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ABSTRACT

Point processes with stochastic intensities are ubiquitous in
many application areas, including finance, insurance, reli-
ability and queuing. They can be simulated from standard
Poisson arrivals by time-scaling with the cumulative inten-
sity, whose path is typically generated with a discretization
method. However, discretization introduces bias into the
simulation results. This paper proposes a method for the
exact simulation of point processes with stochastic inten-
sities. The method leads to unbiased estimators. It is
illustrated for a point process whose intensity follows an
affine jump-diffusion process.

1 INTRODUCTION

Stochastic point processes are prominent in many application
areas. In finance, they describe the arrival of economic events
that are relevant to financial markets, such as corporate
bankruptcies, mergers and acquisitions, or announcements
of the Federal Reserve. In insurance, they describe claim
arrivals. In reliability, they model equipment or software
failures. In queuing applications, they record the arrivals
or departures of customers. In health care, they represent
incidences of infectious diseases. In seismology, they model
earthquakes.

Monte Carlo simulation is an important computational
tool to address point process applications. Many algorithms
for generating point process sample paths exploit the specific
structure of the intensity, which represents the conditional
event arrival rate and governs the distribution of the point
process. For example, if the intensity is deterministic be-
tween arrivals, then the thinning algorithm of (Lewis and
Shedler 1979) applies, and arrivals can be generated from
a dominating Poisson process by acceptance-rejection sam-
pling. This approach leads to a relatively efficient simulation
algorithm for a point process whose intensity depends at
most on past event times and their marks, such as Poisson,
birth and (Hawkes 1971) processes.

Typically, the thinning algorithm does not apply to a
point process whose intensity follows a stochastic process
between arrivals, since a dominating Poisson process may not
exist. Yet such point processes are dominant in applications,
in which arrival rates are often modulated by stochastic
risk factors that follow complex dynamics on their own.
A simulation approach that is applicable in this general
case is based on the time change theorem of (Meyer 1971),
which implies that under mild technical conditions a general
point process with stochastic intensity can be transformed
into a standard Poisson process by a change of time that
is given by the point process compensator, or cumulative
intensity. Thus, point process arrivals can be generated by
re-scaling standard Poisson arrivals with the compensator.
This approach requires the simulation of the continuous-
time intensity process. If this process is approximated by
a discrete-time process, then the simulation results suffer
from discretization bias. This bias is undesirable for several
reasons. First, since the size of the bias is unknown, it is
hard to obtain valid confidence intervals. Second, a very
fine time discretization may be required to reduce the bias
to an acceptable level. Even more computational effort may
be required to verify that the bias is sufficiently small.

In this article, we propose an exact simulation method
that avoids the generation of intensity paths and leads to
unbiased simulation results. The method is broadly applica-
ble to point processes with stochastic intensities, and does
not rely on the specific structure of the intensity at hand. It
is based on the following result: we show that the arrival
times of a point process N with intensity λ have the same
joint distribution as the arrival times of a point process H
whose intensity in the natural filtration of H is given by
the optional projection of λ onto the natural filtration of N.
The projected intensity is deterministic between arrivals, and
therefore facilitates the sequential application of the classic
thinning algorithm to generate event times by acceptance-
rejection sampling. Our projection result guarantees that
these event times have the correct joint distribution.
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We illustrate our exact simulation method for the family
of affine point processes described in (Errais, Giesecke, and
Goldberg 2006). The intensity of an affine point process
follows an affine jump-diffusion process in the sense of
(Duffie, Pan, and Singleton 2000). It jumps at event times,
and undergoes diffusive fluctuations between events that
are driven by a Brownian motion. Affine point processes
are rich and versatile models for correlated event arrivals.
The Poisson, birth and (Hawkes 1971) processes are special
cases. Using results from point process filtering theory, we
show how to explicitly calculate the projected intensity that
the algorithm requires. A numerical case study illustrates
the algorithm.

The remainder of this paper is organized as follows.
Section 2 introduces the notation and recalls conventional
approaches to point process simulation. Section 3 states and
proves the projection result and describes the simulation
algorithm it supports. Section 4 calculates the intensity
projection for affine point processes and shows how to
implement the simulation algorithm. Section 5 provides
numerical results. Section 6 concludes.

