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ABSTRACT

The focus on mean (long-run average) performance as the
primary output measure produced by simulation experiments
diminishes the usefulness of simulation for characterizing
risk. Confidence intervals on means are often misinterpreted
as measures of future risk, when in fact they are measures of
error. We introduce the Measure of Risk & Error (MORE)
plot as a way to display and make intuitive the concepts
of risk and error and thus support sound experiment design
and correct decision making.

1 INTRODUCTION

Confidence intervals (CIs) for the mean are one of the
first topics on statistical inference in introductory statistics
courses, and stochastic simulation classes build on this
foundation by emphasizing the need for CIs on estimated
measures of system performance. A Clis a measure of error
that attempts to cover, with high probability, the unknown
value of a performance parameter implied by the simulation
model. More relevant for decision making, however, is some
sense of what the future might bring, say if the system
design described by the simulation is implemented. The
mean might be a good single-point guess of the future, but
neither the mean nor a confidence interval on it capture any
measure of the future risk.

Confusion about the meaning and relationship of risk
and error is pervasive, and the presentation of output results
by most simulation tools does nothing to alleviate it. Here
we introduce the Measure of Risk & Error (MORE) plot as
a possible default output display to make their relationship
clear and facilitate the kind of sequential experimentation
that simulation should readily support. No background in
inferential statistics is required to interpret the MORE plot,
and only the descriptive statistics concepts of sample average
and histogram are essential. To illustrate this point, we first
describe the MORE plot without reference to the statistical
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methods used to construct it, which are described later in
the paper.

2 MORE PLOT

Suppose we have run a simulation experiment and one of the
outputs is the number of barrels, in thousands, of a particular
chemical that we need annually. This number depends on
a complex host of things: demand for our product, yield
loss, etc. We might be interested in how much to stock or
on whether we should pay for an option to get more at a
fixed price later in the year. After constructing a simulation
to generate the annual need for barrels of the chemical, and
simulating a number of years of consumption, we get the
histogram shown in Figure 1 (top).

There are at least two questions we need to answer:
How many barrels should we purchase or have an option on,
and have we done enough simulation to really answer that
question? Since humans love to average, we add the sample
average to the histogram. And since it is clear that we could
need much more or much less than the average, we also
box a big chunk of the possible need and label it in an easy
to understand way; see Figure 1 (middle). We immediately
obtain an important insight by looking at the simulation
output data in this way: The future is uncertain and our
needs can be within a wide range around the average.

In baseball a players batting average last year is a
meaningful historical statistic. However, a simulation is not
trying to create history; instead it is trying to say something
about what will happen in the future and whether we can
live with it; the average does not always tell us, while the
“risk box” in a MORE plot often does.

Have we done enough simulation to be confident in
making any decision yet? As a final embellishment, we add
a measure of error on each of the arrow heads, as shown
in Figure 1 (bottom). These intervals imply that we are
highly confident that the arrow head belongs somewhere in
the interval, we just are not sure where. Now it becomes
obvious that we have not done nearly enough simulation
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Figure 1: Construction of a MORE plot.

since the positions of the arrow heads are quite uncertain
relative to the amount of the chemical we might use. We
call the bottom figure a MORE plot.

Figure 2 shows the MORE plot we get if we run the
simulation for many more years. Notice that uncertainty
about the future does not disappear; we cannot simulate
away risk. But we do improve our estimate of future
uncertainty by running the simulation longer, as indicated
by the shorter error intervals. With this information we can
balance the various costs associated with the decision in
light of the likely outcomes and do something rational.

The MORE plot is based on the catch phrase “use MOE
to get MOR,” which means use measures of error to get
measures of risk. The box in the MORE plot is a measure
of future risk, and that is what we often need to support our
decision. The intervals are measures of error; they tell us
if we have done enough simulation to reach a conclusion.

As a second example to illustrate how error diminishes
with simulation effort, but risk does not, Figure 3 shows a
sequence of MORE plots for a simulation of product cycle
time as we increase the number of replications simulated.
If our interest is in setting a promise date so that we are
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Figure 2: MORE plot with more data.

unlikely to be late, then the right-hand arrow head might be
of most interest. Notice that the error in the sample average
is smaller than the error in the risk box, which illustrates
why we cannot always design the simulation based solely
on the average.

The MORE plot is also relevant even when the mean
is the quantity of primary interest. Figure 4 shows MORE
plots for the aggregate (all-store) weekly profits generated by
two different magazines titles; the simulation was performed
to find the optimal stocking levels to maximize long-run
average profit. While the weekly demand distributions of
these two titles store by store are the same, the sales of one
of them (bottom MORE plot) are very much driven by who
is on the magazine cover. Since the same cover appears
in all stores, larger swings in aggregate weekly sales occur
for the title with the cover effect.

Under the optimal stocking formula both of these titles
have the same long-run average profit, and will realize that
profit over many weeks. However, the MORE plot shows
that there is substantially more cash flow risk when there
is a common cover effect. If the magazine distributor was
unprepared for these big swings, then a few bad weeks of
profits (low achieving covers) might cause them to abandon
their “optimal” stocking policy thinking it must be wrong.
That could be a big mistake, particularly if they use an ad
hoc fix that results in an unknown loss of potential profit.
The MORE plot shows them what to expect, not just over
the long run, but also week to week.

3 DETAILS FOR LLD. DATA

The MORE plot adds to a histogram estimates of the mean
and two percentiles (the arrow heads), and confidence in-
tervals on each of them. Let the simulation output data
be denoted by Y1,Y2,...,Y,, and suppose that they are per-
formance measures extracted from different replications so
that they are independent and identically distributed (i.i.d.).
Without loss of generality assume that they have been sorted
sothat Y1 <Y, <---<Y,.
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Figure 3: MORE plot of cycle time data.

