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ABSTRACT

Efficiency is a big concern when using simulation to estimate
rare-event probabilities, since a huge number of simulation
replications may be needed in order to obtain a reasonable
estimate of such a probability. Furthermore, when multiple
designs must be compared, and each design requires sim-
ulation of a rare event, then the total number of samples
across all designs can be prohibitively high. This paper
presents a new approach to enhance the efficiency for rare-
event simulation. Our approach is developed by integrating
the notions of level splitting and optimal computing budget
allocation. The goal is to determine the optimal numbers of
simulation runs across designs and across a number of split-
ting levels so that the variance of the rare-event estimator
is minimized.

1 INTRODUCTION

Simulation is a powerful tool that can be used to analyze
a wide variety of systems. In principle, given an accurate
model and ample computer time, simulation can provide
accurate answers to a number of questions. However, in the
context of rare events, a key limitation is the computation
time needed to obtain a reasonable estimate of the rare-
event probability. For example, consider a rare event that
occurs with probability 10−9. If we simulate the system
109 times, then we see, on average, one occurrence of this
rare event. Even if we can simulate 10,000 runs per second,
we need about 1 day just to observe one event. Many
more simulations are needed in order to obtain a reasonable
confidence interval. Further, when multiple designs must
be compared, and each design requires simulation of a rare
event, then the total number of simulation replications across
all designs can be very high. The objective of this paper is
to improve the simulation efficiency to determine the best
of multiple designs where rare events are of concern.

There are two main approaches that have been used in the
literature to improve the efficiency of rare-event simulations:

importance sampling and splitting. The idea of importance
sampling (Glynn 1994, Heidelberger 1993) is to change the
sample space so that rare events are more probable. The main
challenge is that this usually requires specific knowledge
about the problem, so solutions tend to be highly sensitive
to the assumptions of the model. Another approach is
splitting (Glasserman et al. 1999, L’Ecuyer, Demers, and
Tuffin 2006). The basic idea of splitting is to create separate
copies of the simulation whenever the simulation gets closer
to the rare event of interest. Effectively, this multiplies runs
that are more likely to reach the rare event and kills runs
that are not promising, thus improving the likelihood of
observing the rare event. It has been shown that splitting
has the potential to significantly reduce the variance for
rare-event problems.

In the comparison of multiple designs, the standard
Monte Carlo approach is to simply simulate each design
for an equal amount of time or an equal number of replica-
tions. Then, the simulated metrics are compared to choose
the best design among all alternatives. As one might imag-
ine, there are better ways to do this. For example, after an
initial simulation period, one may see that some designs
are performing poorly, while others are performing well.
One can then adjust the computing allocation to simulate the
promising designs more frequently and the other designs less
frequently, if at all. Chen et al. (1997), Chen et al. (2000),
and Chen et al. (2008) presented an Optimal Computing
Budget Allocation (OCBA) approach and demonstrated that
the intelligent use of the simulated outputs from different
alternatives can dramatically improve simulation efficiency.
Extensions of the OCBA approach include Lee et al. (2004),
who consider multiple objective functions, Trailovic and Pao
(2004), who consider the objective of minimizing variance,
and Fu et al. (2007), who consider correlated sampling.
In addition, Hyden and Schruben (2000), Chick and In-
oue (2001), Kim and Nelson (2006), and Branke, Chick,
and Schmidt (2007) also demonstrated that the simulation
efficiency can be significantly improved by utilizing more
simulation information.
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In this paper, we present a new optimal splitting tech-
nique for rare-event simulation. The key idea is to integrate
the notions of OCBA into splitting methods to optimally
allocate the limited computing budget so that the overall
efficiency is maximized. For simulation analysis of a sin-
gle system, we want to determine the optimal numbers of
simulation runs among a number of splitting levels so that
the variance of the rare-event estimator is minimized. For
a comparison of multiple designs, we want to determine
the optimal numbers of simulation runs for each splitting
level in all designs so that the overall simulation efficiency
is maximized.