2 POINT PROCESS

Consider a non-explosive counting process N with event
stopping times (Tn), defined on a complete probability space
(Ω,F ,P) with right-continuous and complete filtration F =
(Ft)t≥0 that represents the information flow. Suppose N
has intensity process λ = (λt)t≥0 relative to F. This means
that the process N−A is a local martingale relative to F,
where A =

∫ ·
0 λsds is the F-compensator to N. The intensity

represents the conditional event arrival rate, in the sense
that ∆λt is approximately equal to P(Nn+∆ −Nt = 1 |Ft)
for “small” ∆.

Let (`n) be a sequence of FTn -measurable random
variables with `0 = T0 = 0. The “mark” `n encodes additional
information that is revealed at the event time Tn. For example,
if the Tn model insurance claim arrival times, then the `n can
describe the claim sizes. In portfolio credit risk applications,
the Tn represent firm default times and the `n model the
loss due to default. For concreteness, we suppose the `n
are real-valued. Define the point process L by

Lt =
Nt

∑
n=0

`n = ∑
n≥0

`n1{Tn≤t}. (1)

We wish to simulate a trajectory of L, i.e. the sequence
of pairs (Tn, `n). If the intensity λ is deterministic, then N is
a non-homogeneous Poisson process and we can generate
the arrival times by the inverse method from the inter-
arrival time distribution, the order statistics property of the
Poisson process, or the thinning algorithm of (Lewis and
Shedler 1979). While fundamental, deterministic intensity
models are often too simplistic. Many applications require

state-dependent intensities. Here, λ follows an F-adapted
stochastic process. The value λt may depend on the path
{Ls : 0≤ s≤ t}, i.e. past arrival times and jumps (Tn, `n)n≤Nt ,
and other sources of randomness recorded by the sigma-
field Ft . In the special case where λ is adapted to the
filtration generated by L, i.e. if λt is a function only of past
arrival times and jumps, then the inter-arrival intensity is
deterministic, and the inter-arrival times may be generated
sequentially by the inverse method from the conditional
distribution of the inter-arrival time, or, preferably, thinning.
Examples include birth and Hawkes processes (Ogata 1981).

In the general case, λ is modulated by additional ran-
dom factors that follow stochastic processes on their own.
In this case, λ is not adapted to the filtration generated
by L anymore. Then, the inverse method is feasible only
if the inverse of the conditional distribution function of
the inter-arrival time can be evaluated, and the intensity
values at the arrival times can be simulated. The required
conditional distributions of the intensity and inter-arrival
time are typically hard to evaluate except for particular
families of inter-arrival intensity processes. (Giesecke and
Kim 2007) consider such an example. While the thinning
algorithm avoids the numerical inversion of the conditional
inter-arrival time distribution, it applies only if the (ran-
dom) inter-arrival intensity can be bounded above by some
constant, and the values of the intensity at the candidate
times can be simulated. However, in many cases of inter-
est an upper bound for the inter-arrival intensity does not
exist. For example, consider the case where λ is a function
of a Feller diffusion process, or more generally, an affine
jump-diffusion process (Duffie, Pan, and Singleton 2000).

There are few simulation methods that are applicable
in the general stochastic intensity case without restrictions
on the stochastic process followed by the intensity. One
such method is based on the converse to the time change
theorem of (Meyer 1971). Meyer’s theorem implies that
if the F-compensator At =

∫ t
0 λsds increases to ∞ almost

surely, then the counting process N can be transformed into
a standard Poisson process by a change of time that is given
by the inverse to A. Conversely, a standard Poisson process
can be transformed into a point process with compensator A
by a change of time that is given by A. This result suggests
that we can generate the event times (Tn) of N from standard
Poisson arrivals by time-scaling the Poisson times with the
simulated compensator A.

