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ABSTRACT 

In this paper, we discuss the design and use of an object-
oriented framework for simulating full truckload (FTL) 
networks. We present a context for how the framework 
can be used through its application to an example trucking 
network. In addition, we describe the design by examin-
ing the major conceptual artifacts within the object-
oriented model. The framework is built on a Java Simula-
tion Library (JSL) and permits easy modeling and execu-
tion of simulation models.  The example and discussion 
indicate the capabilities and flexibility of modeling with 
the framework.  In addition, we summarize our future re-
search efforts to model other transportation networks. 

1 INTRODUCTION

Freight transportation plays a fundamental role in every 
modern supply chain as it allows production and con-
sumption to take place at locations that are several hun-
dreds or thousands of miles away from each other. It is 
essential to move raw materials from sources to plants, 
semi-finished products between factories, and final goods 
to customers and retail outlets. Transportation systems are 
complex organizations which require considerable human, 
financial and material resources. Transportation costs ac-
counts for a signification part (often between one-third 
and two-thirds) of the logistics costs in several industries 
and have a major impact on the level of customer service 
(Ghiani et al., 1994). It is therefore not surprising that 
transportation plays a key role in logistic network design, 
analysis, and management.   

There are many different types of transportation net-
works that can be utilized within a supply chain. Over the 
road transportation can be classified as full truckload 
(FTL) or less-than-truckload (LTL). FTL transportation 
moves a full load directly from its origin to its destination 
in a single trip. If the shipment adds up to much less than 
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the vehicle capacity (LTL loads), it is more convenient to 
resort to several trucking services in conjunction with 
consolidation terminals rather than use direct shipments.  
In this paper, we concentrate on long-haul freight trans-
portation in the form of a FTL transportation network.   

The main contribution of this research is the proto-
type object-oriented software framework representing the 
key simulation elements within FTL networks. Booch et
al. (1999), define a software design framework as “an ar-
chitectural pattern that provides an extensible template for 
applications within a domain.”  A framework provides a 
set of abstract and concrete classes that can be extended 
via sub-classing or used directly to solve a particular 
problem within a particular domain.  In our case, we have 
designed a simulation framework that can be used to eas-
ily develop simulation models of FTL networks.  A 
framework can be implemented in any object-oriented 
language.  We implement the framework within the Java 
programming language build on top of the Java Simula-
tion Library (JSL).  The JSL is an open source object-
oriented framework for discrete-event simulation in Java.  
An overview of the capabilities of the JSL can be found in 
Rossetti (2007). 

An excellent overview of the use of simulation within 
logistics and transportation systems can be found in 
Manivannan (1998). The overview also makes it clear 
why simulation can be a powerful tool in strategic trans-
portation decision making.  It is interesting to note that 
during our literature review, we found many articles in-
volving the application of optimization techniques to such 
logistics problems such as driver assignment, fleet man-
agement, dispatching rules, vehicle routing, etc. However, 
surprisingly, we have found very little detailed discussion 
of the simulation of FTL networks.  We highlight a few of 
our findings in the following paragraphs.  

The simulation of trucking is often a component in a 
larger supply chain simulation.  For example, Dalal et al. 
(2003) describe the use of Simulation Dynamics Supply 
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Chain builder to model the movement of automobile 
shipments within a supply chain.  The goal of the overall 
simulation was to reduce the order to delivery times 
within the supply chain.  An interesting aspect of their 
modeling was to how to realistically initialize the network 
to test various alternatives.  Similarly, Hamber (2003) de-
scribes the use of TLOADS within the a military supply 
chain.  Chan (2006) models a distribution system in order 
to minimize the total traveling time and applied simula-
tion to measure the effectiveness of the optimization re-
sults.  This later application of simulation is a common 
theme within the literature.  That is, to use simulation to 
evaluate the robustness of the logistics decisions made via 
an optimization algorithm or heuristic rule.  This also 
makes apparent one of the key challenges in simulating 
logistics systems.  A simulation model of a logistics sys-
tem (e.g. FTL) may require sophisticated algorithms to be 
implemented in order to fully mimic the planning and 
dispatching of the vehicles. 

