
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

PERMUTATION-BASED ELITIST GENETIC ALGORITHM USING SERIAL SCHEME FOR LARGE-SIZED
RESOURCE-CONSTRAINED PROJECT SCHEDULING

Jin-Lee Kim

Department of Engineering Technology
4525 Downs Drive, Missouri Western State University

St. Joseph, MO 64507, U.S.A.

ABSTRACT

This research paper presents a new permutation-based Elit-
ist genetic algorithm using serial schedule generation
scheme for solving a large-sized multiple resource-
constrained project scheduling problem, which is one of
the most challenging problems in construction engineering.
A key aspect of the algorithm was the application of the
elitist roulette selection operator to preserve the best indi-
vidual solution for the next generation so as to obtain the
improved solution. Serial schedule generation scheme was
applied to generate a feasible solution to the problem. Re-
sults for large-sized project network problems were pre-
sented to demonstrate the performance and accuracy of the
algorithm. The computational results indicate that the pro-
posed algorithm not only produces reasonably good solu-
tions for the resource scheduling problem over the heuristic
method and other GA, but also able to solve large-sized
multiple resource-constrained project scheduling problems
applicable to the construction industry.

1 INTRODUCTION

The resource-constrained project scheduling problem
(hereinafter RCPSP) have been solved with the various ex-
act methods, priority-rule based heuristics, and various
meta-heuristic methods. First, the various exact methods
employ some form of mathematical programming such as
dynamic programming and zero-one programming or other
analytical procedure such as implicit enumeration with
branch and bound to search for the best possible solutions.
Relative to the vast amount of research that has been con-
ducted on heuristic procedures, optimal procedures have
rarely been the focus of such extensive research. Consider-
able progress has been made to produce optimal results by
depending on strong assumptions for small-sized project
networks. No optimal procedures have proven to be com-
putationally feasible for large, complex projects that can
occur in practice (Moselhi and Lorterapong 1993). Heuris-
tic and meta-heuristic approaches are needed for large-
2111-4244-1306-0/07/$25.00 ©2007 IEEE
sized project networks. Second, priority-rule based heuris-
tics employ some rule of thumb or experience to determine
priorities among activities competing for available re-
sources. They combine one or more priority rules and
schedule generation scheme (serial or parallel) to generate
one or more schedule. These heuristic procedures generally
produce solutions for the RCPSP in a reasonable amount of
time, even though the size of the project network is large.
However, they have proven to be inconsistent with regard
to the quality of results produced on project networks (He-
gazy 1999).
 Recently, various meta-heuristic methods, such as ge-
netic algorithm (GA), simulated annealing (SA), tabu
search (TS), and ant colonies (AC), have been applied to
the RCPSP to overcome the drawbacks of the exact opti-
mal methods and priority-rule based heuristics and to im-
prove the performance of the existing meta-heuristic meth-
ods. Among these method, the GA, a meta-heuristic and
optimization technique, has emerged as a tool that is bene-
ficial for a variety of study fields including construction
applications since the introduction in the 1960’s by Hol-
land (Holland 1975). Several studies have been done to
solve the RCPSP using GA (Hartmann 1998, Kohlmorgen
et al. 1999, Alcaraz and Maroto 2001, Hindi et al. 2002,
Toklu 2002). GA has also been used successfully to solve
construction management problems, including resources
scheduling with a small number of activities (Chan et al.
1996, Leu and Yang 1999, Hegazy and Kassab 2003). A
permutation-based GA proposed by Hartmann (1998)
makes use of activity list representation. The study also
proposed additional two encodings, which include priority
value based GA similar to the work of Lee and Kim (1996)
and priority-rule based GA similar to the work of Dorndorf
and Pesch (1995). From their computational results, the
permutation-based encoding GA outperformed two other
encoding algorithms.
 The demand of project scheduling software has con-
tinued to grow at an annual rate of almost 20% (Wallace
and Halverson 1992). Project scheduling software pack-
ages often consider constrained resources, but their capa-
2

Kim

bility to solve RCPSP is either fragile or nonexistent (De
Wit and Herroelen 1990). Thus, there is a need for efficient
solution approaches that allow for the complexities of real-
world problems, which is an intended contribution of this
research. This paper presents a new permutation-based
Elitist genetic algorithm using serial schedule generation
scheme for solving large-sized multiple RCPSP in con-
struction engineering. A key aspect of the algorithm was
the development of the elitist roulette selection operator to
preserve the best individual solution for the next generation
so as to obtain the improved solution. Serial schedule gen-
eration scheme (hereinafter SGS) was applied to generate a
feasible solution to the problem. Several large-sized project
network problems were solved to demonstrate the per-
formance and accuracy of the algorithm over either a heu-
ristic method or other GA method under the constraints of
single and multiple resources and to verify the capability
and efficiency of the Elitist genetic algorithm.

