
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

AN OBJECT-ORIENTED FRAMEWORK FOR SIMULATING
FULL TRUCKLOAD TRANSPORTATION NETWORKS

Manuel D. Rossetti
Shikha Nangia

4207 Bell Engineering Center
Department of Industrial Engineering

University of Arkansas
Fayetteville, AR 72701, USA
ABSTRACT

In this paper, we discuss the design and use of an object-
oriented framework for simulating full truckload (FTL)
networks. We present a context for how the framework
can be used through its application to an example trucking
network. In addition, we describe the design by examin-
ing the major conceptual artifacts within the object-
oriented model. The framework is built on a Java Simula-
tion Library (JSL) and permits easy modeling and execu-
tion of simulation models. The example and discussion
indicate the capabilities and flexibility of modeling with
the framework. In addition, we summarize our future re-
search efforts to model other transportation networks.

1 INTRODUCTION

Freight transportation plays a fundamental role in every
modern supply chain as it allows production and con-
sumption to take place at locations that are several hun-
dreds or thousands of miles away from each other. It is
essential to move raw materials from sources to plants,
semi-finished products between factories, and final goods
to customers and retail outlets. Transportation systems are
complex organizations which require considerable human,
financial and material resources. Transportation costs ac-
counts for a signification part (often between one-third
and two-thirds) of the logistics costs in several industries
and have a major impact on the level of customer service
(Ghiani et al., 1994). It is therefore not surprising that
transportation plays a key role in logistic network design,
analysis, and management.

There are many different types of transportation net-
works that can be utilized within a supply chain. Over the
road transportation can be classified as full truckload
(FTL) or less-than-truckload (LTL). FTL transportation
moves a full load directly from its origin to its destination
in a single trip. If the shipment adds up to much less than
18691-4244-1306-0/07/$25.00 ©2007 IEEE
the vehicle capacity (LTL loads), it is more convenient to
resort to several trucking services in conjunction with
consolidation terminals rather than use direct shipments.
In this paper, we concentrate on long-haul freight trans-
portation in the form of a FTL transportation network.

The main contribution of this research is the proto-
type object-oriented software framework representing the
key simulation elements within FTL networks. Booch et
al. (1999), define a software design framework as “an ar-
chitectural pattern that provides an extensible template for
applications within a domain.” A framework provides a
set of abstract and concrete classes that can be extended
via sub-classing or used directly to solve a particular
problem within a particular domain. In our case, we have
designed a simulation framework that can be used to eas-
ily develop simulation models of FTL networks. A
framework can be implemented in any object-oriented
language. We implement the framework within the Java
programming language build on top of the Java Simula-
tion Library (JSL). The JSL is an open source object-
oriented framework for discrete-event simulation in Java.
An overview of the capabilities of the JSL can be found in
Rossetti (2007).

An excellent overview of the use of simulation within
logistics and transportation systems can be found in
Manivannan (1998). The overview also makes it clear
why simulation can be a powerful tool in strategic trans-
portation decision making. It is interesting to note that
during our literature review, we found many articles in-
volving the application of optimization techniques to such
logistics problems such as driver assignment, fleet man-
agement, dispatching rules, vehicle routing, etc. However,
surprisingly, we have found very little detailed discussion
of the simulation of FTL networks. We highlight a few of
our findings in the following paragraphs.

The simulation of trucking is often a component in a
larger supply chain simulation. For example, Dalal et al.
(2003) describe the use of Simulation Dynamics Supply

Rossetti and Nangia
Chain builder to model the movement of automobile
shipments within a supply chain. The goal of the overall
simulation was to reduce the order to delivery times
within the supply chain. An interesting aspect of their
modeling was to how to realistically initialize the network
to test various alternatives. Similarly, Hamber (2003) de-
scribes the use of TLOADS within the a military supply
chain. Chan (2006) models a distribution system in order
to minimize the total traveling time and applied simula-
tion to measure the effectiveness of the optimization re-
sults. This later application of simulation is a common
theme within the literature. That is, to use simulation to
evaluate the robustness of the logistics decisions made via
an optimization algorithm or heuristic rule. This also
makes apparent one of the key challenges in simulating
logistics systems. A simulation model of a logistics sys-
tem (e.g. FTL) may require sophisticated algorithms to be
implemented in order to fully mimic the planning and
dispatching of the vehicles.