The sample mean (middle arrow head) is placed at
Y =" ,Y;/n. If n is large enough so that a histogram can
be formed, then a reasonable choice for the interval under
it is

(Y —zi_apS/Vn, Y +21_6/28/v/n]

where $? is the sample variance of the data and z;_,, /2 is the
1 — 0¢/2 quantile of the standard normal distribution (e.g.,
1.96 if oo =0.05 for a 95% CI).

For the percentile arrow heads that form the risk box,
we chose the 5th and 95th percentiles of the data in this
paper (meaning that the box contains 90% of the outcomes),
but any percentiles (not necessarily symmetric) could be
chosen. Generically, suppose we choose the ,100th and
By 100th percentiles, with By, < 1/2 and By > 1/2. Then we
place the left arrow head at Y),,3, | and the right arrow head
at ¥|,,5,,| where [-] means to round down. This is an easy
choice; more refined percentile estimators that interpolate
two or more of the data points could also be used.
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Figure 4: MORE plot of magazine profit data.

A large n approximate CI for the 8 100th percentile can
be obtained as follows (Banks et al. 2005): Let

Bi = B-zi_ap %
B = B+ziqp 7[3511_—113)'

Then take as the interval [Y 1nB1 ] Y |nBa) ] . Aninterval like this
is needed for each percentile. Again, more refined methods
exist, including nonparametric methods that do not depend
on a normal approximation.

A few additional refinements are worth mentioning:

e  Although less frequently used in engineering prac-
tice, the sample median could replace the sample
mean as the center of the MORE plot.

e If itis desirable to have all three of the confidence
intervals cover their respective parameters with
probability > 1 — o, then the Bonferroni inequality
implies that we form each interval at the 1 —ot/3
level (that is, use z;_g/6)

e To avoid any implication of statistical inference,
the CIs in the MORE plot could be replaced, for
instance, with £2 standard error (although it
the case of the percentiles it is actually easier to
form the CI than estimate the standard error).

Many readers will recognize that there is a close connec-
tion between the risk box in a MORE plot and a prediction
interval (PI) (Banks, et al. 2005). Loosely speaking, a PI is
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what you get if you move the risk box arrow heads out to the
far extremes of the error intervals because a PI simultane-
ously accounts for risk and error in a single interval. A Pl is
therefore conservative and does not provide a sense of what
could happen—how much the risk box might shrink—with
additional replications.

4 STEADY-STATE SIMULATION OUTPUT

When the performance measure of interest is a summary
measure of a random variable Y that is defined by limit
as the simulation run length (conceptually) goes to infinity,
then care must be taken to construct a valid MORE plot.

Suppose that Y1,Y,...,Y, is the output of a single
replication of a “steady-state simulation” after the impact
of initial conditions have been mitigated. For instance, Y;
might be the cost incurred in the ith month of a supply
chain simulation and we are interested in characterizing
the fluctuations of monthly cost. If we assume that this
output comes from a stationary stochastic process, then
the histogram, sample mean and sample percentiles for
the MORE plot can be obtained as described above. The
difficulty arises when trying to construct the error intervals
because the outputs are typically dependent, invalidating
the CI’s from the previous section.

Perhaps the simplest approach is to use the methods of
batch means and batch percentiles (e.g., Wood and Schmeiser
1995) to form the CIs. This is hard to do in an entirely
automated way, but for a MORE plot even a rough measure
of the error in the sample means and percentiles is adequate.

Care must be taken if the replication-deletion
approach—which is widely used for estimating the mean—
is applied. In particular, the histogram must be formed from
all of the raw data retained after deletion from all repli-
cations. Further, from each replication an estimate of the
mean and each of the percentiles should be obtained; these
are used to compute point estimates and CIs by averaging.
In other words, we apply the methods of batch means and
batch quantiles with each replication playing the role of a
batch. This is critical since the run length of a steady-state
simulation replication is arbitrary and not related to any
property of the system we are trying to capture.

5 MISTAKES

Suppose we are simulating a call center during its operating
hours from 8 AM to 7 PM, and we are interested in caller
delay before talking to an operator. Caller load on the call
center varies systematically throughout the day with peak
loads around noon. The natural experiment design here is
to make multiple replications, each representing a day of
service, and a typical output is the average caller delay for
the day.
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A MORE plot is easily constructed from the output of
this simulation, but it is just as easily misinterpreted. In
particular, the risk box can be incorrectly interpreted as the
likely delay that an individual caller will experience. This is
incorrect because the MORE plot was constructed from daily
average delays, not individual caller delays. Therefore, the
risk box characterizes the variability of the daily average,
not the individual callers’ delays. In fact, the distribution of
individual caller delay is not well defined in this problem
since there is a strong dependence on the time of day the
call was placed.

A second mistake is trying to squeeze too much in-
formation out of a MORE plot when too little data have
been obtained. Typically the mean is more easily estimated
than the percentiles; for instance, we might be comfortable
estimating the mean from n = 10 replications/observations,
but we cannot hope to estimate, say, the 5th percentile from
such a small sample. The MORE plot is designed for situ-
ations in which enough data have been generated to form
a reasonable histogram.

Finally, the MORE plot captures nothing about model
risk, which relates to how faithfully the simulation model
represents the real system of interest. For instance, model
risk is present any time an input distribution that drives the
simulation is based on a sample of data.
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