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ABSTRACT 

A Monte Carlo methodology is proposed for simulating air 
traffic blockage patterns under the impact of convective 
weather.  The simulation utilizes probabilistic convective 
weather forecasts such as those produced by the 1-6 hour 
National Convective Weather Forecast.  A matrix of ran-
dom numbers is fed to the simulation process to obtain an 
instantiation of traffic blockage maps.  Gaussian smoothing 
with varying Full Width at Half Maximum across the grid 
is employed to model the varying spatial correlation be-
tween cells.  Special Cellular Automata techniques are em-
ployed to model the evolvement, i.e. the trend, growth, and 
dissipation of convection, between consecutive time inter-
vals.  Model parameters are obtained from analyzing his-
torical convective weather data.  A software tool is also 
developed to implement the simulation methodology.  The 
simulation methodology thus provides a means to improve 
the utilization of short term probabilistic convective 
weather forecast products, and to improve air traffic effi-
ciency in the large. 

1 INTRODUCTION

An important problem in air Traffic Flow Management 
(TFM) is the determination of airspace capacity as a func-
tion of weather conditions.  However, characterization of 
the relationship between different weather patterns and ca-
pacity is a difficult task due to the uncertainty in weather 
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conditions.  The complexity of weather patterns and transi-
tions makes it impossible to use analytical studies for this 
purpose.  Hence, simulation exists as the most amenable 
tool for the problem. 

In this study, we develop an easy-to-implement 
weather model that may be used with in the context of 
simulation to study the evolution of a given weather event 
over multiple time intervals in an airspace of rectangular 
shape.  In our model, a generic airspace is partitioned into 
a two dimensional grid, and the time is divided into equal 
time intervals.  The dimensions of each cell in the grid are 
determined by the resolution required by the TFM algo-
rithms, i.e. conflict detection and traffic re-routing.  This 
resolution may not necessarily be the same as that in the 
probabilistic weather forecast data.  Although the model is 
described using a two-dimensional (2D) grid structure, the 
approach can be extended to three-dimensions. 

Several models exist for simulating weather (Johnson 
et al. 1996; McQueen et al. 1997).  Most advanced weather 
simulation models require as inputs a large amount of data 
describing the existing conditions at a given location.  This 
data is processed and probabilistic movement patterns are 
developed according to the values of certain parameters, 
such as temperature, pressure, wind speed and direction.  
However, rather than being an advanced and detailed 
weather simulation model, the model proposed in this 
study is a generic simulation tool that is used in studying 
the effects of convective weather on airspace capacity. 

Airspace capacity is defined as the number of aircraft 
that can fly through the airspace during a fixed time inter-
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val.  This capacity is dependent on the weather conditions 
and traffic flow patterns within the airspace, and is stochas-
tic due to the uncertainty in weather and traffic flow pat-
terns.  Our weather simulation model is part of a larger 
model, which is used to determine probability distributions 
of airspace capacity by conducting Monte Carlo simula-
tions of the traffic flow within the generic sector over the 
range of possible scenarios, where a scenario is a unique 
combination of an instantiation of the weather pattern, and 
an instantiation of the traffic pattern.  Specifically, the 
weather model described in this study is used in generating 
scenarios of weather movements.  The only inputs to the 
model are the probabilistic weather forecasts for the block-
age status of a given area and an initial weather event, in 
which blockage means that the area is not available for air 
traffic.

The remainder of this paper is organized as follows.  
In Section 2, we describe the input required for the simula-
tion model.  An overview of the modeling approach is pre-
sented in Section 3, while the smoothing and cellular 
automata methodologies used in the model are described in 
Sections 4 and 5, respectively.  The software implementa-
tion for the simulation model is described in Section 6, and 
followed by the conclusions in Section 7. 

2 MODEL INPUT: PROBABILISTIC WEATHER 
FORECASTS 

The developed simulation model assumes the availability 
of probabilistic weather forecasts, such as the 1-6 hour Na-
tional Convective Weather Forecast (NCWF-6, see Pinto 
2006 and Pinto et al. 2006).  The probabilistic forecasts of 
convection are based on blending radar-based extrapolation 
forecasts and Rapid Update Cycle (RUC)-based Convec-
tive Probability Forecasts (RCPF) of convection (Wey-
gandt and Benjamin 2004).  The RCPF is a derived product 
that uses output (e.g. forecasted rainfall rates) from the lat-
est operational version of the RUC model (Benjamin et al. 
2004) while the radar-based probabilities are produced us-
ing a combination of extrapolation and trending, and in-
cludes growth and dissipation of convection (Megenhardt 
et al. 2004). 