Within an FTL context, we only found a few relevant
references. Youngblood (2000) developed a simulation
model in SIMNET II (SIMNET II is a discrete simulation
language written in FORTRAN (Taha, 1992)) which in-
vestigated the effects of various dispatching methodolo-
gies between terminal cities in a truckload (FTL) trucking
environment. Youngblood (2000) claimed that by reduc-
ing driver tour length via predetermined routes through
the terminal cities, the driver retention can be improved
rather than being subjected to the random nature of tradi-
tional dispatching methods. Petre (2000) used simulation
to determine the possible synergies between truckload and
inter-modal transportation. Petre (2000) also used
SIMNET II to model the two different modes of freight
transportation; over-the-road (OTR) trucking services and
inter-modal services. Petre (2000) argued that by integrat-
ing over-the-road and inter-modal operation, greater op-
erational flexibility, better balance, lower cost, and better
customer service may be achieved over the use of the sin-
gle modes independently.

Ervin and Harris (2004) developed discrete-event
simulation in Arena for evaluating the effect of over the
road and hours of service rules for a FTL trucking fleet.
The model allows for the determination of fleet utiliza-
tion, cycle times, and customer service to guide company
decisions. The model incorporates demand generation,
load and truck assignments, capacity management, cus-
tomer pick-up and delivery, as well as transport execu-
tion.

The ability to more easily evaluate the algorithms or
rules within an FLT network is one of the main motiva-
tors for this research. When performing an analysis, such
at that in Ervin and Harris (2004) or in evaluating dis-
patching rules, the user of a transportation simulation
model will be interested in understanding the effect on the
loaded miles versus empty miles. At the same time the
1870
user will be concerned with customer and driver satisfac-
tion. From the driver’s standpoint, the company needs to
keep track of the average distance traveled per day, as
wages depend on the miles traveled. From a customer’s
standpoint, the average delay in receiving the load will be
the main concern. The economic advantage of a transpor-
tation network can be evaluated by considering many cri-
teria such as equipment utilization, total circuitry, total
unloaded miles, total loaded miles, and percentage of on
time pick-ups (Taha and Taylor, 1994). Our framework
facilitates the building of FTL networks and the estima-
tion of such quantities. Our research is also part of a lar-
ger effort to build frameworks for simulating supply
chains, see for example Rossetti et al. (2006). Of which,
this research constitutes the transport layer. The other
layers include the inventory and facility layers.

In what follows, we first give a description of the
structure and functionality of the transport layer. Due to
space limitations, we will concentrate on providing an
understanding of the modeling issues so that the reader
can understand what the framework can model. This
should also give an idea of its capabilities. A detailed
discussion of the implementation (Java coding) of the
framework is beyond the scope and space limitations of
this paper. We then describe a simple example FTL
model to illustrate the output capabilities of the architec-
ture. We wrap up with a summary of our efforts and pre-
sent ideas for future research.

2 TRANSPORT LAYER

An object-oriented analysis begins with the identification
of the key elements within the system, their roles, attrib-
utes, relationships with each other, and modeling and im-
plementation issues. We identified the following as the
key conceptual elements needed within a generic FTL
simulation model: physical network (locations, lanes,
etc.), loads and their generation, dispatcher and driving
tasks, truck, trailer, and driver. These conceptual ele-
ments were embodied in Java classes: Network, Location,
Lane, Load, LoadGenerator, Dispatcher, DispatchTask,
and Driver. Table 1 provides a list of the classes and in-
terfaces within the framework. The concept of a trailer
and a truck were modeled as resources within a physical
spatial frame. In particular, the JSL has the notion of a
spatial resource (SpatialResource). A spatial resource is a
resource that has a physical initial position and can be
moved within a spatial model.

The Network class is the spatial representation of the
transportation network with a valid geometric coordinate
system. The Network consists of many Locations. A
transport demand placed by a customer is represented as a
Load. A Load moves from one Location (origin) to an-
other (destination). Therefore, a Location plays the role of
both an origin and a destination in the Network. Since the

Rossetti and Nangia
Location in the truckload transportation model emulates
the concept of an actual physical location, it is represented
by means of co-ordinates. The distances between loca-
tions are supplied by the underlying spatial model (sub-
class of the abstract base class SpatialModel) attached to
the network.