The time-scaling method requires the simulation of
the continuous-time intensity process λ , whose time inte-
gral

∫ t
0 λsds serves as the time transformation. Unless the

intensity process has a very special structure, it must be
approximated on a discrete-time grid. That is, the time in-
terval is discretized and the intensity dynamics are simulated
on this discrete-time grid. However, the approximation of
continuous-time processes by discrete-time processes intro-
duces bias into the simulation results.
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3 SIMULATION BY PROJECTION

We propose a method for the exact simulation of the point
process L that avoids the sampling of intensity values and
leads to unbiased simulation results. Our method is as
broadly applicable as the time-scaling approach, and does
not require the intensity to follow a particular stochastic
process. Instead of simulating L from the original F-intensity
model λ , we propose to project L onto a sub-filtration of F,
and then simulate the arrival times (Tn) from their intensity
relative to the sub-filtration. The sub-filtration is chosen
such that the structure of the sub-filtration intensity supports
the application of the classical thinning algorithm.

We project L onto its own right-continuous and com-
plete filtration G = (Gt)t≥0 generated by the sigma-fields
σ(Ls : s≤ t). This is the smallest filtration that is compatible
with L. The intensity of the counting process N relative
to the filtration G is a G-adapted process h such that H
has compensator

∫ ·
0 hsds relative to G. That is, the process

N−
∫ ·

0 hsds is a G-local martingale. The G-intensity is given
by the optional projection of the F-intensity λ onto the sub-
filtration G. The optional projection is a G-adapted process
that is unique up to indistinguishability, see (Dellacherie
and Meyer 1982, Numbers 43–44). It satisfies

ht = E(λt |Gt) (2)

almost surely, for each t. If λ is G-adapted as for Pois-
son, birth, Hawkes and time-inhomogeneous Markov point
processes, then the optional projection h = λ . If λ is not a
priori G-adapted, then the optional projection is non-trivial.
Due to the special structure of the sub-filtration G, the pro-
jection evolves deterministically between events, and jumps
at event times. Intuitively, the sources of randomness influ-
encing λ beyond the arrival times Tn and jump sizes `n are
“averaged out” by the projection. More precisely, h takes
the form

ht = ∑
n≥0

hn(t)1{Nt=n} (3)

almost surely, where hn is the GTn -measurable function
defined by

hn(t) =
E

[
λt1{Nt=n} |GTn

]
P
[
Nt = n |GTn

] (4)

for t ≥ Tn and n ≥ 0. There exist measurable functions
f0 : R+ → R+ and fn : R+× (R+×R)n → R+ such that

hn(t) =
{

f0(t) n = 0
fn(t,T1, `1, . . . ,Tn, `n) n ≥ 1 (5)

The hazard functions fn play a key role.

Proposition 3.1. Let λ be an intensity of the counting
process N in the filtration F such that

E
[∫ t

0
λsds

]
< ∞

for all t. Let h be the optional projection of λ onto the
right-continous and complete filtration G generated by L.
Let ( fn) be the sequence of functions prescribed by h through
equation (5). Suppose H is a counting process with arrival
times (Sn) starting at 0, and with intensity given by{

f0(·) H = 0
fn(·,S1, `1, . . . ,Sn, `n) H = n ≥ 1

relative to the right-continuous and complete filtration gen-
erated by ∑

H
n=0 `n. Then the arrival times of N and H have

the same joint distribution:

(T1,T2, . . .) =L (S1,S2, . . .).

Proof. First observe that

1{Nt>n} = ∑
0<s≤t

∆1{Ns>n} =
∫ t

0
1{Ns−=n}dNs (6)

where ∆Vt = Vt −Vt− is the jump of the process V at t
and Vt− = lims↑t Vs. With the integrability hypothesis on
λ , the local F-martingale N −

∫ ·
0 λsds is a F-martingale.