The RCPSP aimed to allocate the available resources
to activities so as to find the shortest duration of a project
within the constraints of precedence relationships. The as-
sumptions underlying this problem were that the availabil-
ity of resources is constrained to some maximum value,
and that the project has to be completed using the given re-
sources. As a result of the RCPSP, a schedule that shows
the shortest duration with resource limits was created for a
project network. The objective function was formulated for
a permutation-based Elitist genetic algorithm for the
RCPSP. As a constrained optimization problem, the
RCPSP belongs to one type of sequencing problem. There-
fore, the objective function for the algorithm is to minimize
the project duration when constrained by precedence rela-
tionships among project activities and the availability of
resources.

2 PERMUTATION-BASED ELITIST
GENETIC ALGORITHM

The main procedure of the permutation-based Elitist ge-
netic algorithm using serial SGS was shown in Figure 1.

Figure 1: Pseudocode for Elitist genetic algorithm
2113
Several operators employed in the development of the
Elitist genetic algorithm include (1) the random number
generator for producing an initial population, (2) the serial
SGS for calculating a fitness value of each individual, (3)
the elitist roulette wheel selection operator for selecting a
parent individual for the next generation, (4) the one-point
crossover operator for exchanging parent string segments
and recombining them to produce two resulting offspring
individuals, and finally (5) the uniform mutation operator
for playing a role of random local search which searches
regardless of the direction of learning to obtain the better
solution.

2.1 Encoding and Decoding for the RCPSP

A schedule has to be represented to encode the RCPSP. In
addition to the schedule representation, a SGS needs to de-
code the schedule representation into a schedule. A sched-
ule representation is a representation of a priority-structure
among the activities. A solution for the RCPSP was repre-
sented in a chromosome that represented an activity se-
quence for the problem. A chromosome is also called an
individual that was given by an activity sequence. Each
gene in a chromosome stands for an activity number. An
activity has a lower priority than all preceding activities in
the sequence and a higher priority than all succeeding ac-
tivities. Thus, an individual becomes precedence feasible
permutation of the set of activities because an activity can-
not come after the position of one of its successors (prede-
cessors) in the list used for the generation of an individual.
A precedence feasible permutation was generated using
random number generator developed in this research.

This research adopted a permutation-based encoding
that was appropriate for solving the RCPSP (Hartmann
1998, Zhuang and Yassine 2004). An initial population
composed of precedence feasible individuals was produced
by the random number generator (Kim 2006). The random
number generator simply provides precedence feasible so-
lutions, but does not give the fitness value (the project du-
ration), a possible starting and finishing time of an activity,
and the feasibility of resource constraints. Random number
generator, for example, generates an individual {2, 7, 1, 6,
4, 3, 8, 9, 5, 11, 10} for 11 non-dummy activities. Worth
noting is that the fitness function is different from the ob-
jective function for the clarification of a computation proc-
ess of the fitness value. As mentioned previously, the ob-
jective function is to minimize the fitness function, which
generates the fitness value of a project throughout the
scheme process. The fitness function is to find the maxi-
mum value out of all fitness values of every activity to be
scheduled in a project. The maximum value is obtained by
comparing the finish time of the last activity and the fitness
value of the activity just before the last activity.
 The serial SGS proposed by Kelley (1963) was util-
ized to calculate the fitness value of an individual. It con-

Kim

sists of the n stages, which is the same as the number of ac-
tivities to be scheduled. Associated with each stage, a set
of activity to be scheduled can be classified into two dis-
joint activity sets: scheduled set and decision set. The ac-
tivities that were already scheduled are in the scheduled
set, and they belong to the partial schedule. The decision
set contains the unscheduled activities with every prede-
cessor being in the scheduled set. One activity is selected
according to the order of the activity list representation at
each stage, and then scheduled at its earliest precedence
and resource feasible start time. Afterwards, the selected
activity is removed from the decision set and put into the
scheduled set. When all activities in an individual are
scheduled, the fitness value is obtained from the maximum
value between the finish time of the last activity and the
fitness value of the activity just before the last activity. The
purpose of applying the serial SGS to the individuals in a
population was to obtain schedules that showed the re-
source profile and the project duration. A uniquely deter-
mined schedule (phenotype) computed using the serial
SGS can be related to more than one individual (genotype).
A uniquely determined schedule means that it is possible
for several individuals to have the same fitness value, but
their starting time should be totally different. The unique
schedules in the search space as genotypes may be related
to the same schedule, which is the project duration for the
RCPSP.