The paper is organized as follows. In the next section,
we introduce the idea of the splitting technique for rare-
event simulation. Section 3 formulates the problem of
our proposed optimal splitting technique. Some cases are
studied in Section 4. Section 5 concludes the paper.

2 LEVEL SPLITTING

Our proposed method is based on a promising variance re-
duction technique, called multilevel splitting (Garvels 2000).
The basic idea of this method is to consider the rare event
as the intersection of a nested sequence of events. The
probability of the rare event is the product of conditional
probabilities, each of which can be estimated more accu-
rately than the rare event itself, for a given simulation effort.
This transforms the rare-event problem into a set of much
easier problems. It has been shown that the efficiency gain
can be orders of magnitude in using splitting techniques
versus standard Monte Carlo simulation (L’Ecuyer, Demers,
and Tuffin 2006).

Figure 1 shows the basic idea of level splitting. In the
figure, the y-axis measures the proximity of the system to
the rare event set. The process is assumed to start at state 0,
and the rare-event set is defined by a threshold level L. For
example, the y-axis could denote the length of a queue,
and L could denote the maximum queue size before buffer
overflow. The interval [0,L] is partitioned into m stages
by choosing levels 0 = L0 < L1 < · · ·< Lm = L. Whenever
the simulation crosses a level, it is “split” into separate
simulation runs. These runs are independently simulated
starting from the splitting point. In this way, more computer
time is spent on runs that are closer to the rare event. Once
the simulation is complete, runs that hit the rare event are
appropriately normalized so that an unbiased estimate is
given for the rare-event probability. This is described more
precisely in a moment.

There are many different ways of implementing the
splitting idea (L’Ecuyer, Demers, and Tuffin 2006). In this
paper, we consider one type of level splitting, called fixed-
effort splitting. Let X = {Xt , t ≥ 0} be a stochastic process
with state space state χ . We assume that the stochastic
process is a Markov process. Let h : χ → R be a map of

Lm=L

L2

t

L1

L0=0

Rare 
Event

Figure 1: The basic concept of level splitting.

the state space to the “level” of the process. We assume
that h(X0) = 0. The rare event R is defined as the set of
states whose level is larger than some constant L > 0. That
is, R ≡ {x ∈ χ : h(x) ≥ L}. h(x) is called the importance
function. Let TR be the first time the process X enters the
rare event set R, and let TS be the first time the process
returns to the starting point (level 0) after leaving it. The
probability we wish to estimate is

γ ≡ Pr{TR < TS}.

For example, if R denotes a buffer overflow in a queue
and X0 denotes an empty system, then {TR < TS} is the
event that a buffer overflow occurs before the queue returns
to an empty state (starting from an empty state).

Let Ti ≡ inf{t > 0 : h(Xt)≥ Li}, for i = 1,2, . . . ,m, be
the time for the process to first reach level i (starting from
level 0). Let Di ≡ {Ti < TS} be the event that the process
reaches level i before returning to level 0. Thus, the rare
event probability is

Pr{TR < TS}= Pr{Tm < TS}= Pr{Dm}.

Let pi≡ Pr{Di|Di−1}, for i = 2, . . . ,m, be the probability
that the process reaches level i (before returning to level 0)
given that the process has reached level i−1 (before returning
to level 0). Also, let p1 ≡ Pr{D1}. Since Dm ⊂ Dm−1 ⊂
·· · ⊂ D1, we have

γ = Pr{Dm}= Pr{D1}Pr{D2|D1}· · ·Pr{Dm|Dm−1}= pi.

Note that pi is a conditional probability. The idea of multi-
level splitting is to estimate each probability pi separately, by
starting a large number of simulations in states at level Li−1
conditional on the event Di−1.

To implement the splitting technique, we start N1 in-
dependent simulation runs from the initial state X0 and
simulate each of them until time min(T1,TS). Let Q1 be the
number of those runs that reach level 1 before returning to
the starting state. Then p̂1 ≡Q1/N1 is an unbiased estima-
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tor of p1. Upon hitting the threshold L1, the end states of
the Q1 simulations are collected into a set denoted A1, which
become the starting states for the next stage of simulation.