The forecast probabilities indicate the likelihood that 
aviation disrupting convection will be present at a given 
location at the given forecast time (Pinto 2006).  The data 
are provided at nodes on a Lambert Conformal projection 
grid with a 4-km resolution at latitude 25º north.  The grid 
covers the contiguous United States (CONUS).  Generally 
speaking, a Video Integration Processor (VIP) level of 3.5 
is typically used as a minimum threshold above which 
convection is expected to impact aviation both en route and 
departures and landings.  VIP is a measurement derived 
from the WSR-88D Level 3 data product.  A VIP level of 3 
corresponds to a radar reflectivity of 40 dBZ and a Verti-
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cally Integrated Liquid (VIL) of between 3.5 and 6.9 kg/m2

(Pinto 2006; Hallowell et al. 1999).  The threshold used by 
NCWF-6 is thus a radar reflection of 40 dBZ. 

The probability maps can also be used to derive the 
forecasted coverage of storms (Pinto 2006).  For example, 
a user may be interested in areas with coverage probabili-
ties exceeding 40%.  This can be determined by contouring 
the region accordingly.  In a perfectly reliable forecast, one 
would expect 40% of the area within this contour to have 
aviation-impacting convection.  The system is currently be-
ing evaluated by a select group of users and scientists. De-
velopment of the system is funded by the Federal Aviation 
Administration (FAA) Aviation Weather Research Pro-
gram. 

In NCWF-6, The probability forecast reflects the 
movement trend, growth, and dissipation of convection.  
The forecast probabilities, along with forecast storm tops, 
are provided for certain time intervals (i.e. every hour) 6 
hours into the future and are updated every 15 minutes. 

3 MODELING APPROACH 

We assume that a given airspace is partitioned into 
cells forming a three-dimensional (3D) grid (work grid).  
The resolution and the structure of the grid are selected to 
match the requirements of traffic conflict detection and re-
routing algorithms implemented.  For the sake of clarity, 
rectangular two-dimensional (2D) grids are used in this pa-
per.  The actual cells could be polygons of any convex 
shape.  Projected time into the future is divided into equal 
time intervals (work intervals) that match the time horizons 
of the traffic conflict detection and re-routing algorithms.  
At any given time interval, each cell has a binary state, i.e. 
either blocked by weather or not blocked by weather.  In 
the former case, an aircraft can not be routed through the 
cell; in the latter case, aircraft can be routed through the 
cell safely. 

The modeling process is a mapping from forecast 
probabilities valid at a sequence of forecast time intervals 
to traffic blockage maps at a sequence of work time inter-
vals.  The mapping process is a Monte Carlo simulation of 
the stochastic traffic blockage process.  Each simulated 
blockage map sequence is an instantiation of the stochastic 
process.  It is required that as the number of simulated se-
quences becomes large, the number of instances a cell is 
blocked at a given time divided by the total number of in-
stance sequences simulated should approach the forecast 
probability for that cell, at that time interval.  Based on this 
requirement, the simulated ensemble of traffic blockage 
map sequences would be representative of what would oc-
cur, as the number of simulated sequences becomes large. 

Depending on the traffic conflict detection and re-
routing algorithm design, the work grid structure and the 
work time intervals for which binary blockage map se-
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quences are simulated may not necessarily be the same as 
that of the forecast probabilities.  Interpolation is thus 
needed to obtain a sequence of probability matrices that 
matches the work grid structure and work time interval.  
The re-sampling of a forecast probability matrix at a work 
time interval (should a forecast probability matrix already 
exist at that work time interval) is straightforward.  How-
ever, the interpolation of forecast probabilities at a work 
time interval not readily available in the forecast needs 
careful attention.  Feature based image morphing tech-
niques can be used to achieve this objective. This general 
process is shown in Figure 1. 