2.2 Combining Elitist with Roulette Wheel
Selection

The elitist preserving selection called elitism proposed by
De Jong (1975) was adopted to combine with the roulette
wheel selection operator. The elitist roulette selection is
operated using the procedure shown in Figure 2.

Figure 2: Pseudocode of elitist roulette selection operator
211
 Elitism first preserves the best individual generated up
to generation t in the current generation t+1, if the fitness
value of an individual in the current population is larger
than that of every individual in the current population. The
roulette wheel selection operator developed by Holland
(1975) was used, as in many GA studies. The concept of
the selection was to determine selection probability for
each individual proportional to the fitness value.

2.3 One-Point Crossover and Uniform Mutation
Operators

Two different types of crossover operators, union cross-
over operator 3 (UX3) (Leu and Yang 1999) and one-point
crossover (Hartmann 1998), were identified as good meth-
ods for the permutation-based encoding for the solution to
the RCPSP. They were developed to deal with this type of
ordering problem that occurred due to crossover operation.
The one-point crossover is operated using the procedure
shown in Figure 3.

Figure 3: Pseudocode of one-point crossover operator

UX3 fixes character duplication problem after the chromo-
some operation as well as maintains precedence relation-
ships by creating two exclusive sub-individuals from par-
ent individuals and then randomly writing the elements
directly to the offspring individuals and then taking ac-
counts of activity precedence relationships when writing
characters from sub-individuals into the offspring indi-
viduals. However, the performance of the UX3 operator
was reduced since it caused significant change to the indi-
vidual representations of the parent individuals by disrupt-
ing potential building blocks and high fitness schema at
each generation (Zhuang and Yassine 2004). Their findings
are reasonable because if better solutions were found with
4

Kim

UX3, it is not due to the recombination theories fundamen-
tal to the GA, but to the randomization of UX3. The major
disadvantage of UX3 operator is that it must change gene
positions more frequently than the one-point crossover op-
erator. The same issue can be raised when applying the
one-point crossover operator, but one-point crossover pre-
serves the good schemas by keeping the first half of activi-
ties intact (Reeves 1995, Hartmann 1998). For this reason,
the one-point crossover operator was selected for the per-
mutation-based encoding to the RCPSP.

The goal of the uniform mutation is to exchange two
neighboring genes without violating precedence relation-
ship in order to create an individual that could not have
been produced by the crossover operator. The uniform mu-
tation operator was operated as follows: for each individual
from a generation, the operator generates a real random
number and then swaps an activity after pivot point with
activity at pivot point if a random number is equal to or
less than mutation probability. The operator can be ineffec-
tive because the genes in neighboring individual positions
could be switched while still representing the same sched-
ule. A mutation on an individual does not necessarily
change the related schedule because interchanging two ac-
tivities that have the same start time in the activity se-
quence is likely to change the individual, but not the re-
lated schedule.

3 EXPERIMENTAL RESULTS AND ANALYSIS

Elitist genetic algorithm was programmed using the JAVA
programming language on the Windows XP operation sys-
tem, and Microsoft® Office Excel 2003 was selected as the
representation and analysis tool for the data. The parame-
ters of the algorithm include population size, crossover
probability, and mutation probability for global search. The
algorithm terminates when the pre-specified number of
generations is met.

Figure 4: Example of schedule network

211
 In order to test the overall procedure of the algorithm,
a case example of a small construction project schedule
was extracted from the work of Shanmuganayagam (1989).
Figure 4 shows the schedule network, which includes ac-
tivity name, duration, and resource requirements.

3.1 Effects of Elitist Roulette Selection Operator on
the Performance

This section describes the effects of the elitist roulette se-
lection operator on the performance of the Elitist genetic
algorithm. The default set of the parameters as follows: the
population size, crossover and mutation probability were
set to 30, 0.5, and 0.03, respectively. The algorithm was
terminated with the number of generation of 100 using the
serial SGS. Figure 5 shows the profile of the schedule ob-
tained from the elitist individual, which was produced from
the last generation of 100. The project duration was found
at 38 days, which can be considered near-optimal solution
to the example problem.