Within an FTL context, we only found a few relevant 
references. Youngblood (2000) developed a simulation 
model in SIMNET II (SIMNET II is a discrete simulation 
language written in FORTRAN (Taha, 1992)) which in-
vestigated the effects of various dispatching methodolo-
gies between terminal cities in a truckload (FTL) trucking 
environment. Youngblood (2000) claimed that by reduc-
ing driver tour length via predetermined routes through 
the terminal cities, the driver retention can be improved 
rather than being subjected to the random nature of tradi-
tional dispatching methods. Petre (2000) used simulation 
to determine the possible synergies between truckload and 
inter-modal transportation. Petre (2000) also used 
SIMNET II to model the two different modes of freight 
transportation; over-the-road (OTR) trucking services and 
inter-modal services. Petre (2000) argued that by integrat-
ing over-the-road and inter-modal operation, greater op-
erational flexibility, better balance, lower cost, and better 
customer service may be achieved over the use of the sin-
gle modes independently. 

Ervin and Harris (2004) developed discrete-event 
simulation in Arena for evaluating the effect of over the 
road and hours of service rules for a FTL trucking fleet.  
The model allows for the determination of fleet utiliza-
tion, cycle times, and customer service to guide company 
decisions.  The model incorporates demand generation, 
load and truck assignments, capacity management, cus-
tomer pick-up and delivery, as well as transport execu-
tion.   

The ability to more easily evaluate the algorithms or 
rules within an FLT network is one of the main motiva-
tors for this research.  When performing an analysis, such 
at that in Ervin and Harris (2004) or in evaluating dis-
patching rules, the user of a transportation simulation 
model will be interested in understanding the effect on the 
loaded miles versus empty miles.  At the same time the 
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user will be concerned with customer and driver satisfac-
tion. From the driver’s standpoint, the company needs to 
keep track of the average distance traveled per day, as 
wages depend on the miles traveled. From a customer’s 
standpoint, the average delay in receiving the load will be 
the main concern. The economic advantage of a transpor-
tation network can be evaluated by considering many cri-
teria such as equipment utilization, total circuitry, total 
unloaded miles, total loaded miles, and percentage of on 
time pick-ups (Taha and Taylor, 1994).  Our framework 
facilitates the building of FTL networks and the estima-
tion of such quantities.  Our research is also part of a lar-
ger effort to build frameworks for simulating supply 
chains, see for example Rossetti et al. (2006).  Of which, 
this research constitutes the transport layer.  The other 
layers include the inventory and facility layers. 

In what follows, we first give a description of the 
structure and functionality of the transport layer.  Due to 
space limitations, we will concentrate on providing an 
understanding of the modeling issues so that the reader 
can understand what the framework can model.  This 
should also give an idea of its capabilities.  A detailed 
discussion of the implementation (Java coding) of the 
framework is beyond the scope and space limitations of 
this paper.  We then describe a simple example FTL 
model to illustrate the output capabilities of the architec-
ture. We wrap up with a summary of our efforts and pre-
sent ideas for future research. 

2 TRANSPORT LAYER 

An object-oriented analysis begins with the identification 
of the key elements within the system, their roles, attrib-
utes, relationships with each other, and modeling and im-
plementation issues.  We identified the following as the 
key conceptual elements needed within a generic FTL 
simulation model: physical network (locations, lanes, 
etc.), loads and their generation, dispatcher and driving 
tasks, truck, trailer, and driver.  These conceptual ele-
ments were embodied in Java classes: Network, Location, 
Lane, Load, LoadGenerator, Dispatcher, DispatchTask,  
and Driver.  Table 1 provides a list of the classes and in-
terfaces within the framework.  The concept of a trailer 
and a truck were modeled as resources within a physical 
spatial frame.  In particular, the JSL has the notion of a 
spatial resource (SpatialResource).  A spatial resource is a 
resource that has a physical initial position and can be 
moved within a spatial model. 

The Network class is the spatial representation of the 
transportation network with a valid geometric coordinate 
system. The Network consists of many Locations. A 
transport demand placed by a customer is represented as a 
Load. A Load moves from one Location (origin) to an-
other (destination). Therefore, a Location plays the role of 
both an origin and a destination in the Network.  Since the 
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Location in the truckload transportation model emulates 
the concept of an actual physical location, it is represented 
by means of co-ordinates. The distances between loca-
tions are supplied by the underlying spatial model (sub-
class of the abstract base class SpatialModel) attached to 
the network.   