Then, taking FTn -conditional expectation on both sides of
equation (6) gives

P
[
Nt > n |FTn

]
= E

[∫ t

Tn

1{Ns=n}λsds
∣∣∣FTn

]
for t ≥ Tn. Then, by iterated expectations and Fubini’s
theorem, we get

P
[
Nt > n |GTn

]
=

∫ t

Tn

E
[
λs1{Ns=n} |GTn

]
ds

=
∫ t

Tn

hn(s)P
[
Ns = n |GTn

]
ds,

where the second equality follows from formula (4). By
differentiating with respect to t we get

−∂tP
[
Nt = n |GTn

]
= ∂tP

[
Nt > n |GTn

]
= hn(t)P

[
Nt = n |GTn

]
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which is easily solved to give

P
[
Tn+1 > t |GTn

]
= P

[
Nt = n |GTn

]
= exp

(
−

∫ t

Tn

hn(s)ds
)

. (7)

Equation (7) demonstrates that the GTn -conditional
distribution of Tn+1 is determined by the function hn =
fn(·,T1, `1, . . . ,Tn, `n) governing the G-intensity h of N on
{N = n}. An analogous argument can be used to show that
the corresponding conditional distribution of the (n+1)th
arrival time Sn+1 of the counting process H takes the form
(7) as well. More precisely, let H = (Ht)t≥0 be the right-
continuous and complete filtration generated by ∑

H
n=0 `n. By

hypothesis, H has H-intensity equal to fn(·,S1, `1, . . . ,Sn, `n)
on {H = n}. Therefore, we get

P
[
Sn+1 > t |HSn

]
= P

[
Ht = n |HSn

]
= exp

(
−

∫ t

Sn

fn(s,S1, `1, . . . ,Sn, `n)ds
)

.

Assuming that the first n ≥ 0 arrival times of N and
H have the same joint distribution, this observation implies
that also the first (n+1) arrival times of N and H have the
same joint distribution. Since N0 = H0 = 0 by construction,
T1 and S1 have the same distribution, and induction over n
then shows that (T1, . . . ,Tn) and (S1, . . . ,Sn) have the same
distribution. Kolmogorov’s extension theorem concludes
the proof.

Proposition 3.1 justifies a simulation algorithm for L that
is based on the projected intensity h. In particular, it shows
that we can generate the arrival times Tn+1 from the projected
inter-arrival intensities hn, which are described by the hazard
functions fn through formula (5). Given GTn , the waiting
time to next event Tn+1 is equal in distribution to the first
jump time of a non-homogeneous Poisson process started at
Tn with intensity given by the GTn -measurable function hn(t).
Therefore, we can use the inverse method to simulate Tn+1
from the corresponding conditional distribution function

P
[
Tn+1 > t |GTn

]
= exp

(
−

∫ t

Tn

hn(s)ds
)

.

This method requires us to evaluate the inverse function to
the conditional distribution function. Alternatively, we can
apply the classical thinning algorithm of (Lewis and Shedler
1979), which requires us to evaluate hn(t) only at candidate
arrival times generated from a dominating process.

Suppose the function hn(t) is decreasing. Then a Pois-
son process started at Tn with intensity hn(Tn) can serve as
a dominating process. In this case, the generation of candi-
date times (V n

k ) for Tn+1 is straightforward: V n
1 = Tn +E1,

where E1 is an exponential random variate with parameter

hn(Tn), V n
2 = V n

1 +E2, where E2 is an exponential random
variate with parameter hn(Tn), independent of E1, and so
on. A candidate time V n

k is accepted as Tn+1 with probabil-
ity hn(V n

k )/hn(Tn). This basic algorithm can be improved
by re-defining the dominating Poisson process after each
rejection of a candidate time. That is, we can increase the
acceptance probability by an adaptive choice of the bound
on hn. This is especially meaningful if hn decays quickly.

Algorithm 3.2. Assume the function hn(ω) is decreasing.
To generate the (n+1)th event time given the previous event
times and marks,

(i) Initialize k = 1 and V n
0 (ω) = Tn(ω).

(ii) Draw Ek ∼ Exp(hn(V n
k−1(ω))(ω)).

(iii) Set V n
k (ω) = Tn(ω)+E1(ω)+ . . .+Ek(ω).

(iv) Draw U ∼U(0,1). If

U(ω)≤
hn(V n

k (ω))(ω)
hn(V n

k−1(ω))(ω)

then set Tn+1(ω) = V n
k (ω) and stop. Else advance

k by 1 and go to Step (ii).

