Proceedings of the 2008 Winter Simulation Conference

S. J. Mason, R. R. Hill, L. Ménch, O. Rose, T. Jefferson, J. W. Fowler eds.

Distributed Multi-Layered Workload Synthesis for Testing Stream Processing Systems

Eric Bouillet
Parijat Dube
David George
Zhen Liu
Dimitrios Pendarakis
Li Zhang

19, Skyline Drive
IBM T. J. Watson Research Center
Hawthorne, NY 10532, U.S.A.

ABSTRACT

Testing and benchmarking of stream processing systems
requires workload representative of real world scenarios
with myriad of users, interacting through different appli-
cations over different modalities with different underlying
protocols. The workload should have realistic volumetric
and contextual statistics at different levels: user level, ap-
plication level, packet level etc. Further realistic workload
is inherently distributed in nature. We present a scalable
framework for synthesis of distributed workload based on
identifying different layers of workload corresponding to
different time-scales. The architecture is extensible and
modular, promotes reuse of libraries at different layers and
offers the flexibility to add additional plug-ins at different
layers without sacrificing the efficiency.

1 INTRODUCTION

In recent times there has been a surge in Stream Processing
Systems for intelligent on-line data mining. An important
aspect of Stream processing systems is the mission to receive
data of all kinds, including voice, image, video, text, etc.; all
at rates generally far in excess of typical clustered computer
systems. Stream processing offers much to process event
data that explains the importance of having proper tools for
evaluating, exercising and benchmarking these systems.

Testing and benchmarking of stream processing systems
requires workload representative of real world scenarios with
myriad of users, interacting through different applications
over different modalities with different underlying protocols.
The workload should have realistic volumetric and contex-
tual statistics at different levels: user level, application level,
and packet level. Thus there is a need for generating ap-
plication specific workloads with varying degree of content
richness in a scalable and distributed manner.

More specifically, workload generators for testing and
benchmarking stream processing systems should have the
ability to simulate or emulate traffic generated by different

978-1-4244-2708-6/08/$25.00 ©2008 IEEE

1003

types of applications, protocols and activities of interest
to the system, such as, email, chat, web-browsing, and
sensor-data (e.g. video surveillances, sensors monitoring
temperature). In (Anderson et al. 2006), the authors pro-
vided a comprehensive list of requirements and challenges
in developing a workload generator for testing and bench-
marking distributed stream processing system dealing with
high-volume, continuous, multi-modal stream data and op-
erating in a highly resource constrained environment. The
authors also reported the inadequacy of existing distributed
workload generator tools like LARIAT (Rossey et al. 2002)
and StreamGen (Mansour et al. 2004) in meeting these
requirements.

SWORD (Scalable WORKkloaD generator) is a scalable
and flexible workload generator for testing and benchmark-
ing high-volume distributed stream processing systems. It
provides a distributed platform for generating a wide range
of workload types with both volumetric and contextual corre-
lations. The architecture of SWORD is shown in Figure 1.
SWORD is based on a multi-agent framework support-
ing simultaneous creation, management and monitoring of
thousands of workload generator agents in a scalable and
distributed manner. The agents instantiate and invoke Data
factory Objects which provide methods for synthesizing
workload which is semantically conformant to the specific
protocol. The data factory objects are implemented in C/C++
and are invoked from the agents through JNI. Data factory
objects also provide functionality for generating content-rich
workload by using the meta-data provided by the Content
Model. The content model repository provides a meta-data
respresentation for the semantics of the content and its sta-
tistical properties. The meta-data representation is XML
based and is independent of the application specific details
(modality, encoding, lower-level transport protocols). Thus
different data factory objects, corresponding to different
applications and protocols can access the same meta-data
and independently apply application and protocol specific
transformations for creating respective workloads.



Bouillet, Dube, George, Liu, Pendarakis and Zhang

Content design GUI

A
Petri Net

Petri Net

Content »

Model
(decision
trees)

HTTP Server.
Applications .

Figure 1: Architecture of SWORD.

In (Anderson et al. 2006) SWORD was introduced
and its major components were overviewed from system
perspectives. The contribution of this paper is to describe in
detail the workload synthesis model of SWORD and report
several novel features added to the model. We explain the
key design choices made for different components of the
workload synthesis model and how they can be exploited
to support generation of statistically and semantically real-
istic content rich workload in a scalable, reproducible and
controllable manner.