At stage i (simulation from level Li−1 to level Li) for i≥
2, draw Ni starting states at random, with replacement, from
the set Ai−1. This is equivalent to taking Ni samples from the
empirical distribution of states at level Li−1. With these Ni
starting points, each simulation progresses independently
until time min(Ti,TS). This is called “splitting” of the
sample path. Let Qi be the number of runs that reach
level i before the returning to the initial state (level 0).
Then p̂i ≡Qi/Ni is an unbiased estimator of pi, which is a
binomial random variable with parameters Ni and pi. Upon
hitting a threshold Li, the end states of the Qi simulations
are collected into the set Ai for the next stage of simulation.
This procedure repeats at every level, for i = 2, . . . ,m. After
that, an unbiased estimator for the rare-event probability γ is

γ̂ = p̂1 p̂2 · · · p̂m.

L’Ecuyer, Demers, and Tuffin (2006) showed that the
variance of the estimation can be dramatically reduced as
compared with standard Monte Carlo simulation.

3 THE OPTIMAL SPLITTING PROBLEM

We present a novel idea to reduce the total simulation
time in the rare-event design problem. Under this setting,
there are k alternate designs and rare-event simulations must
be conducted for all k designs. Thus, a large number of
simulation replications (or runs) for each design must be
conducted to insure that the estimation variance for each
design is sufficiently low so that the best design can be
correctly identified.

Existing splitting techniques can improve simulation
efficiency for each design locally, but do not use the in-
formation of relative probability/mean estimations among
different designs. Our new approach intends to reduce es-
timation variance by looking at both the local information
of different splitting levels and the overall topology of the
design space. In particular, we want to allocate simulation
resources to different levels in different alternative designs
to maximize the quality of decision making, defined here as
the probability of selecting the best design. To do so, we in-
tegrate the notion of Optimal Computing Budget Allocation
(OCBA).

Unlike the OCBA setting where each simulation repli-
cation is a complete Monte Carlo sample (from level L0
to Lm), in this paper, we apply the splitting technique to con-
duct the simulation where a simulation replication involves
multi-level (or multi-stage) simulations. For notation, let Ni j
be the number of simulation runs for design i during stage j
(i.e., the number of simulation paths starting at level L j−1 for
design i), and let pi j be the probability of reaching level L j

N1m
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N11

L1
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N12

N13

N21

N22

N23

N2m

N31

N32

N33

N3m

Nk1

Nk2

Nk3

Nkm
Lm-1

Lm

Numbers of Simulation Runs
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Level

1 2 3 k
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Figure 2: Decision variables in the simulation problem.

(before returning to level 0) conditional on starting from
level L j−1, for design i. After some initial simulation runs
for stage j in design i are conducted, we can estimate pi j
and associated confidence intervals. As Ni j increases, the
estimation of pi j becomes better. In this setting, we want
to intelligently choose Ni j for all i and j so that the overall
simulation efficiency is maximized. Figure 2 depicts the
concept by showing the decision variables Ni j.

Let bi j be the one-run average simulation cost for
design i during stage j. Then the total simulation cost is
approximately

k

∑
i=1

m

∑
j=1

bi jNi j.

Let Pr{CS} be the probability of correctly selecting the
best design based on simulation output. Pr{CS} increases
as more simulation runs are performed. Specifically, we
maximize the probability of correct selection Pr{CS} with
a constraint on the total computation time:

max
Ni j

Pr{CS} such that
k

∑
i=1

m

∑
j=1

bi jNi j ≤ T. (1)

4 CASE STUDIES

In the special case that m = 1, there are no intermediate levels,
so no level-splitting techniques are used; this corresponds
to a single row in Figure 2. In this case, the problem
simplifies to the OCBA problem considered in Chen et al.
(2000). The solution has shown the possibility to enhance
simulation efficiency by an order of magnitude.

