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ABSTRACT 

We consider the output of a simulation model of a system 
about which little is initially known. This output is often 
dependent on a large number of factors. It is helpful, in 
examining the behaviour of the system, to find a statistical 
metamodel containing only those factors most important 
in influencing this output. The problem is therefore one of 
selecting a parsimonious metamodel that includes only a 
subset of the factors, but which nevertheless adequately 
describes the behaviour of the output. The total number of 
possible submodels from which we are choosing grows 
exponentially with the number of factors, so a full exami-
nation of all possible submodels rapidly becomes intrac-
table. We show how resampling can provide a simple so-
lution to the problem, by allowing potentially good 
submodels to be rapidly identified. This resampling ap-
proach also allows a systematic statistical comparison of 
good submodels to be made. 

1 INTRODUCTION 

Discrete-event simulation is often used in the exploratory 
study of a complex system. We suppose that the behav-
iour of the system is summarised by some performance 
measure which we shall take to be the output of interest. 
 This output is often dependent on a large number fac-
tors. We consider the situation where little is known about 
the system but it is expected that, though the number of 
factors is large, possibly only a few will be really impor-
tant. We therefore wish to construct a parsimonious statis-
tical metamodel that includes these important factors but 
we would like some assurance that such a submodel ade-
quately represents system behaviour. 

We shall only consider the simplest situation, where a 
linear model is to be fitted to a sample of output obtained 
from a set of simulation runs made at different factor set-
tings. Ideally these runs will be based on a designed ex-
periment, but our discussion does not require this to be so. 

We suppose that there are P factors. There are thus 
pCk  distinct submodels in which k out of the p factors are 

present in the linear model. Summing over all possible k, 
from 1 to P there are thus a total of 2p-1 possible submod-
els. 

Statistically this is the classic problem of model se-
lection. Though this problem is well known, the usually 
accepted methods of handling it are not always satisfac-
tory. Wu and Hamada (2000) have discussed this problem 
at length. They considered the very well-known back-
ward, forward and stepwise factor selection methods and 
also more sophisticated Bayesian strategies, employing 
Gibbs sampling. The main problems with these methods 
are as follows. 

The backward, forward and stepwise selection meth-
ods are all sequential, in which factors are considered one 
at a time for possible inclusion, or elimination. It is there-
fore possible, with non-orthogonally designed experi-
ments, simply because of the order in which factors are 
considered, to end up with a selected model that does not 
include all those factors that are important. 

Use of a Bayesian approach avoids this difficulty, but 
a prior distribution for factor coefficient values has to be 
chosen and there is also the technical implementation is-
sue of deciding when sufficient sampling has been carried 
out to ensure that adequate convergence to the posterior 
distribution has taken place. 

In this paper we shall consider resampling methods. 
These work by generating, through bootstrap resampling, 
a large number of data sets each with the same statistical 
distributional properties as the original data set, at least 
asymptotically. We can therefore deploy whatever 
method we wish for selecting the model using the original 
data sample, but then gauge the adequacy of the selected 
model by studying how consistently it is selected in the 
bootstrap samples. 

Whatever the method used for the selection process, 
there is also the additional issue of deciding on the selec-
tion criterion to be used in choosing between different 
models. Also one should have some way of checking 
whether the selected model is a sufficiently good fit. 

There is the possibility that more than one model pro-
vides an adequate representation of the relationship be-
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tween the output and factors. We need therefore to have 
some means for gauging the adequacy of fitted models. In 
this last regard, of the existing methods that we have al-
ready mentioned, the Bayesian approach seems most sat-
isfactory in that a posterior distribution is obtained for the 
possible models, so that it will be clear whether there is 
one single best model choice or whether several compet-
ing models are equally or nearly as good. The Bayesian 
approach is not entirely satisfactory in that it does not 
provide immediate information on whether the models 
with the highest posterior probabilities are adequate or 
not. This of course depends on what purpose the meta-
model will be used for, something which we may not be 
entirely sure of in exploratory studies. It would however 
be useful to have some criterion for assessing the good-
ness of fit of the model, at least in some general sense. 

In the next section we describe the linear statistical 
model that we will use and discuss selection criteria for 
choosing between models. In Section 3 we set out two 
methods of bootstrap resampling for model selection and 
analysis. Numerical examples are given in Section 4 and a 
summary is provided in Section 5. 