Table 1: List of Classes and Interfaces in Framework
AbstractDispatcher Driver
AbstractDispatcherFTL LoadGenerator
DispatcherFTL Location
DispatchTask Lane
Network Load
TransportationNetwork NetworkIfc
DriverSelectionRule TrailerSelectionRuleIfc
DispatchLoadSelectionRuleIfc DriverSelectionRuleIfc
TransportLocationIfc LoadReceiverIfc
TruckSelectionRuleIfc LoadSenderIfc
TransportTaskReceiverIfc

A SpatialModel is a representation for physical space
within a JSL simulation. For example, a GreatCircleDis-
tanceSpatialModel class can supply distances based on
using the great circle distance between two points on the
earth. The elements contained in a SpatialModel are
called spatial elements. A SpatialModel has methods to
add and remove spatial elements from the spatial model,
provide default positions to the spatial elements if not
supplied by the user, set coordinates for the spatial ele-
ments if supplied, compare two spatial elements if they
are at the same coordinates, get the coordinates of the spa-
tial element, get the distance between two spatial ele-
ments etc.

The Locations in the Network are connected by
means of Lanes. A Lane is an object which connects two
Locations and is directional; which means that a Lane
connecting Location A to Location B is a different object
from the Lane object connecting Location B to Location
A. One Location in a lane serves as an origin and the
other Location serves as a destination. A Location has the
ability of setting their loading and unloading distribution
and can notify the driver about the loading and unloading
times it might take at that location.

In a broader sense, the Network in the framework re-
sembles a directed graph in which Locations serve as the
vertices and Lanes serve as the edges. Figure 1 illustrates
some of the attributes and methods of the Network class.
The Network class encapsulates much of the functionality
of a graph representation including for example the
checking of reachability. A Location may have outgoing
lanes and incoming lanes. A Lane is defined as an incom-
ing lane for a Location if that Location happens to be its
destination. Similarly, a Lane is defined as an outgoing
lane for a Location for which that Location happens to be
its origin. The concept of incoming and outgoing lanes are
1871
important in deadheading or bobtailing resources from a
different location when all resources are not available at
the origin of the Load. Bobtail implies that the driver
(and truck) travels unloaded without a trailer and dead-
head implies that the driver (and truck) travels unloaded
with a trailer.

Figure 1: Network Class

A Load in this framework represents a request to
move material from one location (origin) to another loca-
tion (destination). A Load is sent by a specific sender to
be completed by the network. Every Load in the network
has attributes like its network, sender, origin, and destina-
tion and possibly a due date. The Loads are generated by
the LoadGenerator class in the framework, which is simi-
lar to CREATE modules found in other simulation lan-
guages. In addition, the load generator can generate loads
for the network based on a general origin/destination
probability specification. A basic overview of the load
processing is as follows:

LoadGenerator generates Load
LoadGenerator sends the Network the message to
create the Load

Rossetti and Nangia
Network creates the Load
Network sends the Load to the Dispatcher for proc-
essing
Dispatcher will create a DispatchTask for the load
Dispatcher checks for the availability of the re-
sources, seizes them and allocates them to the Load
Next it notifies the Driver to execute the Dis-
patchTask.
Finally the Driver will transport the Load to its desti-
nation.
Resources get released at the destination of the load
Driver notifies the Dispatcher

This is also illustrated by the sequence diagram given in
Figure 2.

Figure 2: Load Handling Sequence Diagram

The transportation network must have an object to allo-
cate the resources (drivers, trucks, trailers) to the loads
that require movement between origins and destinations.
In the framework, AbstractDispatcher represents the most
general dispatcher class, which has the most basic behav-
iors that have been identified for dispatching loads. A cli-
ent using this framework can subclass from AbstractDis-
patcher and add more functionality to make it more
specific for their requirements. For instance, we have con-
structed an AbstractDispatcherFTL class which sub-
classes from AbstractDispatcher and is more specific to
full truckload transportation network modeling. Further
downstream, there is even a more specific class Dis-
patcherFTL sub-classing from AbstractDispatcherFTL in
which we have implemented our own specific searching
and dispatching algorithms for resources. A client may
want to use this framework for building their truckload
transportation network but may not necessarily want to
select and allocate the resources through our default
mechanisms. In that case they can always subclass from
these dispatcher classes and override the methods and se-
lection and allocation rules.
1872
Figure 3: AbstractDispatcherFTL Class Diagram