2 WORKLOAD SYNTHESIS METHODOLOGY

The programming model for workload synthesis in SWORD
involves following three main components: Scenario Spec-
ification using Petri-Nets, Data Factory Objects, and Scal-
able Content Modeling. The design is optimized for each
component without loss of flexibility. Each component is
extensible and modular and the design promotes the reuse of
libraries for different components: library of data factories,
library of content models with meta-data that can be reused
for different types of data factories, and library of (modular)
Petri-Nets that can be composed into larger Petri-Nets.

2.1 Scenario Specification Using Petri-Nets

SWORD enables the generation of large numbers of streams
of different types of traffic with contextual and temporal
correlations. Correlations between streams can be turned on,
modified or turned off dynamically; corresponding correla-
tion parameters can take values from (random) user specified

real data

1004

distributions. These dependencies are captured using a set of
finite state machines (FSMs). FSMs describe the evolution
in time of a stream, a set of dependent streams and/or the
occurrence of events associated with these streams. Each
FSM determines the time of instantiation, the model to be
used to generate traffic and the corresponding parameters
for one or more streams. Multiple FSMs can be used in
parallel to generate multiple sets of correlated streams. Fur-
thermore, FSMs can be hierarchical; a state or transition
of an FSM (in the upper level of the hierarchy) leads to a
new FSM (in the lower level of the hierarchy). FSMs are
implemented in SWORD using colored Petri-Nets (Jensen
1997).

2.1.1 Petri-Net Model and Usage

In a typical use case scenario of SWORD, the user specifies
the FSMs using colored Petri Nets.

The transitions represent events that trigger the gener-
ation of a stream (or multiple streams) using data factories
(described later) with specific parameters carried in the to-
kens. The transitions are either immediate or delayed by
an amount determined by a (random) variable. The arcs
capture the dependencies between different streams; i.e.,
contextual correlations. The placement of tokens at initial-
ization (initial marking) determines which transitions can
fire and, hence, which specific content will be generated,
during a round of workload generation. The parameters for
each generated stream may be contained in the tokens; each
token may carry different parameters, for example corre-
sponding to a different web stream, company name or user
leading to a colored Petri-Net.

The use of colored Petri-Nets offers the advantage of
avoiding maintenance of attributes within states. Instead,
attributes are assigned to tokens, which in turn maintain the
state. Tokens can thus carry parameters of interest in the
stream traffic generation, such as IP addresses, protocols,
languages etc. An additional benefit is that to test a new
scenario one just needs to modify the contents of tokens
instead of modifying places. Figure 2 shows the usage of
Petri-Net model for generating workload realizing insider
trading activity.

2.2 Data Factories

SWORD data factories conform to a common data factory
Java interface that provides the abstraction for modular-
ity and allows extension of the data factory set with new
encodings and protocols. The interface consists of initial-
ization, process, monitoring, and finalization methods. The
initialization method assigns a content model object to the
data factory, and initializes the data factory from provided
configuration files. It is also possible to clone data facto-
ries. The process methods executes the data factory logic



Bouillet, Dube, George, Liu, Pendarakis and Zhang

at Room
Stream FSM

Chat
Room
Stream

Name B
Contents: Stock
TICK

Message Board
Stream FSM

Web Stream FSM:
Financial News Feed
Stock: TICK

Stock Transaction
Stream FSM
Stock: TICK

Owner: Aor B

Contents: Stock Stock: TICK

Transition
Uniform Delay

Message
Board
Stream

Transition
Uniform Delay Transition

™ tial del
. (exponential delay) (deterministic)

Average: T
Transition
Uniform
Delay

Instant
Messaging
Stream

/

Transition
Uniform Delay
Places w.
tokens

(Initial Marking)

Inhibitors Video Stream FSM

Broadcast New.
Stock: TICK

IM Stream FSM
Parties A, B
Stock TICK

Web Stream FSM
Stock Quotes

| APrice) | > 5%

Figure 2: Example Petri Net Realization.

for transforming content meta-data (randomly) generated
from the associated content model into a packet stream us-
ing specific encoding and transport protocols. The process
methods typically rely on native functions to perform CPU
intensive tasks, and are thus optimized in order to minimize
the overhead of traversing the JNI boundary. Data factories
aggregates the volumetrics of the generated content and
other data factory specific statistics (such as response times
for client data factories that interact with server applica-
tions). It also provides API for real time monitoring of
these statistics.

High volume stream processing systems typically deal
with Gb/s of traffic and hence for successfull testing and
benchmarking of such systems we need to have the ability
to synthesize workload of the order of Gb/s in real time. If
we resort to traditional approaches of synthesizing workload
as close as possible to real traces then the corresponding
techniques may be quite time and resource consuming.
Thus there is a tradeoff between accuracy and scalabilty
with a higher accuracy in synthesized content having more
CPU and I/O requirements and thus sacrificing scalability
in content synthesis.