2 THE LINEAR MODEL 

We consider the (full) linear model 
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where Yi, i = 1, 2, ..., n are the observed output values ob-
tained from n simulation runs; Xij are the factor values in 
each of the n runs; bj, j = 1, 2, ..., P are the unknown coef-
ficients corresponding to each of the P factors; and 

nii  ..., 2, ,1  , =ε  are random errors. We have taken 
niX i  ..., ,2 ,1  ,11 ==  so that b1 corresponds to a general 

mean. We thus treat the mean as a coefficient, so that, as 
far as the model selection and fitting process is concerned, 
we do not treat it differently from the other coefficients. 
In what follows, when we refer to a ‘factor’ it is to be un-
derstood that this includes the general mean. 

We shall assume that the nii  ..., 2, ,1 , =ε  are identi-
cally distributed with mean zero and variance 

 
 2)( σε =Var . (2) 
 
Such random errors are often assumed to be normally dis- 
tributed, but we do not assume that this is necessarily so 
in our formulation. 

We shall, whenever convenient, write (1) in the alter-
native matrix form 

 
 εXbY += . (3) 

 
Equation (1) is the full model in which all factors are 

included. We shall define a submodel as 
 

 },...,,{ 21 pjjjk =  (4) 
with 
 Ppjjj p ≤<<<   ,...21 , 
 
if (and only if) 
 
 0other  all and ,0 ..., ,0 ,0

21
=≠≠≠ jjjj bbbb

p
. 

 
We shall write the observations corresponding to this sub-
model as 
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or in the matrix form 
 
 εbXY += )()( kk . (6) 
 
Where necessary we shall also write 
 
 pkp =)(  (7) 
 
for the number of unknown coefficients in the model k. 
Also we will denote the full model by K, so that 

PKp =)( . 
When we fit the model k we shall use the least 

squares estimates (see Searle, 1971, for example) 
 
 YXXXb TT kkkk )()]()([)(ˆ 1−=  (8) 
 
for the unknown coefficient values, and 
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for the unbiased estimate of the variance of the iε . 

For model selection, we need a criterion for choosing 
between submodels. We consider two well known crite-
ria. 
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The first is the Cp statistic proposed by Mallows 

(1973). This is defined as 
 

 nkpKkkpnkC p −+−= )(2)(ˆ/)(ˆ))(()( 22 σσ . (10) 
 

An alternative statistic is the Akaike Information Cri-
terion (Akaike, 1970), which for the linear model reduces 
to 

 
 )(2)](ˆlog[2)( 2 kpknkAIC +−= σ . (11) 
 
Asymptotically Cp and AIC have essentially the same dis-
tribution (see Nishii, 1984). However Cp is perhaps more 
satisfactory for our purpose. It will be seen that if the 
model k is satisfactory then the expected value of Cp is 
close to p. Thus once all important factors are included Cp 
will increase linearly with p. However if not all important 
factors are included the expected value of Cp will be lar-
ger than p. Thus, our selection method will be simply to 
select from amongst all possible submodels, that for 
which Cp is minimum.  Moreover we would expect the 
choice to be satisfactory if the minimized value of Cp is p 
or smaller. 

In summary the basic model selection method is 
therefore simply to: 

(i) Consider each of the 12 −P  possible submodels of 
(1) and for each submodel k calculate Cp(k) from (10) or 
AIC(k) from (11). 

(ii) Select as the best model that k for which Cp(k), or 
AIC(k), is minimum. 

3 BOOTSTRAP ANALYSIS 

In this section we shall for simplicity assume that the se-
lection criterion is Cp. 

The methodology of the previous section is straight-
forward to apply in principle. However there are two as-
pects of concern. 
 
Dimensionality Problem. Because the total number of 
submodels, 12 −P , grows exponentially with P, inspec-
tion of all submodels is possible only when P is small. 
Thus even with just 20 factors there are already 1,048,575 
submodels. We need therefore to be able to identify prom-
ising submodels in a way that is much more selective than 
the exhaustive search of all submodels. 

We give below two methods utilising resampling that 
allows selective examination of submodels. 

 
Quality of the Selected SubModel. Once a best submodel 
(as measured by smallest Cp(k) value) has been deter-
mined, there is the question of how good this choice is. 
This is of especial concern if there are several models 
with values of Cp(k) close to that of the best. This ques-

tion would be answered if we had many samples and not 
just one, as we could determine the best submodel for 
each sample and see if the same submodel is best for all 
the samples. The resampling methods to be described do 
precisely this. The method and results are thus easily ex-
plained, even when they are not especially versed in 
mathematical statistics. 