Figure 1: Re-sampling of forecast probabilities 

Once a sequence of probability matrices on the work 
grid and at work time intervals is obtained, the mapping 
from these continuous probability matrices to binary 
blockage maps can be performed.  This is achieved by 
passing a band limited 2D random signal (such as a uni-
formly distributed random signal) defined on the work grid 
through a shaping filter determined by the sequence of 
probability matrices.  For each of the probability matrices, 
a corresponding binary cell blockage map is generated as 
shown in Figure 2.  The traffic conflict detection and re-
routing algorithms can then be applied based on the se-
quence of cell blockage maps corresponding to the se-
quence of probability matrices. 
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Figure 2: Mapping from a probability matrix to a cell 
blockage map 

A simple way to do this is to directly map each indi-
vidual probability value to an individual cell blockage 
value, i.e. simple random sampling.  However, such gener-
ated blockage map lacks the spatial correlation between 
cells (i.e. clustering of blocked cells) and the temporal 
evolvement between successive cell blockage maps (i.e. 
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continuous trending, growth, and decay of the weather sys-
tem).  Smoothing techniques are applied to the 2D random 
signal before it is modulated by the probability matrix to 
generate the blockage map.  This is to model the spatial 
correlation between cells.  Cellular Automata are used to 
model the transition of blockage maps between one time 
interval and the next.  The final blockage map at a given 
time interval is determined by both the probability matrix 
at the time interval and the blockage map from the previ-
ous time interval.  Details of the smoothing techniques and 
the cellular automata are presented in the next two sec-
tions.  Various model parameters, such as the smoothing 
kernel size and the cellular automata rules are obtained 
from historical convective weather data. 

4 SMOOTHING 

Suppose a 2D matrix [ ij] matching the structure of the grid 
is generated with its elements being independent random 
numbers from a uniform distribution on the interval of [0, 
1].  An instance of the binary cell blockage map [bij] at a 
given time interval can be obtained from the corresponding 
probability matrix [pij] for that time interval, and the afore-
mentioned random matrix as 

)( ijijij pb . (1) 

Where a value of 1 for a cell can be interpreted as being 
blocked, and a value of 0 can be interpreted as not being 
blocked.  For a different matrix of random numbers, a dif-
ferent cell blockage map can be obtained.  An example of a 
cell blockage map for a sample probability matrix is shown 
in Figure 3. 
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Figure 3: Sample cell blockage map from direct mapping 
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By definition, cell blockage maps obtained in this way 
will preserve the cell blockage probabilities given by the 
probability matrix.  However, as can be seen from Figure 
3, the cell blockage map is fragmented because the random 
numbers used are independent of each other.  To model the 
spatial correlation between cells, Gaussian smoothing is 
applied to the 2D random matrix before (1) is applied to 
generate the blockage map.  The strength of the spatial cor-
relation can be presented by the Full Width at Half Maxi-
mum (FWHM) of the Gaussian kernel.  FWHM is related 
to the standard deviation of the Gaussian kernel by the fol-
lowing equation: 

2ln8FWHM . (2) 

For the same random number matrix and the same 
probability matrix, the cell blockage map becomes that 
shown in Figure 4, when a FWHM of 2 is used.  It is seen 
that the blocked cells are now more clustered.  This would 
more accurately present the blockage cells when a weather 
system is present. 
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Figure 4: Sample cell blockage map from smoothed map-
ping 

On the other hand, using a fixed FWHM Gaussian 
kernel across the whole grid may prevent scattered cell 
blockage in low probability areas.  To enable scattered (or 
popup) cell blockage, adaptive smoothing is used.  In this 
approach, the FWHM of the Gaussian kernel used for each 
individual cell is dynamically adapted to reflect the varying 
strength of spatial correlation between cells.  Details of the 
adaptive smoothing approach are described below. 

A temporal cell blockage map is obtained via direct 
mapping without smoothing.  The percentage qij of blocked 
neighboring cells (including the cell itself) is then calcu-
lated for each cell, based on this cell blockage map.  The 
FWHMij for a cell (i, j) is given by 
190
)(
ijij

qfFWHM . (3) 

The size of the neighborhood used in calculating qij,
and the functional relationship between the percentage of 
blocked neighboring cells and the FWHM in (3) are deter-
mined using historical data.  In general, for a cell with a 
higher percent of blocked neighboring cells, a larger 
FWHM is used to indicate stronger spatial correlation be-
tween cells.  For a cell with a lower percent of blocked 
neighboring cells, a smaller FWHM is used to indicate 
weaker spatial correlation between cells.  This would allow 
retaining scattered blockage, which is not possible by using 
a single FWHM across the whole grid. 