SWORD data factories provide the flexibility and the
control mechanisms for generating workload with multiple
levels of richness in the synthesized content, with varying
degrees of accuracy. The different levels can be used in
isolation for individual testing of different processing units
or they can be mixed together in varying proportions and
the resulting workload can be used for testing the aggregate
system. Testing and benchmarking of different process-
ing units can happen in parallel thus promoting modular
development.

1005

2.3 Scalable Content Modeling

In SWORD a generic data structure is created for content
representation. The data structure comprises of: (1) a set
of meta data content; and (2) spatial and temporal statis-
tical dependencies among the meta data content. Within
the context of SWORD, “meta data” content is a partial,
high-level representation of the content in a particular pro-
gramming language. Example of meta-data content, is an
XML record that contains a set of words, and a feature
vector describing a human voice with Linear Prediciton
Cepstrum Coefficients. This meta-data content can be fed
to a text-to-speech synthesis data factory, which translates
it into a waveform and streams the waveform as VoIP/RTP
packets. The same set of words can be fed to a Chat data
factory, which translates it into a chat message using AOL
protocol, for instance.

2.3.1 Content Model Formulation

The content model is formulated in terms of decision trees.
Nodes of the decision trees provide the logic for branching,
and leafs provide the methods for generating the content
meta-data which is then translated by the data factories
into actual data streams. The tree pattern offers elegant
extensibility and is easily learned by new users. Nodes and
leafs all conform to a common set of Application Program-
ming Interfaces (APIs) with various methods for getting the
content and writing it into a buffer from where it can be
accessed by data factory objects for content transformation.
Nodes transparently delegate this operation to one of their
children until a leaf is reached. The programmer can easily
extend the decision trees with new types of decision logics
and meta-data types by deriving the new implementations
from this common interface.

Depending upon the type of logic implemented by a node
we can classify the nodes as Branching nodes, Transform
nodes, Generator nodes and Cross Reference nodes.

Branching nodes allow content selection with respect
to given branching logics. Examples of branching logics
are dictionaries in which branching is performed according
to independent probabilities; n-grams allowing probabilistic
content selection conditional to a history of up to n last
branching decisions; script in which branching is executed
according to a given sequence; and schedule in which
branching is conditional to current simulation time; or more
generally, select in which branching is dependent on the
outcome of some other node.

Transform nodes provide the ability to modify the con-
tent generated by its child nodes before passing it back to
its parent node. Example of transform logics are content
concatenation, encapsulations (such as encapsulating into
an IP header), arbitrary length repetition for generating ran-
dom sentences, and logic for creating structured content. A



Bouillet, Dube, George, Liu, Pendarakis and Zhang

special tranform logic generates data by providing access
to push/pull “’stacks. A randomly generated content can be
saved in a stack anywhere in a decision tree, and reused
in other parts of the decision tree. An expression node
logic allows assignment of generated content (e.g. from
other decision trees) to named variables, and mathematical
operations on those variables.

Generator nodes provide the mechanisms for gener-
ating integers, real values, strings, dates, and other types
of arbitrary binary data. Various models have been imple-
mented to generate constant content or random variables
with prescribed distribution probabilities such as uniform,
exponential or normal.

Cross Reference Nodes reference other named deci-
sion trees in the content model. If a dereferencing node is
encountered during traversal of the decision tree the con-
tent generation is delegated to the decision tree referenced
by the node. The referenced tree becomes a sub-tree of
the decision tree. Dereferencing allows efficient sharing of
meta-data content and composition of decision trees from
libraries of domain-specific decision trees, such as dictio-
naries of words in different languages. SWORD supports
local dereferencing, which is managed in-memory by the
application using pointers, but also cross-application deref-
erencing where part of a decision tree can be generated in
the decision tree of a remote application and exchanged
over TCP/IP connections.