The Bayesian approach works similarly, gauging the 
relative merits of competing submodels in a precise way 
by assigning a posterior probability to each model. How-
ever the Bayesian methodology is arguably more techni-
cal and requires some understanding of prior and posterior 
probabilities by the non-expert. 

We now describe our two proposed resampling meth-
ods highlighting how they handle the above two prob-
lems. 

3.1 Bootstrap Samples 

Both methods require the generation of bootstrap samples 
with precisely the same form as (1). The standard way of 
doing this is described, for example, by Davison and 
Hinkley (1997). We take the modified residuals 

 
 nihYYr iiiii  ..., ,2 ,1  ,)1/()ˆ( 2/1 =−−=  (12)  
 
obtained from the fitting the full model K to the original 
data, where bXY ˆˆ =  and hii is the ith main diagonal entry 
in the ‘hat’ matrix 
 
 TT XXXXH 1)( −= . 
 
We then centre these so that their average is zero: 
 
 nirre ii  ..., ,2 ,1  , =−= . (13) 
 
A bootstrap sample is then obtained by forming 
 
 nieYY iii  ..., ,2 ,1  ,ˆ ** =+=  (14) 
 
where the niei  ..., ,2 ,1  ,* =  are a random sample obtained 
by sampling with replacement from the niei  ..., ,2 ,1  , = . 

A second way of resampling, parametric bootstrap-
ping, is possible, if it can be assumed that the random er-
rors nii  ..., 2, ,1  , =ε  in (1) are normally distributed and 
independent. The bootstrap sample still takes the same 
form as (14) only now the niei  ..., ,2 ,1  ,* =  are a random 
sample from the fitted normal distribution, i.e.: 
 
 *

ie  ~ niN  ..., ,2 ,1  ),ˆ ,0( 2 =σ  (15) 
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We are now in a position to describe the two boot-

strap analysis methods. 

3.2 First Bootstrap Analysis Method 

This first method requires an upper limit p ( Pp ≤ ), to be 
placed on the number of factors that a submodel can have 
(remembering that we interpret the mean as being a fac-
tor). The analysis then works as follows: 

 
Step(1) Fit all submodels k  with pkp ≤)(  to the original 
data. Calculate Cp(k) for each k. The model with the 
smallest Cp(k) is the estimated best model (assuming the 
best model satisfies pkp ≤)( ). Also select a threshold 
factor α . We then retain all submodels k for which 

)()( kpkC p α≤ . In practice it turns out, assuming the lin-
ear model is appropriate in the first case, many submodels 
will give a fit with )()( kpkC p ≤ . Thus the value of α  
does not seem very critical. If keeping the number of 
submodels considered is a very serious issue then 1=α  is 
probably acceptable. To be on the safe side we have used 

3=α  in the numerical examples of Section 4. This set of 
submodels, denoted by S, constitutes the set of promising 
models. 

 
Step(2) Generate B bootstrap samples each of the form 
(14). For each bootstrap sample, j, fit each of the promis-
ing submodels in the set S, and select the submodel k(j) 
for which Cp(k) is smallest. 

 
Step(3) Display the submodels of S, ranked in order of the 
proportion of times that they are selected as being the best 
model in the B bootstrap samples, displaying these pro-
portions as well. 

 
It will be seen that, provided the upper limit p in 

Step(1) can be set sufficiently small, this first method-
deals with the problem of dimensionality by limiting the 
total number of submodels that need to be fitted to the 
original data. The further imposition that only fitted mod-
els satisfying )()( kpkC p α≤  be retained will additionally 
reduce the number of submodels that have to be consid-
ered in Step(2). Thus, even if the number of submodels 
that have to be fitted to the original data set in step(1) 
cannot be made small (because it may not be possible to 
set p small), the number of submodels in the bootstrap-
ping of Step(2) can still be controlled by taking a small 
value for the scaling factor α . 

Step(2) handles the problem of adequacy of the best 
fitted submodel found in Step(1) by seeing how often it is 
selected as the best submodel in the bootstrap samples. 

A good additional check can be carried out by rank-
ing the submodels of S according to their Cp(k) value as 

calculated from the original data, and then comparing this 
ranking with the percentage of times they are found to be 
the best fit when fitted to the bootstrap samples. 