In a similar manner, in the special case that k = 1, the
problem simplifies to an optimal level-splitting allocation
for a single design; this corresponds to a single column
in Figure 2. Chen and Shortle (2008) offer an asymptotic
optimal solution for (1) of this special case as follows.
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The Ni j are chosen to satisfy the following constraint

N11
√

b11 p11 = N12
√

b12 p12 = · · ·= N1m
√

b1m p1m. (2)

If we assume that the bi j’s are equal, then this says that more
simulation effort is spent on levels with smaller probabilities.
That is, as p1 j decreases, N1 j increases.

The general solution to (1) remains ongoing research.
In this section, we consider a specific smaller problem where
k = 2 and m = 2. In other words, there are two designs
and two splitting levels. The solution to this problem offers
some insights for solutions to the general problem (1). For
simplicity, we assume that the simulation cost for each level
is approximately the same. That is, the bi j’s are equal and
can be ignored in the formulation.

To choose the better of two designs, we need to estimate
γ1− γ2, where γi is the rare-event probability estimator for
design i. To maximize the probability of correct selection
Pr{CS}, we minimize

Var[γ̂1− γ̂2] = Var[γ̂1]+Var[γ̂2]
= Var[p̂11 p̂12]+Var[p̂21 p̂22],

where p̂i j denotes the estimator for the conditional prob-
ability for design i from level j− 1 to level j. Thus the
problem is

min
N11,N12,N21,N22

Var[p̂11 p̂12]+Var[p̂21 p̂22]

s.t. N11 +N12 +N21 +N22 = T. (3)

Assuming that Ni j is a fixed number, then Ni j p̂i j is a binomial
random variable with parameters (pi j,Ni j). Thus

Var[p̂i1 p̂i2] = E[p̂2
i1 p̂2

i2]−E[p̂i1]2E[p̂i2]2

=
(

p2
i1 +

pi1(1− pi1)
Ni1

)(
p2

i2 +
pi2(1− pi2)

Ni2

)
− p2

i1 p2
i2

≈ pi1 pi2

Ni1Ni2
[pi2Ni2 + pi1Ni1 +1] ,

where the last approximation follows since 1− pi j ≈ 1. In
general, we must have Ni j pi j > 1 so that there is at least
one hit to the next level on average (when simulating from
level j−1 to j). We further consider an asymptotic condition
where the Ni j’s are large so that we can write

Var[p̂i1 p̂i2]≈
pi1 pi2

Ni1Ni2
[pi2Ni2 + pi1Ni1]

= γ
2
i

(
1

pi1Ni1
+

1
pi2Ni2

)
. (4)

With (4), the optimal splitting problem in (3) can be
written as

min
N11,N12,N21,N22

(
γ2

1 /p11

N11
+

γ2
1 /p12

N12
+

γ2
2 /p21

N21
+

γ2
2 /p22

N22

)
s.t. N11 +N12 +N21 +N22 = T. (5)

By finding the stationary point of the Lagrangian relax-
ation of (5), we obtain an optimal solution to the problem for
the computing budget allocation between designs 1 and 2,
and their corresponding stages 1 and 2 as follows:

N11

γ1/
√

p11
=

N12

γ1/
√

p12
=

N21

γ2/
√

p21
=

N22

γ2/
√

p21
. (6)

The literature typically assumes equal probabilities
among the different stages (e.g., p11 = p12 and p21 = p22)
implying equal runs among the stages (N11 = N12 and
N21 = N22). Equation (6) shows the specific optimal al-
location when the probabilities are different. It is intuitive
that Ni j decreases as pi j increases. That is, fewer simula-
tions are required in a stage that is less rare. However, it is
possibly counter-intuitive that Ni j increases as γi increases.
That is, more simulations are required for the design that
is less rare. To get a sense for the improvement that is
possible, we further study the following cases.