Time (Days)

Resource
usages

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

1

2

3

4

5

6

7

8

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Resource limit = 8

7

2

1
6

4
3

8

9

5

11

10

Fitness value
(Project duration)

Figure 5: Profile of the schedule produced by the elitist

3.2 Comparison with Heuristic Methods and
Other GAs

The case example was also used to verify the mechanism
of the Elitist genetic algorithm. All activities of the project
network were scheduled using just one resource with a
fixed resource profile to make an impartial comparison
with the results obtained from the work of Chan et al.
(1996). The population size is set to 50 and the total num-
ber of generation was set to 40 experimental runs so the
total trial size of 2,000 was performed. The crossover and
mutation rates were set to 0.5 and 0.03, respectively. Table
1 shows the various schedules in comparison to the single
schedule obtained by the heuristic rule (Shanmuganayagam
1989) and three schedules produced by GA-scheduler
(Chan et al. 1996). Elitist genetic algorithm produced the
project duration of 38 days, which is same as those ob-
tained either by the heuristic rule or by the GA-scheduler.
5

Kim

Table 1: Comparison of Various Schedules by Method

Activity Starting times of activities obtained by
Heuristic method

(Shanmuganayagam 1989)
GA-scheduler

(Chan et al. 1996)
Elitist genetic algorithm

(this research) No. Resource
requirement S1 S1 S2 S3 Elitist S1 S2 S3

1 3 6 6 7 8 8 6 8 6
2 6 0 0 0 0 2 0 0 0
3 4 10 10 11 14 0 10 6 6
4 2 10 15 15 19 12 12 12 10
5 4 28 28 28 28 28 28 28 26
6 2 6 6 7 8 12 12 12 10
7 4 6 6 6 6 8 6 6 8
8 2 16 17 18 18 24 22 22 20
9 4 32 32 32 32 22 22 22 20

10 5 22 22 22 22 32 32 32 32
11 2 28 28 28 28 28 28 28 26

Resource 1 usages

8

7 11

6 4 9

5 1 6

4

3 2

2 3 5 10

1 7 8

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Time (Days)

Resource 2 usages

1

0

2 6 4 9 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Time (Days)

Resource 3 usages

1

0

1 3 8 11 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Time (Days)

Resource 1 Limit = 8

Resource 2 Limit = 1

Resource 3 Limit = 1

Delayed for 10, 4, and 6 days due to

conflict with R2, respectively

Delayed 4 and 6 days due to conflict with

R3

Fitness value (Project duration)

Figure 6: Scheduling procedure for multiple resources

 It also generated 1,387 unique schedules, which
amounts to 69.35% of the total schedules of 2000. It took
the total CPU time of 531 milliseconds for the algorithm to
solve the RCPSP with single resource. Elitist genetic algo-

2116
rithm is able to provide several equally good and feasible
scheduling alternatives, which indicate the similar result to
GA-scheduler (Chan et al. 1996). The result is reasonable
in that there is a significant difference between the genetic
algorithm approach and the heuristic approach (Leu et al.

Kim

1999). Elitist genetic algorithm does not require applying
any type of penalty factor since the schedules were
uniquely determined by the algorithm. The algorithm does
not also depend on any set of heuristic rules.

3.3 Scheduling Project with Multiple Resources

Elitist genetic algorithm was run to take into account of the
multiple resources to the same case example. Three differ-
ent types of resources were considered. When multiple re-
sources are required, project duration will make changes,
depending on the resource availability and requirements.
As the case of single resource, the resource availabilities
are constant over the project duration and the resource
availabilities of three resources are assumed to be 8, 1, and
1, respectively. The population size, crossover rate, and
mutation rate were set to 50, 0.5, and 0.03, respectively.
The overall fitness value, which is the project duration of
the individual considered, was obtained for multiple re-
sources using the serial SGS. Figure 6 shows the result of
scheduling the case example with multiple resources. The
project duration was 50 days because the finish time (50
days) of the last activity (activity 10) is greater than the fit-
ness value (44 days) of the activity (activity 11) just before
the last activity. As a result of scheduling with multiple re-
sources, it was found that activities 4, 9, and 5 were de-
layed for 10, 4, and 6 days due to resource conflicts with
R2, respectively. It was also found that activity 8 and 10
were postponed for 4 and 6 days due to resource conflicts
with R3, respectively.