Table 1: List of Classes and Interfaces in Framework 
AbstractDispatcher Driver 
AbstractDispatcherFTL LoadGenerator 
DispatcherFTL Location 
DispatchTask Lane 
Network Load 
TransportationNetwork NetworkIfc 
DriverSelectionRule TrailerSelectionRuleIfc 
DispatchLoadSelectionRuleIfc DriverSelectionRuleIfc 
TransportLocationIfc LoadReceiverIfc 
TruckSelectionRuleIfc LoadSenderIfc 
TransportTaskReceiverIfc  

A SpatialModel is a representation for physical space 
within a JSL simulation.  For example, a GreatCircleDis-
tanceSpatialModel class can supply distances based on 
using the great circle distance between two points on the 
earth. The elements contained in a SpatialModel are 
called spatial elements.  A SpatialModel has methods to 
add and remove spatial elements from the spatial model, 
provide default positions to the spatial elements if not 
supplied by the user, set coordinates for the spatial ele-
ments if supplied, compare two spatial elements if they 
are at the same coordinates, get the coordinates of the spa-
tial element, get the distance between two spatial ele-
ments etc. 

The Locations in the Network are connected by 
means of Lanes. A Lane is an object which connects two 
Locations and is directional; which means that a Lane 
connecting Location A to Location B is a different object 
from the Lane object connecting Location B to Location 
A. One Location in a lane serves as an origin and the 
other Location serves as a destination. A Location has the 
ability of setting their loading and unloading distribution 
and can notify the driver about the loading and unloading 
times it might take at that location. 

In a broader sense, the Network in the framework re-
sembles a directed graph in which Locations serve as the 
vertices and Lanes serve as the edges.  Figure 1 illustrates 
some of the attributes and methods of the Network class.  
The Network class encapsulates much of the functionality 
of a graph representation including for example the 
checking of reachability.  A Location may have outgoing 
lanes and incoming lanes. A Lane is defined as an incom-
ing lane for a Location if that Location happens to be its 
destination. Similarly, a Lane is defined as an outgoing 
lane for a Location for which that Location happens to be 
its origin. The concept of incoming and outgoing lanes are 
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important in deadheading or bobtailing resources from a 
different location when all resources are not available at 
the origin of the Load.  Bobtail implies that the driver 
(and truck) travels unloaded without a trailer and dead-
head implies that the driver (and truck) travels unloaded 
with a trailer. 

Figure 1: Network Class 

A Load in this framework represents a request to 
move material from one location (origin) to another loca-
tion (destination). A Load is sent by a specific sender to 
be completed by the network. Every Load in the network 
has attributes like its network, sender, origin, and destina-
tion and possibly a due date. The Loads are generated by 
the LoadGenerator class in the framework, which is simi-
lar to CREATE modules found in other simulation lan-
guages.  In addition, the load generator can generate loads 
for the network based on a general origin/destination 
probability specification.  A basic overview of the load 
processing is as follows: 

LoadGenerator generates Load 
LoadGenerator sends the Network the message to 
create the Load 
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Network creates the Load  
Network sends the Load to the Dispatcher for proc-
essing
Dispatcher will create a DispatchTask for the load  
Dispatcher checks for the availability of the re-
sources, seizes them and allocates them to the Load 
Next it notifies the Driver to execute the Dis-
patchTask.  
Finally the Driver will transport the Load to its desti-
nation.  
Resources get released at the destination of the load  
Driver notifies the Dispatcher 

This is also illustrated by the sequence diagram given in 
Figure 2.   

Figure 2: Load Handling Sequence Diagram 

The transportation network must have an object to allo-
cate the resources (drivers, trucks, trailers) to the loads 
that require movement between origins and destinations. 
In the framework, AbstractDispatcher represents the most 
general dispatcher class, which has the most basic behav-
iors that have been identified for dispatching loads. A cli-
ent using this framework can subclass from AbstractDis-
patcher and add more functionality to make it more 
specific for their requirements. For instance, we have con-
structed an AbstractDispatcherFTL class which sub-
classes from AbstractDispatcher and is more specific to 
full truckload transportation network modeling. Further 
downstream, there is even a more specific class Dis-
patcherFTL sub-classing from AbstractDispatcherFTL in 
which we have implemented our own specific searching 
and dispatching algorithms for resources.  A client may 
want to use this framework for building their truckload 
transportation network but may not necessarily want to 
select and allocate the resources through our default 
mechanisms. In that case they can always subclass from 
these dispatcher classes and override the methods and se-
lection and allocation rules. 
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Figure 3: AbstractDispatcherFTL Class Diagram 