For clarity in the exposition we have not included
a termination condition that may be imposed by a fixed
simulation horizon. Algorithm 3.2 must be modified to
cover the case where hn is not necessarily decreasing.

Algorithm 3.3. To generate the (n+1)th event time given
the previous event times and marks,

(i) Initialize t = Tn(ω).
(ii) Find functions Bn

t (ω) and Cn
t (ω) such that

hn(t + s)(ω)≤ Bn
t (ω), 0 ≤ s ≤Cn

t (ω).

(iii) Draw E ∼ Exp(Bn
t (ω)). If

• E (ω) > Cn
t (ω) then set t = t +Cn

t (ω) and go
to Step (ii).

• E (ω)≤Cn
t (ω) then draw U ∼U(0,1). If

U(ω)≤ hn(t +E (ω))(ω)
Bn

t (ω)

then set Tn+1(ω) = t +E (ω) and stop. Else
set t = t +E (ω) and go to Step (ii).

The specific behavior of the function hn at hand will
determine the choice of the bound Bn

t and the interval length
Cn

t for which it is valid. If, for example, hn is increasing,
then Bn

t can be taken to be the interval end point hn(t +Cn
t )

for some Cn
t . The optimal value of Cn

t depends on the slope
of hn: intuitively, the steeper hn the smaller Cn

t .
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The algorithms are simple and easy to implement. The
crucial ingredients are the functions hn. Below we show
how to calculate these functions for a broad family of point
processes that have many applications.

4 SIMULATING AFFINE POINT PROCESSES

We illustrate our simulation approach for the case where
L is a one-dimensional affine point process in the sense of
(Errais, Giesecke, and Goldberg 2006).

4.1 Affine point process

Let X be an F-adapted Markov state process that is a strong
solution to the stochastic differential equation

dXt = µ(Xt)dt +σ(Xt)dWt +δ dLt (8)

where X0 ∈ R, W is a standard Brownian motion relative
to the filtration F, µ(X) is the drift process, σ(X) is the
volatility process, δ ≥ 0 is a sensitivity parameter and L =
∑

N
n≥0 `n, see (1). The jump sizes `n are drawn independently

of one another and independently of W from a discrete
distribution ν on R+ that has no mass at zero.

We assume that X ≥ 0 and that the counting process
N has intensity λ = X . Since X jumps at the event times
Tn, this choice implies that N and L are self-exciting point
processes: an event increases the likelihood of further events.
The parameter δ controls the sensitivity of the intensity to
events. The jump sizes `n and the intensity λ are positively
correlated: the bigger the jump the larger the response of
the intensity, so the larger the increase of the likelihood
of further events. Between events, the intensity diffuses
according to the Brownian motion W .

The self-exciting feature and the correlation between
jump sizes and event times are important in many applica-
tions. In portfolio credit risk, for example, we interpret X
as a risk factor process, N as the default counting process
and L as a process that records financial loss due to default.
Defaults feed back on the risk factor that represents the
economic state. Default rates and loss rates are positively
correlated. Firms are exposed to a common diffusive risk
factor W , whose movements generate correlated changes in
firms’ conditional default probabilities.

We further assume that the Markov state process X is
an affine jump-diffusion in the sense of (Duffie, Pan, and
Singleton 2000):

µ(x) = K0 +K1x, σ(x)2 = H0 +H1x (9)

for constant coefficients such that X ≥ 0 and E[
∫ t

0 Xsds] is
finite for all t. Special cases include the Poisson process
(H0 = H1 = δ = 0), the linear birth process (K0 = K1 =
H0 = H1 = 0), and the Hawkes process (H0 = H1 = 0).

While the conditional characteristic function of (N,L)
and related transforms can be calculated explicitly (Errais,
Giesecke, and Goldberg 2006), in many applications we
require quantities that are hard to determine in terms of the
characteristic function. Moreover, the numerical inversion
of the characteristic function can be challenging, especially
if the parameters of the state process are not fixed in advance,
and the inversion procedure must deal with a wide range of
different parameter values. This situation regularly occurs in
the context of calibration problems, where an optimization
loop requires the distribution of (N,L) for many different
parameter sets. Therefore, we are led to consider alternative
methods to obtain the distribution of (N,L) and related
quantities of interest.