The method requires an upper limit p ( Pp ≤ ) to be 
placed on the number of factors that a submodel can have. 
Ideally this should be based on prior knowledge that the 
practitioner may have of the system under study. It may 
be that some of factors under consideration are not what 
are termed main effects but are interactions. In this case 
one can use the hereditary and hierarchical principles dis-
cussed by Wu and Hamada (2000), where an interaction 
between two main effects can be omitted if both main ef-
fects are thought unlikely to be important. 

The number of models that have to be fitted to the 
original data set in this first bootstrap analysis method can 
still be intractably large, especially for carrying out 
Step(1), if p, the largest number of factors that there can 
be in a submodel, cannot be assumed manageably small. 
Our second method is designed to avoid this problem. 

3.3 Second Bootstrap Analysis Method 

The first method considers all submodels containing no 
more than p factors. The second method does not restrict 
the number of factors that a submodel can have, but keeps 
the number of submodels considered manageable by a se-
lective process using bootstrapping that focuses on mod-
els that show some evidence of being possibly a good fit. 
 
Step(1). Generate B bootstrap samples each of the form 
(14). For the original sample and for each bootstrap sam-
ple, carry out the following selection process: 

 
Step(1.1) Fit the full model, K, to the sample and deter-
mine the p-value of each of the fitted coefficients, 

Pjbj  ..., 2, ,1 ,ˆ = , by calculating the so-called t-value 
 

 jjj dbt 2ˆ/ˆ σ=  (16) 

  
where dj is the jth entry in the main diagonal of the dis-
persion matrix, i.e. 
 
 1)( −= jj

T
jd XX . (17) 

 
If the true value of bj  is bj = 0 then tj has Student’s t-
distribution with Pn −  degrees of freedom. If we there-
fore denote the complementary distribution function for 
the absolute value |tj| by )(⋅−PnT , the p-value is then: 
 
 ) || ( jPnj tTq −= . (18) 
Step(1.2) Order the coefficients by their qj values: 
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Pjjj qqq ≤≤≤ ...

21
, (19) 

 
so that 

1
ˆ

jb  is the most significant, and select a signifi-
cance level q, say. 
 
Step(1.3) We then set a critical p-value, which we denote 
by q (the same q is used for all the samples), and select 
the submodels 
 

 

},...,,{
...

},{
}{

21

212

11

mm jjjk

jjk
jk

=

=
=

 (20) 

where 
 
 

1+
<≤

mm jj qqq . (21) 
 
Thus the submodel ki is the one where the i most signifi-
cant factors have been retained, with a cutoff that only 
factors with significance level higher than q (i.e. with p-
value less than q) are allowed in a submodel. 

There is some flexibility in the choice of the value of 
q that might be used. If q is set small then this means that 
only factors that are really significant are likely ever to be 
considered. However it is perfectly reasonable to set q = 
1. This simply means that a submodel with p factors will 
be considered for all values for all values of p, i.e. for p = 
1, 2, …, P. 
 
Step(1.4) Collect together all the distinct submodels ob-
tained from the previous step for the original and for all 
the bootstrap samples. This set of distinct submodels 
comprises our set of promising submodels, which we de-
note by S.  Note that the least stringent value we can take 
for q (in the sense of restricting the number of submodels 
considered)  is q = 1. Even in this case at most P submod-
els are selected for consideration from each sample. There 
are thus at most (B+1)P distinct submodels in S. In fact 
there are likely to be significantly fewer submodels be-
cause if the original and bootstrap samples are consistent 
then the same submodels tend to provide the best fit in all 
the samples, so that the same models will tend to be re-
peatedly identified for inclusion in S. 
 
Step(2) For each bootstrap sample, fit each of the sub-
models in the set S and identify the best model k as the 
one with the smallest Cp(k) value. 
 
Step(3) Display the submodels of S, ranked in order of the 
proportion of times that they are selected in Step(2) as be-
ing the best model in the B bootstrap samples, displaying 
these proportions as well. 
 

A final comparison can be carried out by ranking the 
submodels of S according to the Cp values obtained from 
fitting these submodels to the original data, and seeing 
how this ranking compares with that of Step(3). 

This completes the second bootstrap analysis method.  

4 NUMERICAL EXAMPLES 

We give two examples. The first is a very small data set, 
but that allows the resampling methods to be demon-
strated without unwieldy tabulations. The second is more 
the kind of problem for which the methods are actually 
intended. 