As can be seen in Figure 3, the modeler can supply
their own rules for selecting the next truck, trailer, or
driver for when a load requires a resource. During the
transportation, the resources move from one location to
another. As the resources move they get released at a dif-
ferent location and get added to the idle resource lists of
the destination and removed from the idle resources list of
the origin. These data structures can be used to select the
next resource (driver, truck, or trailer). AbstractDis-
patcherFTL has variety of methods for searching loca-
tions with resources. These methods are useful in identi-
fying locations that can be used to initiate a bobtail or
deadhead. Some of these methods are as follows:

findLocationWithMostIdleResources(): Facilitates
finding locations with most idle resources.
findLocationWithMostIdleDriversAndTrucks() : Fa-
cilitates finding locations with most idle driver and
an idle truck combinations.
getLocationsSortedByMostIdleResources(): It is the
method by which we can get a collection of locations
sorted by most idle resources.
getLocationsSortedByMostIdleTrucksAndDrivers():
It is the method by which we can get a collection of
locations sorted by most idle truck and idle trailer
pairs.
getLocationsSortedByMostIdleTrailers(): It is the
method by which we can get a collection of locations
sorted by most idle trailers.
findLocationWithIdleDriverAndTruckWithMinDe-
liveryTime(): This method finds the driver which
will take the minimum expected delivery time to
complete the bobtail task in case there is more than
one driver available at a location.
findLocationWithIdleResourcesWithMinDelivery-
Time(): This method finds the driver which will take
the minimum expected delivery time to complete the
deadhead task in case there is more than one driver
available at a location.

Rossetti and Nangia
After being asked to handle a load, the dispatcher creates
a dispatch task for allocation to a driver. A DispatchTask
represents a task that a driver must perform within the
network. There are five basic tasks:

Transport – Transport task is created when combina-
tion of an idle driver, trailer and truck are all avail-
able for transporting a load.
BobTailToLoad – This task is created when an idle
trailer is available at the origin of the load but either
an idle driver or an idle truck or both are not avail-
able.
DeadHeadToLoad – This task is created when all
three resources i.e., an idle truck, an idle trailer and
an idle driver are not available together at the origin
of the load. A combination of all these three idle re-
sources is searched and the selected driver at the
deadhead location is assigned this task and asked to
deadhead to the origin of the load to pick up the load
for transport.
BobTailNoLoad - This task is created when a driver
is asked to bobtail to another location and there is no
load required to be picked up for transport.
DeadHeadNoLoad - This task is created when a
driver is simply asked to deadhead to another loca-
tion and there is no load required to be picked up for
transport.

The DispatchTask knows its driver, truck and trailer to
which it has been assigned. The driver knows its current
task that it has been assigned. The dispatcher asks the
DispatchTask to allocate and release resources. The Dis-
patchTask makes a request for a single unit of its driver,
truck and trailer for allocation and releases the driver,
truck and trailer requests when it is done. A task also
knows about its current origin and destination. In addi-
tion, every DispatchTask has an associated expected task
time, i.e. the time expected to complete that task. The ex-
pected task time plays an important role in the selection of
the driver when there is more than one idle driver avail-
able in the network. A user may want to select the driver
which takes the minimum expected time to deliver the
load.

We have implemented a concrete sub-class of Ab-
stractDispatcherFTL called DispatcherFTL based on
some standard allocation rules. DispatcherFTL utilizes a
number of queues and other data structures to facilitate
the allocation of resources to loads via a task. For exam-
ple, the following queues are available:

Queues of the loads at their origins waiting to be dis-
patched
Queues of the loads at their origins waiting for a bob-
tail
Queues of the loads at their origins waiting for a
deadhead
1873
Queues of the loads at their origins waiting to be
transported to their destinations
Queues of the loads at their destinations that have
been loaded and wait in the queue until their transport
is completed
A queue holding all loads waiting to be dispatched.

 The task is enqueued in the overall dispatch queue
(list) of the network and dispatch queues at the load’s ori-
gin. The dispatcher next checks if there is an idle truck,
trailer and driver at the load’s origin which can facilitate
its transportation to its destination. If there are idle re-
sources available, then they are selected based on the se-
lection rules provided in the framework. The default se-
lection rule for truck and trailer is to simply select the first
idle truck and trailer available from the idle list of trucks
and trailers at the load’s origin. In the case of the driver,
our model provides two rules for driver selection. The
first is to select the first idle driver from the idle list of
drivers at the load’s origin. The second is to select the
driver which will take minimum expected time to com-
plete the transport of the load. The default driver selection
rule is set as the one using the minimum expected deliv-
ery time. The framework facilitates the user to plug in
their own selection rule to select a resource at a particular
location. If the user supplies no selection rule then the de-
fault rules are executed.