4.1 Case 1: Standard Simulation

We allocate an equal number of runs to designs 1 and 2
(i.e., N11 = N21 = T/2). In other words, simulations are
run starting at level 0 (the standard starting location). No
splitting is done. In standard simulation, there is no explicit
control over the number of runs from level 1 to level 2.
Thus, the number of times we simulate from level 1 to
level 2 (N12 corresponding to design 1 and N22 correspond-
ing to design 2) are random variables with expectations
E[N12] = p11N11 and E[N22] = p21N21. In other words, N11
and N21 are fixed numbers and are considered to be decision
variables, while N12 and N22 are random variables. Since
we are concerned with rare-event simulation, the second
level simulation numbers N12 and N22 are very small, so the
total budget allocation is approximately T (though slightly
higher):

N11 +N12 +N21 +N22 ≈ T.

Since we are not using level-splitting, we do not use (6).
Instead, we can directly compute Var[γ̂1− γ̂2] = Var[γ̂1]+
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Var[γ̂2]:

Var[γ̂1]+Var[γ̂2] =
γ1(1− γ1)

N11
+

γ2(1− γ2)
N21

≈ 2γ1

T
+

2γ2

T
=

2(γ1 + γ2)
T

.

4.2 Case 2: Level Splitting Without OCBA

As in Case 1, we allocate an equal number of runs to
designs 1 and 2 (i.e., N11 = N21). But this time, we control
the number of runs from level 1 to level 2. To get a sense for
the possible speedup, we suppose that probabilities among
different levels are equal within a given design. That is,
p11 = p12 =

√
γ1 and p21 = p22 =

√
γ2. In this case, there is

no effort to control the distribution of runs among different
designs, only the number of runs among different levels
within a design. Standard results from level splitting [or (2)]
implies that performance is optimized when N11 = N12 and
N21 = N22. Thus N11 = N12 = N21 = N22 = T/4.

Var[p̂11 p̂12]+Var[p̂21 p̂22]

≈ γ
2
1

(
1

p11N11
+

1
p12N12

)
+ γ

2
2

(
1

p21N21
+

1
p22N22

)
= γ

2
1

(
4
√

γ1T
+

4
√

γ1T

)
+ γ

2
2

(
4
√

γ2T
+

4
√

γ2T

)
=

8γ
3/2
1
T

+
8γ

3/2
2
T

Compared with Case 1 (standard simulation), the vari-
ance contribution due to each design is reduced here by
a factor of 4

√
γi, which is generally much less than 1 for

small γi.

4.3 Case 3: OCBA Without Level Splitting

The optimal allocation for two designs is N11/N21 = σ1/σ2,
where σ1 and σ2 are the standard deviations of the outcomes
of single simulations of designs 1 and 2 (e.g., Chen 2002).
That is, σ1 =

√
γ1(1− γ1)≈

√
γ1 and σ2 =

√
γ2(1− γ2)≈√

γ2. Thus, N11/N21 ≈
√

γ1/γ2. As in Case 1, the number
of times we simulate from level 1 to level 2, N12 and N22,
are random variables, with small expectations. Thus, we
roughly have N11 +N21 ≈ T . Combining these two results
gives and

N11 =
√

γ1√
γ1 +
√

γ2
T and N21 =

√
γ2√

γ1 +
√

γ2
T.

So

Var[γ̂1]+Var[γ̂2] =
γ1(1− γ1)

N11
+

γ2(1− γ2)
N21

≈
γ1 +
√

γ1γ2

T
+

γ2 +
√

γ1γ2

T

=
γ1 + γ2 +2

√
γ1γ2

T

=

(√
γ1 +
√

γ2
)2

T

We make the following remarks:

1. The variances of the terms from the individual
designs are equal;

2. Suppose we let γ2 = cγ1, so that c represents the
ratio of the two rare-event probabilities. Then,
the ratio of the variances for Case 3 (OCBA) and
Case 1 (standard simulation) reduces to

(1+ c)γ1 +2γ1
√

c
2(1+ c)γ1

=
(1+
√

c)2

2(1+ c)
. (7)

(a) If c = 1 (i.e., γ1 = γ2), then (7) reduces to 1. In
other words, when the rare events of the two
designs are equal, there is no improvement
using OCBA.