Though neither of the data sets considered here stem 
directly from simulation experiments we have used them 
because they are readily accessible. The output of many 
large scale simulations have a similar structure. For ex-
ample, Kleijnen et al. (2006) discuss an interesting supply 
chain simulation involving some 92 factors. Kleijnen et 
al. actually discuss the selection of important factors us-
ing sequential bifurcation. However, though the problem 
is large, it is actually possible to carry out a full experi-
mental study of the supply chain. Though not reported 
here because of space limitations, the methods of this pa-
per have been tested on data obtained from this supply 
chain simulation example resulting in a very similar set of 
factors being identified as being important to that found 
by Kleijnen etal. 

4.1 Cement Hardening Example 

The first example involves a well-known, but very 
awkward, data set originally reported by Hald (1952) and 
also discussed by Krzanowski (1998). The data is given in 
Table 1 and shows the chemical composition (X1, X2, X3, 
X4) of 13 cement samples and the heat evolved, Y,  from 
each when hardening. The data was assumed to have the 
form (1), with a mean added, so that, with this included, 
there are five factors. 

Krzanowksi gives the all-subsets analysis assuming 
however that the mean is always fitted. Using the Cp crite- 
rion the best fit models are 

 
 (X0, X1, X2)       with Cp = 2.68, 
 (X0, X1, X2, X4) with Cp = 3.02 
 (X0, X1, X2, X3) with Cp = 3.04 
 (X0, X1, X3, X4) with Cp = 3.50. 

 
where we have used the notation X0 to indicate that the 
mean has been included. 

As these results indicate, the choice of best model is 
not clear cut. Two further models: (X0, X1, X2, X3, X4) with 
Cp = 5.00 and (X0, X1, X2, X4) with Cp = 5.50 are not un-
satisfactory. Part of the problem is that the mean coeffi-
cient is nowhere near statistically significant in the full 
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model, and it is not clear if always including it is a good 
thing to do. 

 
Table 1: Cement Hardening Data 

 

Sample 
Heat 
  Y X1 X2 X3 X4 

1 78.5 7 26 6 60 
2 74.3 1 29 15 52 
3 104.3 11 56 8 20 
4 87.6 11 31 8 47 
5 95.9 7 52 6 33 
6 109.2 11 55 9 22 
7 102.7 3 71 17 6 
8 72.5 1 31 22 44 
9 93.1 2 54 18 22 

10 115.9 21 47 4 26 
11 83.8 1 40 23 34 
12 113.3 11 66 9 12 
13 109.4 10 68 8 12 

 
 

We carried out an analysis using both bootstrap 
methods previously discussed, using the Cp statistic for 
selection criterion. In the first method, the α  factor was 
set, (somewhat arbitrarily) at 3=α . In the second 
method, the critical q was set at q = 1. This choice of q 
simply means that for each bootstrap sample exactly P 
submodels, i.e. m = P in (20), were selected. Table 2 
shows the percentage of time each of the submodels in S, 
the set of promising submodels, was the best fit in a boot-
strap sample. 

 
Table 2: Bootstrap Analysis of Cement Data 

 
First Method % Second Method % 

(X0,X1,X2) 26 (X0,X1,X2) 26 
(X1,X2,X3,X4) 19 (X1,X2,X3,X4) 18 
(X0,X1,X2,X3) 13 (X0,X1,X2,X3) 13 
(X0,X1,X4) 12 (X0,X1,X4) 12 
(X0,X1,X2,X4) 12 (X0,X1,X2,X4) 12 
(X0,X1,X3,X4) 12 (X0,X1,X3,X4) 11 
(X0,X2,X3,X4) 6 (X0,X2,X3,X4) 6 
    (X0,X1,X2,X3,X4) 2 

 
It will be seen that the two methods give almost iden-

tical results. Moreover these results corroborate most of 
the findings reported by Krzanowski. There are two dif-
ferences of note. Firstly there is some evidence that (X0, 
X1, X4) is a reasonable submodel. Secondly, there is some 
evidence that the mean can be dropped, with the sub-

model (X1, X2, X3, X4) being picked as the best nearly 20% 
of the time amongst the bootstrap samples. 

4.2 Bank Data Example 

The second example is taken from Makridakis et al. 
(1998, Table 6-8). The data is monthly, The variable of 
interest, Y, is the first difference, D(EOM), between the 
successive end of month (EOM) balances of a mutual sav-
ings bank. There are three primary X  variables: X1 is a 
composite triple bond rate (AAA),  X2 is a composite (3-
4) year US Government bond rate,  X3 is D(3-4), the 
monthly change in X2. There were in addition 11 monthly 
seasonal factors (D1-D11), and three further variables, 
time t and its square and cube t2, t3, making 17 initial fac-
tor variables. We do not reproduce the data here as the 
three key variables, (EOM), (AAA) and (3-4), for 60 
months, are downloadable from the website <http://www-
personal.buseco.monash.edu.au/~hyndman/TSDL>. 