3.4 Scheduling Large-sized Projects with Multiple
Resources

An experiment was conducted to verify the performance of
the Elitist genetic algorithm. Three large-sized project
scheduling problems obtained from the PSPLIB (Kolisch
and Sprecher 1996) were used in this experiment. The pro-
jects consist of 30, 60, and 120 activities, respectively. For
each problem size, a problem instance has four renewable
resources. The overall performance of the Elitist genetic
algorithm was measured by the means of finding the best
fitness value, which can be considered a near-optimal solu-
tion to the RCPSP. The input parameter values for the al-
gorithm were set as follows: Initial population size, cross-
over rate, mutation rate were set to 100, 0.5, and 0.03,
respectively. The termination condition was set to the
maximum number of generations of 100. Table 2 shows
the minimum fitness values, total algorithm runtime in mil-
lisecond (ms), and the number of unique schedules as a re-
sult of scheduling three large-sized multiple RCPSP. Elitist
genetic algorithm found 43, 77, and 119 minimum fitness
values for 30-Activity, 60-Activity, and 120-Activity, re-
spectively, as they converges to a single point across the
number of generation. The optimal solution for the prob-
211
lem with 30 non-dummy activities is known (Demeule-
meester and Herroelen 1997), while for the problem in-
stances with 60 and 120 non-dummy activities, only
heuristic solutions, which are lower bound solutions (Klein
and Scholl 1999 for 60-Activity and Brucker and Knust
2003 for 120-Activity), are known. The algorithm required
more time to solve a larger problem than a smaller one as
expected. It also generated 3,490, 3,483, and 3,478 unique
schedules, which amounts to 69.8%, 69.7%, and 69.6% of
the total schedules of 5000, respectively.

Table 2: Results for Scheduling Large-sized Projects

Project size 30-Activity 60-Activity 120-Activity
Minimum

fitness
(Makespan)

43 77 119

Optimality 43 77 99
Total algo-
rithm run-
time (ms)

23,797 23,641 23,297

No. of
unique

schedules
3,490 3,483 3,478

4 CONCLUSIONS

This paper introduced a permutation-based Elitist genetic
algorithm using serial schedule generation scheme for
solving a large-sized multiple RCPSP. Compared with a
heuristic method and other GA method, the developed Elit-
ist genetic algorithm produces reasonably good solutions
for the RCPSP. The computational results based on several
large-sized multiple RCPSP indicate that the proposed al-
gorithm not only provides several equally good scheduling
alternatives but also is capable to solve large-sized RCPSP
within a reasonable time. Several equally good scheduling
alternatives generated by the proposed algorithm will pro-
vide more information for decision making than the only
one schedule produced by the heuristic method.

For the improvement of the Elitist genetic algorithm
application, two point or other crossover methods may also
be employed on a random basis to improve the integrity of
building blocks, even though Elitist genetic algorithm used
only one-point crossover to apply the recombination theo-
ries fundamental to the GA. The use of the elitism in GA is
to ensure that small populations do not lose the current best
solution in the population. However, roulette wheel selec-
tion has an exponential selection pressure which drives a
solution to convergence prior to sufficient exploration of
the solution space. The tournament selection can be ap-
plied to overcome the stochastic nature of the selection
process in the Elitist genetic algorithm since the selection
pressure of pair-wise tournament selection is consistent re-
gardless of the contents of the population.
7

Kim

REFERENCES

Alcaraz, J., and Maroto, C. 2001. A Robust Genetic Algo-
rithm for Resource Allocation in Project Scheduling.
Annals of Operations Research, 102: 83-109.

Brucker, P., and Knust, S. 2003. Lower Bounds for Re-
source-Constrained Project Scheduling Problems.
European Journal of Operations Research, 149, 302-
313.

Chan, W., Chua, D. K. H., and Kannan, G. 1996. Construc-
tion Resource Scheduling with Genetic Algorithms.
Journal of Construction Engineering and Management,
ASCE, 122(2): 125-132.

De Jong, K. A. 1975. An Analysis of the Behavior of a
Class of Genetic Adaptive Systems. Ph.D. Disserta-
tion, University of Michigan, Ann Arbor, Mich.

Demeulemeester, E. L., and Herroelen, W. S. 1997. New
Benchmark Results for the Resource-Constrained Pro-
ject Scheduling Problem. Management Science,
43(11): 1485-1492.

De Wit, J., and Herroelen, W. 1990. An evaluation of mi-
crocomputer-based software packages for project
management. European Journal of Operations Re-
search, 49, 102-139.