Based on the availability and requirement of the re-
sources, we can classify the dispatching mechanism into 3
categories. The first is where all the resources are avail-
able for the load; in the second case the load has only an
idle trailer at its origin but no idle driver and truck pair.
Lastly, none of the resources are available for the load at
its origin. In the first case, all the three resources are
available at the origin of the load. The resources are se-
lected according to the selection rules and are set for the
task. Dispatch task is now set as transport type. Once, the
task is set as a transport task, the dispatcher removes the
load from the overall dispatch queue and the dispatch
queue of the load’s origin and places it in the transport
queue of the origin. Next, the resources are allocated. The
allocated driver is asked to transport the load from its ori-
gin to its destination. After loading, the task is removed
from the transport queue and added to the incoming load
queue at the destination of the load. After the loading is
completed, the driver travels to the destination of the load.
After transport is completed the load is unloaded. After
unloading, the driver will notify the dispatcher and the
dispatcher will remove the task from the incoming load
queue of the destination. The driver, trailer and truck are
now released and added to the idle list of resources at the
destination. The dispatcher will then get an opportunity to
reallocate the resources in the network in order to process
other tasks pending in the network.

Rossetti and Nangia
For the second dispatching case, if there is an idle
trailer but no idle driver and truck pair at the origin, the
dispatcher sets the task as a bobtail task and searches for a
location within its defined reachable range from where it
can get an idle driver and truck pair. The task is removed
from the overall dispatch queue and the dispatch queue of
the load’s origin and added to the bobtail dispatch queue
at the origin. The framework provides three options by
which the user can select a bobtail location. First we can
select the location based on the minimum expected deliv-
ery time. We search all the locations and find the location
which has an idle driver which takes the minimum ex-
pected time taken to complete the transport. The location
must also have an idle truck. The second option is to se-
lect the location based on most number of idle driver and
truck pairs available. The location which has the maxi-
mum number of idle (driver, truck) pairs is selected. The
third option is a simple one where we just select the first
location available with an idle driver and truck pair during
the search. Once, an idle driver, truck and trailer are se-
lected, they are allocated to the load. The selected driver
is asked to bobtail from the bobtail location selected to the
load’s origin.

Finally, in the third case for dispatching, when there
are no idle resources available at the load’s origin and
there are no inbound loads, the dispatcher sets the task as
a deadhead task and searches for idle resources within the
defined reachable range. The logic for searching the
deadhead location is same as that of bobtail using any of
the described three options. Only now in addition to
checking for the availability of an idle driver and an idle
truck, we will also check for the availability of an idle
trailer at the location.

The Driver resource is represented by the Driver
class in the framework. Driver extends SpatialResource.
Driver is the resource which is responsible for completing
the task assigned to it by the dispatcher. It is responsible
for transporting the load from its origin to its destination
in case of the transport task or just completing the trans-
port in case of the bobtail and the deadhead task. The
Driver class in this framework has been modeled in ac-
cordance with the Department of Transportation (DOT)
regulations for truck drivers and their hours of service
rules. According to the DOT regulations, a driver’s “tour
of duty” cannot go beyond the 14th hour after coming on-
duty, following 10 hours off-duty. After the completion
of 10 consecutive hours off duty, the driver shall not drive
after the 14th hour from the start of “tour of duty”. This is
also called the 14-Hour rule. A driver shall not drive for
more than 11 hours following 10 consecutive hours off
duty. This is also called the 10-Hour rule. Three hours in
the 14 hour work window covers inspections, fueling, and
loading or unloading time. Any delay over 3 hours imme-
diately begins to erode the 11 hours the driver has avail-
able to drive.
1874
A driver shall not drive after having been on duty for 70
hours during a consecutive 8 day period. A driver may re-
start the 8 day period after a consecutive 34 hour off duty
period. This is also called the 70-Hour rule. Table 2
summarizes these basic rules.