In our analysis we followed Makridakis et al. (1998, 
Table 6-8) and express Y in thousands of dollars and ana-
lysed only the first 53 months of data. We have also 
added a general mean X0 as an additional variable so that 
we work with 18 factors. There are thus 

143,2621218 =− distinct submodels to select from; man-
ageable, but still a somewhat large number of models to 
comfortably work through.  

Using a best subset analysis with an adjusted coeffi-
cient of determination, 2R , for selection criterion Makri-
dakis et al. found the best model overall was 

 
 X0 X1 X2 X3 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 t3 (22) 
 
and, using a stepwise regression, that the best model was 

 
 X0 X1 X2 X3 D2   D4   D6 D7 D8 D9 D10 D11 t3. (23) 
 
However as the list in their Table 6-10 shows, there are 
many competing models with similar values for 2R . 

Such uncertainty in the best final model seems typi-
cal in such multivariate data, and it is difficult to come to 
a firm conclusion without further statistical analysis. 

We have carried out such an analysis using the sec-
ond bootstrap analysis method, with a p-value of q = 0.2. 
This led to the identification of a set of just 362 promising 
models at the end of Step(1). 

Before we carried out the bootstrap analysis of 
Step(2) we fitted the 362 promising models to the original 
data sample. The best three models were (with the best 
first): 
  X1 X2 X3 D2   D4   D6 D7 D8 D9 D10 D11 t t2

 
   X1 X2 X3 D2   D4   D6 D7 D8 D9 D10 D11 t2 t3 (24) 
 X0 X1 X2 X3 D2   D4   D6 D7 D8 D9 D10 D11 t3 
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so that the stepwise regression model (23) comes third us-
ing the Cp criterion. 

In Step(2) of the bootstrap analysis all 362 promising 
submodels were fitted to each of the bootstrap samples. 
Only 50 of these submodels were ever selected as being 
the best fit to a bootstrap sample. The ten submodels se-
lected most often as being the best fit to a bootstrap 
ssmple are listed in Table 3. 

 
 

Table 3: Top Ten Selected Submodels using the Second 
Method for the Bank Data Sample. All Submodels in-
clude the factors X1, X2, X3, D2, D4, D6, D7, D8, and D10 
which are therefore not listed 

 

 
 
The results suggest that, whether the mean is fitted or 

not is not very important. In fact, when the full model is 
fitted to the original sample, the p-value for the mean is 
0.66, showing that the general mean is not at all close to 
being statistically significant from zero for the original 
data. 

For all the 50 submodels that were ever selected, the 
three main factors X1 (AAA), X2 (3-4), X3 D(3-4) were 
always included, as were the seasonal variables D2, D4, 
D6, D7, D8 and D10. Of the others D9 and D11 seemed mar-
ginally less important. The remaining three D1, D3, D5 did 
not seem very important. It seemed worth including a 
time variable, but it is unclear if any one of them is to be 
preferred. That t3 appears in both (22) and (23) seems for-
tuitous when one looks at the way that the rather random 
way that different time variables appear in the different 
models listed in Table 6-10 of Makridakis et al. (1998). 

Though the details are a little different, in broad 
terms the bootstrap results are very similar to the results 
reported by Makridakis et al. 

Finally it is interesting to see how the submodels 
(24), selected as being the best fit to the original data, 
came out in the bootstrap analysis. The top two were also 
selected most often by the bootstrap analysis as being the 

best fit to a bootstrap sample, but the third did not quite 
appear in the top ten in the bootstrap analysis and was on-
ly 12th best.  

5 CONCLUSIONS 

We have presented two methods using bootstrapping to 
analyse the selection and fitting of linear models in multi-
ple regression. The second method in particular seems at-
tractive in enabling promising models to be tractably se-
lected out of the full set of all possible submodels when 
the number of factors is large. 

The bootstrapping allows an assessment to be made 
of how stable the submodel estimated as being the best fit 
to the original actually is, in the sense of seeing how often 
that model is selected as being the best when a large 
number of promising models are fitted to a number of 
bootstrap samples with the same form as the original data. 
Such information is not available using a standard best 
subset analysis or a stepwise regression analysis. 

An Excel workbook implementing both bootstrap 
methods is available from the author.  
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