As can be seen in Figure 3, the modeler can supply 
their own rules for selecting the next truck, trailer, or 
driver for when a load requires a resource. During the 
transportation, the resources move from one location to 
another. As the resources move they get released at a dif-
ferent location and get added to the idle resource lists of 
the destination and removed from the idle resources list of 
the origin.  These data structures can be used to select the 
next resource (driver, truck, or trailer). AbstractDis-
patcherFTL has variety of methods for searching loca-
tions with resources. These methods are useful in identi-
fying locations that can be used to initiate a bobtail or 
deadhead. Some of these methods are as follows: 

findLocationWithMostIdleResources(): Facilitates 
finding locations with most idle resources. 
findLocationWithMostIdleDriversAndTrucks() : Fa-
cilitates finding locations with most idle driver and 
an idle truck combinations. 
getLocationsSortedByMostIdleResources(): It is the 
method by which we can get a collection of locations 
sorted by most idle resources. 
getLocationsSortedByMostIdleTrucksAndDrivers(): 
It is the method by which we can get a collection of 
locations sorted by most idle truck and idle trailer 
pairs. 
getLocationsSortedByMostIdleTrailers(): It is the 
method by which we can get a collection of locations 
sorted by most idle trailers. 
findLocationWithIdleDriverAndTruckWithMinDe-
liveryTime():  This method finds the driver which 
will take the minimum expected delivery time to 
complete the bobtail task in case there is more than 
one driver available at a location. 
findLocationWithIdleResourcesWithMinDelivery-
Time():  This method finds the driver which will take 
the minimum expected delivery time to complete the 
deadhead task in case there is more than one driver 
available at a location. 
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After being asked to handle a load, the dispatcher creates 
a dispatch task for allocation to a driver.  A DispatchTask 
represents a task that a driver must perform within the 
network.  There are five basic tasks: 

Transport – Transport task is created when combina-
tion of an idle driver, trailer and truck are all avail-
able for transporting a load. 
BobTailToLoad – This task is created when an idle 
trailer is available at the origin of the load but either 
an idle driver or an idle truck or both are not avail-
able.
DeadHeadToLoad – This task is created when all 
three resources i.e., an idle truck, an idle trailer and 
an idle driver are not available together at the origin 
of the load. A combination of all these three idle re-
sources is searched and the selected driver at the 
deadhead location is assigned this task and asked to 
deadhead to the origin of the load to pick up the load 
for transport. 
BobTailNoLoad - This task is created when a driver 
is asked to bobtail to another location and there is no 
load required to be picked up for transport. 
DeadHeadNoLoad - This task is created when a 
driver is simply asked to deadhead to another loca-
tion and there is no load required to be picked up for 
transport. 

The DispatchTask knows its driver, truck and trailer to 
which it has been assigned. The driver knows its current 
task that it has been assigned. The dispatcher asks the 
DispatchTask to allocate and release resources. The Dis-
patchTask makes a request for a single unit of its driver, 
truck and trailer for allocation and releases the driver, 
truck and trailer requests when it is done. A task also 
knows about its current origin and destination. In addi-
tion, every DispatchTask has an associated expected task 
time, i.e. the time expected to complete that task. The ex-
pected task time plays an important role in the selection of 
the driver when there is more than one idle driver avail-
able in the network. A user may want to select the driver 
which takes the minimum expected time to deliver the 
load. 

We have implemented a concrete sub-class of Ab-
stractDispatcherFTL called DispatcherFTL based on 
some standard allocation rules.  DispatcherFTL utilizes a 
number of queues and other data structures to facilitate 
the allocation of resources to loads via a task.   For exam-
ple, the following queues are available: 

Queues of the loads at their origins waiting to be dis-
patched 
Queues of the loads at their origins waiting for a bob-
tail
Queues of the loads at their origins waiting for a 
deadhead  
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Queues of the loads at their origins waiting to be 
transported to their destinations 
Queues of the loads at their destinations that have 
been loaded and wait in the queue until their transport 
is completed 
A queue holding all loads waiting  to be dispatched. 