Dorndorf, U., and Pesch, E. 1995. Evolution Based Learn-
ing in a Job Shop Scheduling Environment. Comput-
ers and Operations Research, 22: 25-40.

Hartmann, S. 1998. A Competitive Genetic Algorithm for
Resource-Constrained Project Scheduling. Naval Re-
search Logistics, 45: 733-750.

Hegazy, T. 1999. Optimization of Resource Allocation and
Leveling Using Genetic Algorithms. Journal of Con-
struction Engineering and Management, ASCE,
125(3): 167-175.

Hegazy, T., and Kassab, M. 2003. Resource Optimization
Using Combined Simulation and Genetic Algorithms.
Journal of Construction Engineering and Management,
ASCE, 129(6): 698-705.

Hindi, K. S., Yang, H., and Fleszar, K. 2002. An Evolu-
tionary Algorithm for Resource-Constrained Project
Scheduling. IEEE Transactions on Evolutionary Com-
putation, 6(5): 512-518.

Holland, J. K. 1975. Adaptation in Neural and Artificial
Systems, University of Michigan Press, Ann Arbor,
MI.

Kelley, J. E. Jr. 1963. The Critical-Path Method: Resources
Planning and Scheduling. In J. F. Muth and G. L.
Thompson (Eds.), Industrial Scheduling, Prentice-
Hall, New Jersey, 347-365.

Kim, J.-L. 2006. A Multiheuristic Approach to Resource
Constrained Project Scheduling: An Adaptive Hybrid
Genetic Algorithm. Ph.D. Dissertation, Department of
Civil and Coastal Engineering, University of Florida,
Gainesville, FL
2118
Klein, R., and Scholl, A. 1999. Computing Lower Bounds
by Destructive Improvement: An Application to Re-
source-Constrained Project Scheduling. European
Journal of Operational Research, 112: 322-346.

Kohlmorgen, U., Schmeck, H., and Haase, K. 1999. Expe-
riences with Fine-Grained Parallel Genetic Algo-
rithms. Annals of Operations Research, 90: 203-219.

Kolisch, R., and Sprecher, A. 1996. PSPLIB - A Project
Scheduling Problem Library. European Journal of Op-
erational Research, 96: 205-216.

Lee, J.-K., and Kim, Y.-D. 1996. Search Heuristics for Re-
source-Constrained Project Scheduling. The Journal of
the Operational Research Society, 47(5): 678-689.

Leu, S., and Yang, C. 1999. GA-Based Multicriteria Opti-
mal Model for Construction Scheduling. Journal of
Construction Engineering and Management, ASCE,
125(6): 420-427.

Leu, S., Chen, A., and Yang, C. 1999. Fuzzy Optimal
Model for Resource-Constrained Construction Sched-
uling. Journal of Computing in Civil Engineering,
13(3): 207-216.

Moselhi, O., and Lorterapong, P. 1993. Least Impact Algo-
rithm for Resource Allocation. Canadian Journal of
Civil Engineering, CSCE, 20(2): 180-188.

Reeves, C. R. 1995. Genetic Algorithms and Combinato-
rial Optimization. Applications of Modern Heuristic
Methods, V. J. Rayward-Smith (ed.), Alfred Waller,
Henley-on-Thames, 111-125.

Shanmuganayagam, V. 1989. Current Float Techniques for
Resource Scheduling. Journal of Construction Engi-
neering and Management, ASCE, 115(3): 401-411.

Toklu, Y. C. 2002. Application of Genetic Algorithms to
Construction Scheduling With or Without Resource
Constraints. Canadian Journal of Civil Engineering,
29: 421-429.

Wallace, R., and Halverson, W. 1992. Project manage-
ment: A critical success factor or a management fad.
Industrial Engineering, 24(4), 48-50.

Zhuang, M., and Yassine, A. A. 2004. Task Scheduling of
Parallel Development Projects using Genetic Algo-
rithm. Proceedings of ASME 2004 International De-
sign Engineering Technical Conferences and Comput-
ers and Information in Engineering Conference, Salt
Lake City, Utah USA, September 28-October 2, 2004,
1-11.

AUTHOR BIOGRAPHIES

JIN-LEE KIM is an assistant professor in the Department
of Engineering Technology at Missouri Western State
University. His research interests include information
technology in construction, simulation based resource
scheduling and optimization techniques. He is a member
of ASCE. His web page can be found via
<www.missouriwestern.edu>.