2.3.2 Dynamic Content Synthesis Architecture

The content model is stored into an XML file, and loaded into
a runtime environment where it can be accessed by multiple
data factories simultaneously. A content model can contain
multiple decision trees, each of which is given a unique
name. The binding of the data factory to a specific decision
tree is done during initialization of the data factory using
the name of a decision tree provided in a configuration file
or in the initialization method of the data factory. The data
factory uses iterators to access the designated decision tree.
Iterators are a generalization of pointers with “increment”
logic. They are used to iterate over a range of objects: if an
iterator points to one element in a range, then it is possible
to increment it so that it points to the next element. Each
iterator maintains a local state to determine the element
it will point to at the next increment, allowing multiple
iterators to iterate independently over the same collection
of objects. In our case the iterator iterates over an arbi-
trary long sequence of elements randomly generated from
decision trees. Several data factories can simultaneously
access the same decision tree through different iterators.
Because the state information used in making decisions,
including the random number generators, are maintained
by the iterators, concurrent accesses are multi-thread safe
without any performance penalty. Global state information

1006

that can be modified by the data factories during the de-
cision tree traversal, such as global variables, is protected
with mutexes implemented in the node logics that handle
this type of information.

Whenever the data factory needs meta-data to generate
the streams, it invokes its iterator’s methods to pull the
content meta-data from the decision tree. The iterator starts
from a node in the tree and it then follows a decision path
resulting from the logics of the traversed nodes, until it
reaches a leaf. Note that a complete tree traversal from root
to leaf and a content generation is executed at each atomic
increment of the iterator. As a consequence the iterator
iterates over a sequence of meta-data content randomly
generated by the leaves of the decision tree.

The iterator returns two data types into two separate
buffers: Content Meta-Data and Content Annotation. Con-
tent Meta-Data is generated when the iterator reaches a leaf
of the tree. The returned meta-data is used by the data
factory to create the actual payloads and protocol head-
ers of the data streams. Content Annotation is constructed
while traversing the tree. It provides the information on the
decision path and how the meta-data was obtained, and can
be logged into a file, or sent to a different channel, where
it can be used for benchmarking purpose.

In order to generate the content annotations, the user
must specify a list of content annotations for the data
factory’s iterator and for some or all nodes and leafs of
the content model. The content annotations are of the
form < field_name, field value >. The field_name can be
any string, and the field_value is a macro that returns a
value. This macro conforms to the same paradigm and en-
coding which the decision tree used to generate the content
meta-data allowing the same decision trees to be reused
in the generation of both types of data. As the iterator
percolates down the decision tree, all the nodes traversed
by the iterator are checked for annotation fields that have
the same field name as the iterator’s annotations, and the
values of the iterator’s annotations are replaced with the
values of the matching nodes’ attributes.

3 DISTRIBUTED DEPLOYMENT OF SWORD

SWORD can be deployed in different manner for achiev-
ing scalability while maintaining the richness of generated
content. SWORD exploits the benefits of distributed com-
puting through the techniques of agent based architecture
and distributed content generation. SWORD leverages the
benefits offered by the multi-agent platform for distributed
deployment of agents to achieve scalability. The content
generation logic in SWORD offers the flexibility to distribute
the decision trees on different system with a user-controlled
coupling. The coupling can be fine-tuned in the XML con-
tent model representation to allow sharing of decision trees
between different processes as and when needed. We next



Bouillet, Dube, George, Liu, Pendarakis and Zhang

Machine A Machine B Machine C

4

{
(

g g
decision |, & decision |, &
N El

lll

Figure 3: Distributed Deployment with No Orchestration.

present three different distributed deployments of SWORD
for different different types of tests.

3.1 Distributed Deployment with No Orchestration

Figure 3 shows the deployment when different SWORD pro-
cesses are running on different systems with no inter-process
dependence. Though this is by far the most straightforward
way of achieving scalability, this approach lacks any cor-
relations between the workload generated by the different
processes. This is because each SWORD process instance
has its own scenario and content models. This type of de-
ployment can be useful for stress testing of stream processing
systems. Since the synthesized streams from different in-
stances are independent of each other and have absolutely
no correlation guarantees (either temporal or contextual)
and causality, the performance benchmarks obtained by
this deployment generally have the highest throughput.

3.2 Distributed
Orchestration

Deployment  with  Centralised

Figure 4 shows the second type of deployment using a
central Petri-Net agent to model the scenario and a num-
ber of agents with their respective content model and data
factories for generating the workload. The Petri-Net or-
chestrates the workload synthesis by issuing synchronous
(in the same thread as the Petri-Net) or asynchronous (in
a detached thread) calls to the agents depending upon the
causality of events generated during Petri-Nets transition.
The centralised coordination helps to maintain temporal and
contextual correlation between workload synthesized by dif-
ferent agents. In this deployment, the data factory agents
controlled by the Petri-Net agent do not share the states of
their respective decision trees. This type of deployment can
be used for testing scenarios where the decision trees for
generating payload for different streams are specified apri-
ori, e.g., the participants, application that can be invoked,

1007

Central Server

Machine A Machine B Machine C
eI = =
lecision on ‘1s10n
wee |0 E o= o=
g g g
= = =

lll

Figure 4: Distributed Deployment with Centralised Orches-
tration.

web pages visited by HTTP requests etc. This is typically
the case when the attributes of the generated contents and
hence the decision trees are static and not modifiable during
run-time.