Alternatively, the percentage qij of blocked neighbor-
ing cells can be calculated based on the cell blockage map 
at the previous time interval.  In this case, for a cell with a 
higher percent of neighboring cells blocked at the previous 
time interval, a larger FWHM is used.  For a cell with a 
lower percent of neighboring cells blocked at the previous 
time interval, a smaller FWHM is used.  This method is 
generally used for modeling the popup of isolated cell 
blockage. 

Once the FWHM for each cell is determined, the 2D 
random matrix is smoothed, and (1) is applied to obtain the 
cell blockage map.  An example of cell blockage map ob-
tained using FWHM values calculated from the temporal 
cell blockage map is shown in Figure 5. 
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Figure 5: Sample cell blockage map with adaptive smooth-
ing 

5 CELLULAR AUTOMATA 

As mentioned earlier in this paper, the probability forecasts 
presented in the form of a sequence of probability matrices 
provide the movement trend, growth, and dissipation of 
convection.  However, the cell blockage maps independ-
ently obtained for different time intervals using the 
0
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smoothing techniques presented in the previous section 
may not necessarily form a consistent sequence of cell 
blockage maps.  Difference in the clustering of blocked 
cells may exist between cell blockage maps at consecutive 
time intervals.  The movement of convection may lag be-
hind or move faster than the trend reflected by the se-
quence of probability matrices, but the movement of con-
vection should be consistent from one time interval to the 
next.  As in the case of the spatial correlation between cells 
at any given time interval, the transition between cell 
blockage maps at consecutive time intervals must also be 
modeled.  Cellular Automata are used for this purpose. 

Cellular Automata have been previously used to model 
discrete dynamical systems.  These systems are defined on 
a grid of cells.  Each cell can have any one of a finite num-
ber of states at any given time interval.  The state of a cell 
at a time interval is a function of the states of a finite num-
ber of its neighboring cells at the previous time interval.  
Thus, Cellular Automata are suitable tools to model the 
transition of cell blockage maps from one time interval to 
the next. 

The developed Cellular Automaton does not directly 
determine the states of cells, i.e. cell blockage maps, but 
rather, it is used to modify the cell blockage maps obtained 
using the mapping process presented in the previous sec-
tion.  For each cell, the percentage rij of blocked neighbor-
ing cells at the previous time interval is calculated first.  
Note that a different symbol is used for the percentage of 
blocked neighboring cells to signify that both the size of 
the neighborhood and cell states used in the Cellular 
Automata implementation may be different from those 
used for adaptive smoothing.  If it is assumed that the cell 
blockage map obtained using the adaptive smoothing map-
ping process is [b’ij], then state bij of each cell at the current 
time interval is determined by the process shown in Figure 
6.
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Figure 6: Cellular Automata cell blockage adjustment rules 

The transition process shown in the figure implies that 
the cell state from the mapping process will be accepted as 
is, if it is in the same state as the majority of its neighbor-
ing cells at the previous time interval.  The threshold r0 for 
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converting an unblocked cell from the mapping process to 
a blocked cell must be greater than 0.5.  The threshold r1
for converting a blocked cell from the mapping process to 
an unblocked cell must be less than 0.5.  The summation of 
the two thresholds is required to be 1 to ensure the prob-
ability of cell blockage is preserved.  The transition rules 
can also be presented in the following equation. 

])1([
1

'
0

' rbrbrb
ijijijij

. (4) 

The application of the above process will result in the 
transition of cell states from one time interval to the next 
occurring near the boundary of convection.  Additional 
special rules are developed to allow for the popup and 
growth of scattered blocked cells in low probability areas.  
Size of neighborhoods and transition thresholds are again 
determined using historical data. 

6 SIMULATION SOFTWARE 

A simulation software tool has been developed to simulate 
traffic blockage due to convective weather.  The block dia-
gram of the simulation tool is shown in Figure 7. 