The time-scaling approach can be used to simulate
(N,L) and estimate the quantities of interest. This method
requires us to generate sample paths of the affine jump-
diffusion process λ = X . The Euler or some other higher-
order discretization scheme can be used to approximate the
path of X between events. While easy to implement, this
approach will lead to biased simulation results unless the
diffusion coefficient σ = 0, in which case the discretization is
unnecessary. Our exact simulation method avoids the time
discretization and therefore provides unbiased estimators
even in the case where σ is non-trivial.

The exact approach to the simulation of the affine point
process L can be combined with the exact method for the
simulation of affine jump-diffusion processes with constant
jump intensities developed in (Broadie and Kaya 2006).
This combination would facilitate the exact simulation of
affine jump-diffusion processes Z with stochastic jump in-
tensities that are affine functions of Z. There are important
applications of such a method in option pricing.

4.2 Intensity projection

The exact simulation method requires us to calculate the
intensity h of N with respect to the filtration G generated
by L. Consider the G-conditional Laplace transform of the
affine jump-diffusion X , given by

Mt(z) = E
[

exp(−zXt) |Gt
]
=

∫
∞

0
exp(−zx)πt(dx) (10)

for z ≥ 0, where πt(dx) is the conditional distribution of
Xt given Gt . Since X0 is a constant, we have M0(z) =
exp(−zX0). If H0 = H1 = 0 in (9), then the diffusion coeffi-
cient in the SDE (8) vanishes and X becomes G-adapted, in
which case Mt(z) = exp(−zXt) for all t ≥ 0. Whenever the
diffusion coefficient is non-zero the filter M(z) is non-trivial.
From equation (2), the G-intensity of N satisfies

ht =−∂zMt(z)|z=0
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almost surely, for each t.
The conditional transform Mt(z) evolves determinis-

tically between events and is updated at events. In our
setting, the observation process L and the state process X
have common jumps, and the point process filtering results
in (Kliemann, Koch, and Marchetti 1990) imply that Mt(z)
is the solution to the Kushner-Stratonovich equation that
describes the time evolution of the filter E[ f (t,Xt) |Gt ] for
bounded and measurable functions f . See also (Ceci and
Gerardi 2006), and for an affine setting (Frey, Prosdocimi,
and Runggaldier 2007). The filter equation splits into an
equation for the time interval [Tn,Tn+1) and an updating
map for the event time Tn+1. This structure allows us to de-
sign an explicit recursive scheme to calculate the functions
hn(t) that the simulation algorithm requires. To facilitate
the calculations we assume that the jump size `n of L is
measurable with respect to GTn−. Intuitively, this means
that the jump size at Tn is revealed “just before” Tn.

4.2.1 Auxiliary transform

To facilitate the filter calculation, let Y be a unique solution
to the stochastic differential equation

Yt = x+
∫ t

s
µ(Yu)du+

∫ t

s
σ(Yu)dWu (11)

for any initial condition (s,x), where the coefficient functions
µ and σ are given by equation (9). Note that Yt and Xt
agree in distribution if δ = 0 and (s,x) = (0,X0), i.e. if X
does not jump and starts at the same point as Y . Consider
the transform

ϕt
(
s,x,v

)
= E

[
exp

(
−

∫ t

s
Yudu

)
e−vYt

∣∣∣Ys = x
]

(12)

for s≤ t and x,v non-negative. Proposition 1 in (Duffie, Pan,
and Singleton 2000) gives technical regularity conditions
on the coefficients of the affine functions µ and σ such that

ϕt
(
s,x,v

)
= exp

(
a(s, t,v)−b(s, t,v)x

)
(13)

where the coefficient functions satisfy the ordinary differ-
ential equations

∂sb(s, t,v) =−K1b(s, t,v)+
1
2

H1b(s, t,v)2−1 (14)

∂sa(s, t,v) = K0b(s, t,v)− 1
2

H0b(s, t,v)2 (15)

with boundary conditions b(t, t,v) = v and a(t, t,v) = 0.
These ODEs can be solved explicitly for certain choices of
the coefficient parameters. One such case is analyzed in
Section 5 below.