3.3 Distributed Deployment with Coupling

This deployment is similar to the previous one with the
exception that the decision trees across agents can be shared
using dereferencing node logics as described in Section 2.3.
This allows decision trees to be dynamically augmented
during run-time by linking to remote decision trees of another
agent or process (on same or different machines) accessed
through a TCP/IP connections. Figure 5 showcases this type
of deployment. This type of deployment allows the agents
to share their state information; it can also be used as a
mean to distribute the CPU load of the content generation.
We can envision for instance a decision tree with a load
balancing decision logic at the root, which invokes sub-trees
in remote processes.

3.4 Distributed Deployment with Different Levels of
Orchestration

SWORD can also be deployed in a hierchical manner with
different degrees of orchestration tied to the different time
scales of correlation between the generated streams. Since
we are synthesizing workload corresponding to different lay-
ers (application layer to the network layer) and the behavior
of workload at different layers has different time scales,
the generated workload should also capture this multi-time
scale correlation.

As an example consider the workload corresponding
to internet usage. We can model the user behavior and
the resulting workload using a hierarchy of timescales:



Bouillet, Dube, George, Liu, Pendarakis and Zhang

Central Server

Machine A
-

decision 5
tree

Machine B

decision tree on Machine A

decision tree on Machine A

decision tree on Machine A

Figure 5: Distributed Deployment with Coupling.

User-level model, Application-level model, and Stream level
model.

The user-level model is captured as a Petri-Net with
places corresponding to time of day, application type (web-
browsing, email, chat) that an individual is involved in,
and transitions between different places. At this level we
are not concerned with specificities (protocol level) of the
particular application(s). We call the Petri-Nets modeling
this level as Level-1 Petri-Nets. The application-level model
is represented as a Petri-Net with places corresponding to
different possible states of an individual while using a par-
ticular application (e.g., typing, sending, clearing in case of
chat), and transitions between these places. The Petri-Net
at this level will generate data streams which shall con-
stitute the generated traffic. The streams are generated in
compliance with the specific protocol on which the applica-
tion is running. We call the Petri-Nets modeling this level
as Level-2 Petri-Nets. Level-2 Petri-Nets represent various
applications triggered by transitions in Level-1 Petri-Nets.
The data generation itself is the responsibility of the data
factory components. These components implement the logic
for generating the content according to high-level control
parameters passed-on by the application-level model, such
as topic, spoken language, dictionaries, noise levels, level
of realism, source (if pre-recorded). They then package this
content into the appropriate stack of Protocol Data Units
(PDU) before writing it to their respective output streams.
Data factories can implement the complete set of operations,
or simply consist of an API that emits transaction requests to
real client/server settings. An example deployment is shown
in Figure 6 for workload synthesis with varying levels of
orchestration.

1008

Level-1 Server

@l Machine B
| \\\ (Level-2 Server)
| \ \

NG

Machine C
(Level-2 Server)

]

Machine&

Machine B.1

(@D

I Machine C.1|

| Machine A fecision

\‘ (Level-2 Server) |:>
|

|

i

decision|

‘/um:m ereq ~

o

‘Mm:!ﬁ‘l elea ~

@i@
I
e ereg

1

Figure 6: Distributed Deployment with Different Levels of
Orchestration.

4 SWORD USAGE SCENARIOS

In this section we demonstrate the versatility of the SWORD
platform with various scenarios involving a range of pro-
tocols and applications. For each scenario we describe
the separation of the workload characterization into the
three model components described earlier. The scenarios
includes a chat session emulator; a VoIP conversation gener-
ator; and stress test generator for a data storage server. The
three generators correspond respectively to the distributed
deployment with no orchestration, distributed deployment
with central orchestration, and distributed deployment with
coupling described in Section 3.

