp systems. In Procs of 10th IEEE International
Symposium on Distributed Simulation and Real-Time
Applications, 219-226.

Rajaei, H., R. Ayani, and L.-E. Thorelli. 1993. The lo-
cal Time Warp approach to parallel simulation. ACM
SIGSIM Simulation Digest 23 (1): 119-126.

Samadi, B. 1985. Distributed simulation, algorithms and
performance analysis. Ph. D. thesis, University of Cal-
ifornia, Los Angeles.

Sokol, L. M., D. P. Briscoe, and A. P. Wieland. 1988.
MTW: A strategy for scheduling discrete simulation
events for concurrent execution. In Procs of the SCS
Multiconference on Distributed Simulation, 34—42.

Xu, S., and L. F. McGinnis. 2006. Optimistic-conservative
synchronization in distributed factory simulation. In
Procs of the 2006 Winter Simulation Conference, 1069—
1074.

AUTHOR BIOGRAPHIES

ZENGXIANG LI is a PhD student in the School of Com-
puter Engineering at Nanyang Technological University
(NTU) in Singapore. He received his M.Eng. from the
Shanghai Jiao Tong University (China).

WENTONG CALI is an Associate Professor in the School
of Computer Engineering at NTU. He received his PhD in
Computer Science from University of Exeter (UK).

STEPHEN JOHN TURNER is a Professor in the School
of Computer Engineering and Director of PDCC at NTU.
He received his PhD in Computer Science from Manchester
University (UK).

KE PAN is a PhD student in the School of Computer
Engineering at NTU. He received his B.Eng. from NTU.