Table 2: Summary of Driver Hours of Service
Regulations

Driving Time 11 hours
Total On-Duty Time 14 consecutive hours
Off-Duty Time 10 consecutive hours
Total Time (Driving +
On-Duty, Not Driving +
Off-Duty)

24 hours

Cumulative On-Duty 70 hours in 8 days
Cumulative On-Duty
“Restart” Period

34 hour restart at any
point in a driver’s 7 or 8
day cycle

Based on the above rules and regulations, the Driver
class was modeled using discrete event scheduling and a
rigorous state transition model as illustrated in Figure 4. A
driver can either be on-duty or off-duty. In either case,
they can be currently allocated a task. Thus, at any point
of time, a driver can be in only one of the following 4
states – on duty without task (idle), on duty with task
(busy), off duty with task, or off duty without task. For
simplicity, we assume that if a driver must go off duty
while assigned a task, that the task stays with the driver.

Figure 4: Driver State Diagram

Rossetti and Nangia
The modeling of the transportation network involved de-
veloping Java classes using the ModelElement or Sched-
ulingElement base classes from the JSL. The implemen-
tation of the framework was tested on small cases for
which the exact sequence of events and resource alloca-
tions were known in advance. This verified that the Java
coding represented what was intended. We then devel-
oped a larger case study for testing purposes and to illus-
trate the statistical quantities captured by the model. This
is briefly discussed in the next section.

3 EXAMPLE CASE STUDY AND RESULTS

In this section, we illustrate the output available from the
framework. It is not our intention here to fully analyze
this system. Rather we are using this example to simply
illustrate some of the capabilities of the framework. A
full analysis is beyond the scope and page limitation of
this paper.

The framework was tested using some of the data
from a case study by Taylor et al. (2004). The case study
addressed several problems in transportation, specifically
driver dispatching and tour formation in full truckload
trucking. The case study involved North American freight
movements for JB Hunt (JBHT). The network was com-
posed of 11 high freight density terminal cities within the
JBHT terminal city network. The terminal city network
and freight lanes (defined as a city-to-city pairing) used in
the case study are illustrated in Figure 5.

Figure 5: Terminal City Network (Taylor et al. (2004))

For this example, we assumed that the loading and
unloading time distributions are constant with a value of 1
hour. In addition, we assumed that the allowable distance
for deadheading and bobtailing was 1000 miles to make
sure that the locations on all the lanes are included in the
search for a driver. The time, at which the first load is
generated, and the time between load generation was as-
sumed to be exponential with the mean value of 1 hour.
We assumed that the average speed of the driver was 60
miles/hour. The driver selection rule was based on select-
1875
ing the driver which takes minimum expected time to de-
liver the load. The truck and trailer selection rule was
based on selecting the first idle truck and trailer in the idle
lists. The bobtail and deadhead location were selected as
the ones which were closer to the origin within the de-
fined range of 1000 miles (Petre’s (2000) thesis was also
based on selecting the deadhead or bobtail location within
the user defined range). The origin probability for all the
origins was calculated as the percentage of freight gener-
ated from each of the cities acting as an origin. The desti-
nation probability was calculated as the percentage of
freight generated for all origin-destination pairs. The
starting allocation of resources in the network is given in
Table 3.

Table 3: Resource Distribution for Case Study
Region City #drivers #trucks #trailers
A Atlanta 8 12 14
B Louisville 7 11 13
C Detroit 7 11 13
D Chicago 8 12 14
E Kansas City 6 10 12
F Little Rock 10 14 16
G Memphis 3 7 9
H Lowell 7 11 13
I OK City 6 10 12
J Dallas 9 13 15
K Houston 9 13 15

The framework collects summary statistics at the network,
location and resource levels. These statistics include such
quantities as: average number of loaded and unloaded
miles (by driver, network, and sub-divided into dead-
head/bobtail miles), resource utilization (driver, truck,
trailer), average number of loads waiting at origins and in
the network, average time spent waiting by loads, the av-
erage system time for loads, and the throughput of the
network, etc.

We configured the model to run for 10 replications of
10000 time units (hours) with a warm up period of 500
hours. When possible we attempted to validate the results
as compared to the results in Petre (2000). In our model, a
driver can be in one of four states – Busy (on duty with
task), Idle (on duty without task), off duty with task, and
off duty without task. If we add up the results for all the
drivers in these states, it should be close to the total num-
ber of drivers in the system. In our case, the drivers in
these states add up close to the total number of drivers i.e.
80 (see Table 4). The sum of number of off duty drivers
with and without task is close to the total number of driv-
ers off duty.