4.1 Chat Workload Generator (Chat WLG)

The Chat WLG generates an IP packet flow with a content
and a dynamic that simulates a group of persons engaged in
internet chat activities. The TCP/IP packet flow simulates
the packet flow captured by an IP packet sniffer located
between users and chat servers. The generator can be used
to validate the analytics of stream processing applications
that operate on instant messaging content. Example of target
applications are applications that cluster chat conversations
and participants based on feature vectors collected from
their chat activities. Such applications can be used to map
social networks, or to profile users (e.g. determine their real
age group and gender) and their possible intents. They can



Bouillet, Dube, George, Liu, Pendarakis and Zhang

perform temporal analysis of the chat dynamic (time spent
entering a sentence, reflection times), semantic analysis of
its content (topics of interest, vocabulary, grammar), as
well as analysis of the meta-data (professed user profile,
buddy list, IP addresses), and it is thus important that these
characteristics be accurately modeled.

We use a Petri-Net model to represent the user-level
activities of a participant during a chat session as shown
in Figure 7. Participants are initially “Idle”. When they
start typing they enter the “Typing” state, and remain in this
state until they either send the message they are currently
typing, or until they completely clear their message prompt,
at which point they return to the “Idle” state. Transitions
between those two states generate notification events to
inform the participants of each other’s status (i.e. whether
a person is responding to a message for instance). This
is illustrated as Petri-Net (1) in Figure 7. Note that this
Petri-Net falls short of modeling the dynamics of a realistic
chat session. In particular it represents chat participants
independently of each other and as such it fails to capture
behavioral correlations across the participants. Petri-Net (2)
in Figure 7 addresses this problem with a more accurate
model that compounds the states of two chat participants (A
and B). This model provides us with a finer granularity in the
specifications of the statistical properties of the transition,
such as participants being more likely to wait while the other
is responding. If desired, the Petri-Net can be arbitrarily
extended, to express login, buddy list transfer and logout
actions. In addition, it can include states to express the
participant mood, topic of discussion, and even simulate
participants engaging in other activities.

Petri-Net models can be packaged into libraries offering
a spectrum of such user behaviors. The tradeoff of using
larger Petri-Net is an increased processing overhead and
footprint. As it grows larger and more complex, it also
requires a thorough workload characterization in order to
determine the appropriate values for the parameters. In our
experiments we assumed Petri-Net (2) and we collected the
corresponding temporal statistics using tcp dumps of real
chat conversations. For each participant, we also conducted
a least squares regression analysis between the average
time T spent typing a sentence (time between the first fype
notification to the next send notification) and the average
packet lengths W.

Each of the transition in the Petri-Net invokes a corre-
sponding method in the data factory with the token attributes
as argument. The data factory interprets the command and
generate the appropriate packet. If the command requires
a content (such as the text message of a send command),
the data factory gets the randomly generated content from a
provided decision tree as described later. The data factory
of our experiment emulates the Sametime (TM) protocol
stack down to the Ethernet layer. If needed additional data
factories can be developed to handle other chat transport

1009

type
@®"
&

A-s

A-idle A-typing) A-idle
Bide ) At \B-idie/ Ac \ B-idle
! ! Chat dynamic Message content
Bt B-s| B-t| B-s| Bt B-s -
Al-s AI-!
A
Addie\ | (Atyping, | [ A-idle
) ¢ Gy ~ B Chat Data Factory.
T T
B- Bt B-s| Bt B Bt
A-s Al-t J
A-idle A-typing, ' [ A-idle
B-idle / At B-idle / Ac \ B-idle Chat TCP/IP packets

Figure 7: Workload Characterization for Chat Generator

protocols. For the sake of simplicity, we implemented a
canonical TCP protocol layer where all packets are received
in-sequence without packet loss. The protocol emulation
gives us some control on certain attributes that are normally
beyond the control of the user, such as MAC address, IP
addresses, and packet time to live.

The statistical properties of the text message are speci-
fied in the form of decision tree. At the root of the decision
tree we use an N-gram logic to express the conditional prob-
abilities of generating random sequences of word classes,
and for each word-class the probability of occurrences of
words within that class. In our experiments, we used a
dictionary of the 10,000 most frequent english words. The
N-gram model was trained with a corpus of real chat log
archives.

Using this workload characterization model it is possible
to provide a core library of decision trees for english words
and for other languages. It is also possible to extend those
libraries with semantic domain specific content, such as
dictionaries for sport related content, computer science, etc.
Furthermore, libraries of dictionaries can be created to repre-
sent the word frequencies for different classes of individuals,
and similarly a collection of N-gram models can enumerate
the various ways of associating those words into a sentence
depending on the individual’s background. Through ref-
erences and reuse, smaller libraries can be composed into
larger ones to represent a very rich set of individuals, each
marked by particular statistical characteristics.