The simulation tool takes the forecast probabilities and 
the initial radar reflection (given for the initial time inter-
val) as input.  During the pre-processing phase, the forecast 
probabilities are re-sampled to give a sequence of probabil-
ity matrices that matches the work grid and work time in-
terval.  The initial radar reflection is processed to obtain an 
initial cell blockage map.  This initial cell blockage map 
will be used at the start of the simulation loop as the block-
age map for the previous time interval.  At this time, the 
simulation is ready to loop through all the work time inter-
vals up to 6 hours, or a different time horizon in the future, 
should it be desired. 

At each time interval, a matrix of random numbers 
from a uniform distribution on the interval of [0, 1] is gen-
erated.  This random number matrix is then smoothed us-
ing the smoothing method prescribed in Section 4.  The 
probability matrix for the current time interval is then 
mapped into an intermediate cell blockage map via the 
smoothed random number matrix.  The intermediate cell 
blockage map is adjusted using the Cellular Automaton 
mechanism described in Section 5, based on the previous 
cell blockage map.  The final cell blockage map after the 
adjustment process is then stored for output, and is also 
used as the previous map for the next time interval. 
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Figure 8: Simulation software user interface 
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After the simulation loop through all the work time 
intervals, a sequence of cell blockage maps will be ob-
tained.  Because of the stochastic nature of the mapping 
process, if the simulation loop is restarted again, a new 
sequence of cell blockage maps will be generated.  The 
cell blockage maps can then be used by the traffic conflict 
detection and re-routing algorithms. 

The simulation software is designed to be executed in 
either command line mode, or interactive mode.  The 
command line mode is useful for operating in-line with 
the traffic re-routing algorithms.  In this mode, simulation 
parameters are provided in the simulation configuration 
file, and the simulated sequence of cell blockage maps is 
saved to a file of choice once a simulation loop is com-
pleted.  The output file is then ready for use by the traffic 
re-routing algorithms.  The interactive model is useful for 
debugging the simulation software and adjusting model 
parameters.  It is also useful for demonstration.  The user 
interface of the interactive mode is shown in Figure 8. 

In the interactive mode, model parameters can be ad-
justed by the user interactively via the options panel.  The 
user can manually select the forecast probability file to 
load.  The simulation loop can be executed step by step, 
i.e. one time interval at a time.  It can also be executed 
continuously until the end.  A batch mode is provided to 
launch automatic execution of the simulation loop as if 
the simulation is executed in command line mode but it 
also gives the user ability to adjust model parameters in-
teractively. 

The prototype simulation software was developed us-
ing the MATLAB Graphical User Interface (GUI) design 
tool.  The final version of the software will be coded in a 
more portable programming language for easy distribu-
tion and application outside the laboratory environment. 

7 CONCLUSIONS 

We propose a Monte Carlo methodology for simulat-
ing air traffic blockage under the impact of convective 
weather.  The simulation methodology can be used to 
simulate possible weather traffic blockage maps on a grid 
of cells at a sequence of time intervals given probabilistic 
convective weather forecasts such as those produced by 
the 1-6 hour National Convective Weather Forecast.  
Through a large number of simulation runs, an ensemble 
of traffic blockage map sequences presenting what could 
actually happen can be obtained for a given forecast.  
Various conflict detection and traffic re-routing algo-
rithms can then be applied to these simulated traffic 
blockage maps.  Results can be analyzed to evaluate the 
efficiency of those algorithms.  The simulation methodol-
ogy thus provides a means to improve the utilization of 
short term probabilistic convective weather forecast prod-
190
ucts, and to improve air traffic efficiency in the longer 
term. 

A matrix of random numbers from a uniform distri-
bution on the interval of [0, 1] is fed to the simulation 
process to obtain an instantiation of traffic blockage 
maps.  Gaussian smoothing with varying Full Width at 
Half Maximum across the grid is employed to model the 
varying spatial correlation between cells.  Cellular Auto-
mata techniques are used to model the evolvement, i.e.  
the trend, growth, and dissipation of convection, between 
consecutive time intervals. 

A simulation software tool was also developed to re-
alize the proposed simulation methodology.  Modeling 
parameters are being developed using historical convec-
tive weather data and the simulation tool is being rigor-
ously tested.  Traffic re-routing algorithms are being de-
veloped in parallel, and initial computational results 
suggest the validity of the proposed model. 
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