In addition, the number of off duty drivers should be
close to half of the total number of drivers because a
driver’s day consists of a maximum of 14 hours in a day

Rossetti and Nangia
or 11 hours if all the time was spent in driving. The num-
ber of idle drivers suggests that there shouldn’t be many
tasks lined up in the dispatch queue. The number of tasks
in the dispatch queues as seen in Table 4 is very low. Out
of 10000 loads generated in the system 9973 have been
processed. Around 14 are still being processed as seen by
the number of loads in IncomingLoadsQueue. The aver-
age time spent in the transport queue is expected to be
around the time spent in loading which is around 1 hour,
which it is.

Table 4: Summary Results for Test Case (cont.)
Time Weighted Average number of
Busy Drivers

10.4880

Time Weighted Average number of Idle
Drivers

27.7946

Time Weighted Average number of Off
Duty Drivers (Average #Off Duty
Drivers With Task + Average #Off
Duty Drivers Without Task)

41.7173

Time Weighted Average number of Off
Duty Drivers With Task

7.8755

Time Weighted Average number of Off
Duty Drivers Without Task

33.8417

Time Weighted Average number of
Busy Trucks

18.3636

Time Weighted Average number of
Busy Trailers

18.3636

Time Weighted Average number in
Dispatch Pick Up Queue

0.0908

Time Weighted Average number in
Transport Pick Up Queue

1.568

Time Weighted Average number in
BobTail Pick Up Queue

1.685

Time Weighted Average number in
DeadHead Pick Up Queue

0.6766

Time Weighted Average number in In-
coming Loads Queue

14.43

Average Time in Dispatch Pick Up
Queue

0.090

Average Time in Transport Pick Up
Queue

1.565

Average Time in BobTail Pick Up
Queue

10.510

Average Time in DeadHead Pick Up
Queue

10.959

Average Time in Incoming Loads
Queue

14.405
187
Table 5: Sample Network Statistics
Average BobTail (unloaded) miles per Load 334.224

Average DeadHead (unloaded) miles per
Load

351.620

Average Transport (loaded) miles per load 425.830

Average Total miles per load 1111.674

Average Load System Time 18.421

Total Number of Loads processed 9973.0

The illustrated statistics in Tables 4 and 5 are similar to
those obtained in Petre (2000) when available. Although
not reported here, the framework collects all standard sta-
tistical summary measures (e.g. average, standard devia-
tion, half-width, minimum, maximum, etc) and can write
the values to Excel or any database automatically.

4 SUMMARY AND FUTURE RESEARCH

The purpose of this research was to analyze and identify
the fundamental elements necessary for modeling a ge-
neric Full Truck Load transportation network via simula-
tion. We classified and organized the modeling elements
into a coherent set of objects having attributes, behaviors,
and inter-relationships to form a framework. We provided
a standardized model of the object-oriented transportation
framework using the UML for documentation and dis-
semination of the framework. We used the framework to
simulate a realistic truckload network using the data from
a realistic test case. The performance statistics indicate
that the framework can simulate such realistic networks.
Using this framework, the user can develop and simulate
their own truckload networks. This research has provided
a prototype by which additional transportation elements
can be modeled.

Future work should involve the modeling of addi-
tional dispatching algorithms (e.g. based on a dynamic
driver assignment mathematical model), the development
of decision and selection rules based on customer due
dates, an improvement in the underlying connection to
spatial models (e.g. maps), the incorporation of cost mod-
els, the modeling of LTL networks, and the modeling of
vehicle routing networks.

ACKNOWLEDGMENTS

This material is based upon work supported by the Air
Force Office of Sponsored Research and the Air Force
Research Laboratory. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the
views of the Air Force.
6

Rossetti and Nangia
REFERENCES

Booch, G., J. Rumbaugh, and I. Jacobson., 1999. The
Unified Modeling Language User Guide. Addison-
Wesley.

Chan, F. T. S. 2006. “Design and evaluation of a distribu-
tion network: a simulation approach”, International
Journal of Advanced Manufacturing Technology, 26,
pp. 814-825.

Dalal, M. A., Bell, H., and Denzien, M. 2003. “Initializ-
ing a distribution supply chain simulation with live
data”, In The Proceedings of the 2003 Winter Simula-
tion Conference, S. Chick, P. J. Sánchez, D. Ferrin,
and D. J. Morrice, eds., Piscataway, New Jersey: In-
stitute of Electrical and Electronics Engineers.