4.2.2 Filtering between arrivals

Between arrivals the G-Laplace transform of X is given by

Mt(z) =
ρn

t (z)
ρn

t (0)
on {Nt = n} (16)

where, for s ≤ t and v ≥ 0, we have

ρ
n
t (v) =

∫
∞

0
ϕt

(
Tn,x,v

)
πTn(dx)

= exp
(
a(Tn, t,v)

)∫
∞

0
exp

(
−b(Tn, t,v)x

)
πTn(dx)

= exp(a(Tn, t,v))MTn(b(Tn, t,v)), (17)

where the second line follows from formula (13) and the
third line is due to the definition of the conditional Laplace
transform of X , and where b and a satisfy the ODEs (14)
and (15) above. Thus, on the set {Nt = n}, we get

Mt(z) =
exp(a(Tn, t,z))MTn(b(Tn, t,z))
exp(a(Tn, t,0))MTn(b(Tn, t,0))

.

Next we show how to determine the filter at event times.

4.2.3 Filtering at arrivals

The filter M(z) jumps at events. At the (n + 1)th arrival
time, the jump in M(z) is given by

MTn+1(z)−MT−n+1
(z)

=
E

[
XT−n+1

exp(−z(XT−n+1
+δ`n+1)) |GT−n+1

]
E

[
XT−n+1

|GT−n+1

] −MT−n+1
(z)

where Mt−(z) = lims↑t Ms(z). Since the jump size variable
`n+1 is measurable with respect to GT−n+1

, we can write

MTn+1(z) =
E

[
XT−n+1

exp(−zXT−n+1
) |GT−n+1

]
Jn+1(z)

E
[
XT−n+1

|GT−n+1

]
where

Jn+1(z) = exp(−zδ`n+1), z ≥ 0.
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Next we use the representation of the filter between arrivals
developed in Section 4.2.2 above. With equation (16),

MTn+1(z) = Jn+1(z)
∂zMT−n+1

(z)

∂zMT−n+1
(z)|z=0

= Jn+1(z)
∂zρ

n
T−n+1

(z)

∂zρ
n
T−n+1

(z)|z=0
.

Finally, formula (17) allows us to express MTn+1 in terms
of the Laplace transform MTn at the previous event time:

MTn+1(z)

= Jn+1(z)
∂v exp(a(Tn,Tn+1,v))MTn(b(Tn,Tn+1,v))|v=z

∂v exp(a(Tn,Tn+1,v))MTn(b(Tn,Tn+1,v))|v=0
.

4.2.4 Recursive intensity calculation

We obtain a recursive algorithm to compute the functions
hn(t) that govern the G-intensity h of N via formula (3):

At T0 = 0 we have M0(z) = exp(−zX0)

For t ≥ Tn:

hn(t) =
−∂v exp(a(Tn, t,v))MTn(b(Tn, t,v))|v=0

exp(a(Tn, t,0))MTn(b(Tn, t,0))

At t = Tn+1:

hn+1(Tn+1)

= δ`n+1−
∂ 2

v exp(a(Tn,Tn+1,v))MTn(b(Tn,Tn+1,v))|v=0

∂v exp(a(Tn,Tn+1,v))MTn(b(Tn,Tn+1,v))|v=0

Recursion, at Tn+1 compute

MTn+1(z)

= Jn+1(z)
∂v exp(a(Tn,Tn+1,v))MTn(b(Tn,Tn+1,v))|v=z

∂v exp(a(Tn,Tn+1,v))MTn(b(Tn,Tn+1,v))|v=0

4.3 Extensions

The basic affine jump-diffusion specification (8)–(9) for
the state process X can be extended to include additional
jump or diffusion terms that describe other stochastic risk
factors that modulate the intensity. More generally, X can
be a multi-dimensional affine jump-diffusion. Further, the
coefficient functions (9) of X can be time-dependent. The
intensity can be a time-dependent affine function of X .
The results in (Duffie, Pan, and Singleton 2000) imply
that the key transform (12) of the corresponding auxiliary
processY will retain its convenient exponentially affine form.
Therefore, the filtering steps and the recursive algorithm for

the calculation of the projected intensity remain valid with
minor modifications.