(b) If c→ 0 or c→ ∞, then (7) goes to 1/2.
In other words, the simulation efficiency of
OCBA improves as the rare-event probabili-
ties become more unequal, up to a maximum
improvement of a factor of 1/2.

4.4 Case 4: OCBA and Level Splitting

From (6),

N11

γ
3/4
1

=
N12

γ
3/4
1

=
N21

γ
3/4
2

=
N22

γ
3/4
2

.

This implies that N11 = N12 and N21 = N22 (i.e., equal runs
among the two levels, for a fixed design) and also that

N11 = N12 =
γ

3/4
1

2(γ3/4
1 + γ

3/4
2 )

T

and

N21 = N22 =
γ

3/4
2

2(γ3/4
1 + γ

3/4
2 )

T.
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From (4),

Var[p̂11 p̂12]+Var[p̂21 p̂22]

≈ γ
2
1

(
1

p11N11
+

1
p12N12

)
+ γ

2
2

(
1

p21N21
+

1
p22N22

)
=

(
γ

3/2
1

N11
+

γ
3/2
1

N12

)
+

(
γ

3/2
2

N21
+

γ
3/2
2

N22

)

=
4γ

3/4
1 (γ3/4

1 + γ
3/4
2 )

T
+

4γ
3/4
2 (γ3/4

1 + γ
3/4
2 )

T
.

Compared with standard simulation (Case 1), the ratio of
the resulting variances is

4γ
3/4
1 (γ3/4

1 +γ
3/4
2 )

T + 4γ
3/4
2 (γ3/4

1 +γ
3/4
2 )

T
2(γ1+γ2)

T

= 2
(γ3/4

1 + γ
3/4
2 )2

(γ1 + γ2)

If γ2 = cγ1, this ratio reduces to

2
√

γ1(1+ c3/4)2

(1+ c)

1. If c = 1 (that is, γ1 = γ2) then the ratio is 4
√

γ1,
which is the previous level-splitting result without
OCBA.

2. If c→ 0 or c→ ∞, then the ratio goes to 2
√

γ1 or
2
√

γ2, respectively, which is the best-case improve-
ment and is the product of the level-splitting result
and the best-case OCBA improvement. However,
the overall ratio is not the same as the product
of the two ratios from Case 2 and Case 3. If we
assume that γ1 > γ2 (or c < 1), which yields no
loss in generality, then the best-case improvement
is 2
√

γ1.

In this example where k = 2, the objective function
in (1) decomposes into separable problems. So, we can
first determine the optimal allocation within a single design
and then determine the optimal allocation between designs.
As a result, the overall improvement in simulation efficiency
can be seen in some sense as the product of the two effects.
However, the general problem is much more complex when
k > 2. In this case, the problem does not separate, so the
improvement is expected to be greater than the product of
the two effects.

5 CONCLUSIONS

In this paper, we presented a new idea of optimal splitting for
rare-event simulation and decision making among multiple

alternatives. The key idea was to integrate the notions of
optimal budget allocation and level-splitting methods to op-
timally allocate the budget over a fixed computing resource.
We presented a formulation of the optimal computing bud-
get problem and provided an approximate solution in the
case of two designs and two levels. The maximum im-
provement factor for this example was 2

√
γ1, where γ1 was

the probability of the rare event for design 1, and we have
assumed without loss of generality that γ1 > γ2. This reduc-
tion factor can be viewed as the product of the reduction
factor for a 2-stage level-splitting approach with equally
spaced levels (4

√
γ1) and the maximum reduction factor for

a 2-design budget allocation (1/2). The solution we gave to
this problem depended on the separability of the problem.
For larger problems, there is no separability, so finding the
optimal solution becomes more challenging.
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