4.2 VoIP Workload Generator (VoIP WLG)

We developed the VoIP WLG scenario for testing a cus-
tomer service call center quality monitoring application.



Bouillet, Dube, George, Liu, Pendarakis and Zhang

The WLG is capable of generating hundreds of simultane-
ous streams of real VoIP traffic from a pre-recorded corpus
of 4472 phone conversions between 679 participants per
CPU. The conversations are made up of two channels each,
corresponding to both directions of the conversations. The
VoIP scenario is illustrated in Figure 8. We use a Petri-Net
to model the dynamics of phone call arrivals between pairs
of individuals. The Petri-Net consists of one place with one
colored token for each participant, and one transition for
each conversation between two individuals (we use a single
transition to represent all conversations between the same
pair of individuals). The transitions have guard clauses
requiring both individuals to be available (i.e. not being
involved in other transitions) in order for the transition to
be allowed. Transitions have exponentially distributed wait
times. When a transition is fired, a VoIP data factory is
invoked in a separate thread with a pre-recorded conver-
sation obtained from a given decision tree containing all
conversations between the involved individuals. The tokens
are locked during the length of the conversation and released
when the conversation ends, ensuring that the same token
(person) cannot be involved into two or more simultaneous
conversations.

We use annotations in the decision tree to indicate for
each channel, the speaker IDs, the conversation ID, the
encoding, whether the speaker is caller or callee, speaker
gender and age, source and destination IP addresses, and
a description of the conversation which can be used to
verify the quality of the call center monitoring analytics.
The annotation adds an overhead of about 500 bytes on the
average to every 111 bytes of the VoIP RTP packet-stream.
The VoIP data factory has the ability to synchronize both
channels of the conversation and send them to different IP
addresses (the addresses of two IP packet sniffers located
in different parts of the call center’s network). In addition
it is possible to configure a packet-loss ratio, and delays
for each channel.

4.3 Storage Management Stress Test Generator

The Storage Management Stress Test generator is used to
test the performance of a value-based storage management
which was developed for a stream processing system. In this
scenario each data factory generates a sequence of WRITE,
READ, or DELETE storage commands. It also generate
UPDATE commands to modify the relative importance of
stored data blocks. In addition the WLG can mix invalid
commands in the sequence in order to test the robustness
of the storage system. The Storage scenario is illustrated
in Figure 9.

When generating a WRITE command, the stored data
consists of arbitrary content of random length, ranging
from a few bytes to several hundreds of megabytes, and a
corresponding retention value. After a WRITE command

1010

a.b

-Start/end phone calls
A— VolP
VolP Data Factory >

> ... A VolP
VolP Data Factory

"« A VoIP
VolP Data Factory

b,c
onversatiol

(%.

Urls of prerecorded conversations

Figure 8: VoIP Workload Generator

the generator expects either a token ID that can be used
to retrieve the stored data if the command is successful,
or an error code. If a token is returned, it is inserted
in a pool. In our content model representation a pool is
a container of arbitrary data. Some of the decision tree
node logics that operate on pool objects are: (1) a Push
logic that saves the content generated by a child node into
a named pool, (2) a Pick logic that returns a randomly
selected content from a named pool, and (3) a Pop logic
that returns a randomly selected content from a named pool
and delete it from the pool. Using the pool decision tree
logic it is thus possible to retrieve previously saved tokens
returned with each WRITE command. The tokens can then
be combined in READ and UPDATE commands using the
Pick logic, and DELETE commands using the Pop logic.
More importantly, since the pools are part of the decision
tree representation, it can be linked to remote decision trees
and shared across processes, allowing tokens resulting from
WRITE commands in one process to be used in READ,
UPDATE and DELETE commands generated in a separate
process.

5 CONCLUSION

We have described a system for testing and benchmarking
stream processing systems. We focused on the architecture,
identifying salient aspects for extensibility and comprehen-
sive multi-modal content synthesis. The described system
has been applied to the needs for verifying correct stream
analytics and performance testing, however, not just simply
in single instances of the underlying framework (Wu et al.
2007).