5 NUMERICAL EXAMPLE

We implement the simulation procedure for a specific affine
point process. We consider the special case where the
coefficient functions (9) satisfy

(K0,K1,H0,H1) = (κc,−κ,0,σ2) (18)

for parameters κ ≥ 0, c > 0 and σ ≥ 0 such that 2κc≥ σ2.
In this case, the F-intensity λ = X of N follows an F-Feller
jump-diffusion process:

dλt = κ(c−λt)dt +σ

√
λtdWt +δdLt . (19)

The intensity jumps at the event times (Tn), with random
jump sizes (δ`n). Thus, the point processes N and L are
self-exciting. The parameter δ controls the sensitivity of
the arrival rate to events. After an event, λ reverts to the
level c exponentially in mean at rate κ , and with diffusive
fluctuations whose volatility is governed by σ . The auxiliary
process Y introduced in equation (11) follows a classical
F-Feller diffusion.

In the special case σ = 0, the process L is a Hawkes
process, while for κ = σ = 0 it is a linear birth process.
In these two cases, our simulation method reduces to the
sequential thinning method for Hawkes processes described
in (Ogata 1981). For nontrivial σ , the exact Algorithm 3.2
is an alternative to the exact algorithm for the model (19)
developed by (Giesecke and Kim 2007).

With the parametrization (18), the ODEs (14)–(15) take
the convenient form

∂sb(s, t,v) = κb(s, t,v)+
1
2

σ
2b(s, t,v)2−1

∂sa(s, t,v) = κcb(s, t,v)

with boundary conditions b(t, t,v) = v and a(t, t,v) = 0. We
obtain the solutions

b(s, t,v) =
v(γ +κ +(γ −κ)c(s, t))+2(c(s, t)−1)
vσ2(c(s, t)−1)+ γ −κ +(γ +κ)c(s, t)

a(s, t,v) =
2κc
σ2 log

2γ exp((t− s)(γ +κ)/2)
vσ2(c(s, t)−1)+ γ −κ +(γ +κ)c(s, t)

for γ = (κ2 +2σ2)1/2 and c(s, t) = exp(γ(t− s)). The pro-
jected intensity h can be computed explicitly using the
recursive algorithm outlined in Section 4.2.4 above.

Figure 1 shows sample paths of the projected intensity
h and the point process L. The jumps in h occur at the
event times. Between events h decreases deterministically.
Therefore, Algorithm 3.2 is applicable. The parameters of
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Figure 1: Sample paths of the projected intensity h (left
scale, solid line) and the point process L (right scale, dashed
line) generated by the exact Algorithm 3.2. The jumps
in h occur at the event times. Between events h decays
deterministically. The reversion rate κ = 1, the reversion
level c = 1, the diffusive volatility σ = 1, the feedback
sensitivity δ = 1 and the initial value X0 = 1. The jump
size variables `n are drawn from a uniform distribution ν

over {0.4,0.8}.

the F-intensity λ are given by

(κ,c,σ ,δ ,X0) = (1,1,1,1,1)

and the jump size variables `n are drawn from a uniform
distribution ν over {0.4,0.8}.

The numerical experiments were performed on a laptop
PC with an Intel 1.6 GHz processor and 1 GB of RAM,
running Windows XP Home. The codes were written in
MATLAB Version 7.2.0 (R2006a).

6 CONCLUSION

This paper proposes a new method for the exact simulation
of point processes with stochastic intensities. The method
avoids the generation of intensity paths and leads to unbiased
estimators. It is based on the observation that the joint
distribution of the point process arrival times is completely
determined by the optional projection of the intensity onto the
filtration generated by the point process itself. The optional
projection is the intensity of the point process in its own
filtration. Between events, it evolves deterministically, and
therefore supports the application of the classical thinning
algorithm to efficiently generate event times by acceptance-
rejection sampling. We demonstrate the method for a point
process whose intensity follows an affine jump-diffusion.
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