Ervin, E. C. and Harris, R. C. 2004. “Simulation analysis
of truck driver scheduling rules”, In Proceedings of
the 2004 Winter Simulation Conference, R .G. In-
galls, M. D. Rossetti, J. S. Smith, and B. A. Peters,
eds., Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers.

Hamber, B. 2003. “TLOADS treatment of assigning an
filling orders”, in Proceedings of the 2003 Winter
Simulation Conference, S. Chick, P. J. Sánchez, D.
Ferrin, and D. J. Morrice, eds., Piscataway, New Jer-
sey: Institute of Electrical and Electronics Engineers.

Ghiani, G., Laporte, G., and Musmanno, R. 1994. Intro-
duction to Logistics Systems Planning and Control,
Wiley Interscience Series in Systems and Optimiza-
tion.

Manivannan, M. S. 1998. “Simulation of Logistics and
Transportation Systems”, Chapter 16 in the Hand-
book of Simulation, J. Banks ed., John-Wiley & Sons,
Inc.

Petre, M. 2000. “Synergies between truckload and inter-
modal transportation”, Master’s Thesis, Department
of Industrial Engineering, The University of Arkan-
sas, Fayetteville, Arkansas.

Ratliff, H.D. and Nulty, W. G. 1996. “Logistics compos-
ite modeling”, Technical White Paper Series of The
Logistics Institute at Georgia Tech,
http://tli.isye.gatech.edu/downloads/lcmwpaper.pdf
[accessed March 3, 2007].

Rossetti, M. D. 2007. “JSL: An open source object-
oriented framework for discrete-event simulation in
Java”, in preparation.

Rossetti, M., Miman, M., Varghese, V., and Xiang, Y.
2006. “An object-oriented framework for simulating
multi-echelon inventory systems”, In Proceedings of
the 2006 Winter Simulation Conference, L. F. Per-
rone, F. P. Wieland, J. Liu, B. G. Lawson, D. M.
Nicol, and R. M. Fujimoto, eds., Piscataway, New
Jersey: Institute of Electrical and Electronics Engi-
neers, Inc.
1877
Taha, T. and Taylor, G. D. 1994. “ An integrated model-
ing framework for evaluating hub-spoke networks in
truckload trucking operations”, Logistics and Trans-
portation Review, 30, (2), 141-166.

Taha, T. 1992. Simulation Modeling and SIMNET, Pren-
tice-Hall.

Taylor, D., Kutanoglu, E., and Tjokroamidjojo, D. 2004.
“Efficient Dispatching in a Terminal City Network”,
Mack-Blackwell Rural Transportation Center Report,
http://www.mackblackwell.org/web/research/all-
projects.htm [accessed March 21, 2007]

YoungBlood, A. 2000. “Dispatching methodologies be-
tween terminal cities in a truckload trucking envi-
ronment”, Master’s Thesis, Department of Industrial
Engineering, University of Arkansas, Fayetteville,
Arkansas.

AUTHOR BIOGRAPHIES

MANUEL D. ROSSETTI, Ph. D., P. E. is an Associate
Professor in the Industrial Engineering Department at the
University of Arkansas. He received his Ph.D. in Indus-
trial and Systems Engineering from The Ohio State Uni-
versity. Dr. Rossetti has published over thirty-five journal
and conference articles in the areas of transportation,
manufacturing, health care and simulation and he has ob-
tained over $1.5 million dollars in extra-mural research
funding. His research interests include the design, analy-
sis, and optimization of manufacturing, health care, and
transportation systems using stochastic modeling, com-
puter simulation, and artificial intelligence techniques.
He was selected as a Lilly Teaching Fellow in 1997/98
and has been nominated three times for outstanding
teaching awards. He is currently serving as Departmental
ABET Coordinator. He serves as an Associate Editor for
the International Journal of Modeling and Simulation and
is active in IIE, INFORMS, and ASEE. He served as co-
editor for the WSC 2004 conference. His email and web
addresses are <rossetti@uark.edu> and
<www.uark.edu/~rossetti>.

SHIKHA NANGIA, M.S.I.E. is currently working as a
Functional Analyst for Manhattan Associates on their
Wal-Mart project. She received her M.S. in Industrial En-
gineering from the University of Arkansas and a B.E. in
Mechanical Engineering from Pune University, India. Her
areas of interest include computer simulation, trucking
transportation, and the design and analysis of supply
chain systems.