Bouillet, Dube, George, Liu, Pendarakis and Zhang

Machine A

generate command Read/write
N T Storage Data Factory
((. write token e
(/2]
read token readtoken  Machine B c o
=
w generate command _SRNNESEG—_——— Ol o é‘;.’:
Storage Data Factory 7))
[/ write token I T <
Qe 25
/ rread token ine C 3
' generate command I Read/write
)i Storage Data Factory
(A‘" write token S

Figure 9: Storage Management Stress Test Workload Gen-
erator

REFERENCES

Anderson, K., J. P. Bigus, E. Bouillet, P. Dube, N. Halim,
Z. Liu, and D. Pendarakis. 2006. Sword: Scalable
and flexible workload generator for distributed stream
processing systems. In Proc. of 2006 Winter Simulation
Conference, ed. L. F. Perrone, B. G. Lawson, J. Liu,
and F. P. Wieland, 2109-2116. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Jensen, K. 1997. Coloured Petri Nets: Basic Concepts,
Analysis Methods and Practical Use. Springer-Verlag.

Mansour, M., M. Wolf, and K. Schwan. 2004. Streamgen:
A workload generation tool for distributed information
flow applications. In Proc. of International Conference
on Parallel Processing (ICPP’04), 55-62.

Rossey, L. M., R. K. Cunningham, D. J. Fried, J. C. Rabek,
R.P. Lippmann, J. W. Haines, and M. A. Zissman. 2002.
Lariat: Lincoln adaptable real-time information assur-
ance testbed. In Proc. of IEEE Aerospace Conference,
2671-2682.

Wu, K.-L., P. S. Yu, B. Gedik, K. Hildrum, C. Aggar-
wal, E. Bouillet, W. Fan, D. George, X. Gu, G. Luo,
and H. Wang. 2007. Challenges and Experience in
Prototyping a Multi-Modal Stream Analytic and Moni-
toring Application on System S. In Proc. of Very Large
Database Systems (VLDB), 1185-1196.

AUTHOR BIOGRAPHIES

ERIC BOUILLET is currently at IBM T. J. Watson Re-
search Center, NY, where he works on data modeling and
test data generation. Before joining IBM, Dr. Bouillet
has worked at Tellium Inc. from 2000-2004 and at Bell
Labs/Lucent Technologies from 1998-2000. Eric holds an
M.S. and a Ph.D. in electrical engineering from Columbia
University. His current research interests include data mod-
eling and test data generation, design of optical networks and

1011

optimization of lightpath provisioning and fault restoration
algorithms. Email: ericbou@us.ibm.com.

PARIJAT DUBE received his M.S. in Electrical Commu-
nication Engg. from Indian Institute of Science, Bangalore
in 2001 and his Ph.D. in Computer Science from University
of Nice-Sophia Antipolis in 2002 where he was affiliated
to INRIA. He joined IBM T. J. Watson Research Cen-
ter, Hawthorne, New York in 2002. His research interests
include performance analysis and control of computer sys-
tems, distributed computing, stochastic modeling and game
theory. Email: pdube@us.ibm.com.

DAVID GEORGE is a Research Staff Member at the
IBM T. J. Watson Research Lab. In his long career, he
has researched, defined and architected new paradigms for
computation. These include pipeline numerical processing,
telecommunications and networking, dataflow and parallel
computation, fault-tolerant systems, advanced storage con-
cepts, testability, stream processing and policy management.
He has an MSEE from Syracuse University, and a BEE from
The Ohio State University.Email: dag@us.ibm.com.

ZHEN LIU has Ph.D in Computer Science from the Uni-
versity of Paris XI, France. He was with the France Telecom
R&D, then joined INRIA. He is currently the senior manager
of the Next Generation Distributed Systems Department at
IBM T. J. Watson Research Center. Zhen Liu is a fellow
of IEEE and a master inventor of IBM. He was the pro-
gram co-chair of the Joint Conference of ACM Sigmetrics
and IFIP Performance 2004, and the general chair of ACM
Sigmetrics 2008. Email: zhenl@us.ibm.com.

DIMITRIOS PENDARAKIS manages the Secure Systems
group at the IBM T.J. Watson Research Center. His current
research interests include secure virtualization and cloud
computing, trusted computing and secure hardware. Dim-
itrios joined IBM in 1995 after receiving his PhD from
Columbia University. Between 2000 and 2003 he was Prin-
cipal architect with Tellium, where he led the development
of next generation control systems for intelligent optical
networks. Email: dimitris@us.ibm.com.

LI ZHANG graduated from IEOR Dept. Columbia Uni-
versity after receiving degrees from Purdue University and
Beijing University. He is the manager of the System Anal-
ysis and Optimization group at IBM T.J. Watson Research
Center. His research interests include control and per-
formance analysis of computer systems, statistical tech-
niques for traffic modeling and prediction, scheduling and
resource allocation in parallel and distributed systems, as
well as measurement based clock synchronization mecha-
nisms. Email: zhangli@us.ibm.com.