 The task is enqueued in the overall dispatch queue 
(list) of the network and dispatch queues at the load’s ori-
gin. The dispatcher next checks if there is an idle truck, 
trailer and driver at the load’s origin which can facilitate 
its transportation to its destination. If there are idle re-
sources available, then they are selected based on the se-
lection rules provided in the framework. The default se-
lection rule for truck and trailer is to simply select the first 
idle truck and trailer available from the idle list of trucks 
and trailers at the load’s origin. In the case of the driver, 
our model provides two rules for driver selection. The 
first is to select the first idle driver from the idle list of 
drivers at the load’s origin. The second is to select the 
driver which will take minimum expected time to com-
plete the transport of the load. The default driver selection 
rule is set as the one using the minimum expected deliv-
ery time. The framework facilitates the user to plug in 
their  own selection rule to select a resource at a particular 
location. If the user supplies no selection rule then the de-
fault rules are executed. 

Based on the availability and requirement of the re-
sources, we can classify the dispatching mechanism into 3 
categories. The first is where all the resources are avail-
able for the load; in the second case the load has only an 
idle trailer at its origin but no idle driver and truck pair. 
Lastly, none of the resources are available for the load at 
its origin. In the first case, all the three resources are 
available at the origin of the load. The resources are se-
lected according to the selection rules and are set for the 
task. Dispatch task is now set as transport type. Once, the 
task is set as a transport task, the dispatcher removes the 
load from the overall dispatch queue and the dispatch 
queue of the load’s origin and places it in the transport 
queue of the origin. Next, the resources are allocated. The 
allocated driver is asked to transport the load from its ori-
gin to its destination. After loading, the task is removed 
from the transport queue and added to the incoming load 
queue at the destination of the load. After the loading is 
completed, the driver travels to the destination of the load. 
After transport is completed the load is unloaded. After 
unloading, the driver will notify the dispatcher and the 
dispatcher will remove the task from the incoming load 
queue of the destination. The driver, trailer and truck are 
now released and added to the idle list of resources at the 
destination. The dispatcher will then get an opportunity to 
reallocate the resources in the network in order to process 
other tasks pending in the network. 
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For the second dispatching case, if there is an idle 
trailer but no idle driver and truck pair at the origin, the 
dispatcher sets the task as a bobtail task and searches for a 
location within its defined reachable range from where it 
can get an idle driver and truck pair. The task is removed 
from the overall dispatch queue and the dispatch queue of 
the load’s origin and added to the bobtail dispatch queue 
at the origin. The framework provides three options by 
which the user can select a bobtail location. First we can 
select the location based on the minimum expected deliv-
ery time. We search all the locations and find the location 
which has an idle driver which takes the minimum ex-
pected time taken to complete the transport. The location 
must also have an idle truck. The second option is to se-
lect the location based on most number of idle driver and 
truck pairs available. The location which has the maxi-
mum number of idle (driver, truck) pairs is selected. The 
third option is a simple one where we just select the first 
location available with an idle driver and truck pair during 
the search. Once, an idle driver, truck and trailer are se-
lected, they are allocated to the load. The selected driver 
is asked to bobtail from the bobtail location selected to the 
load’s origin. 

Finally, in the third case for dispatching, when there 
are no idle resources available at the load’s origin and 
there are no inbound loads, the dispatcher sets the task as 
a deadhead task and searches for idle resources within the 
defined reachable range. The logic for searching the 
deadhead location is same as that of bobtail using any of 
the described three options. Only now in addition to 
checking for the availability of an idle driver and an idle 
truck, we will also check for the availability of an idle 
trailer at the location. 

The Driver resource is represented by the Driver 
class in the framework. Driver extends SpatialResource. 
Driver is the resource which is responsible for completing 
the task assigned to it by the dispatcher. It is responsible 
for transporting the load from its origin to its destination 
in case of the transport task or just completing the trans-
port in case of the bobtail and the deadhead task. The 
Driver class in this framework has been modeled in ac-
cordance with the Department of Transportation (DOT) 
regulations for truck drivers and their hours of service 
rules.  According to the DOT regulations, a driver’s “tour 
of duty” cannot go beyond the 14th hour after coming on-
duty, following 10 hours off-duty.  After the completion 
of 10 consecutive hours off duty, the driver shall not drive 
after the 14th hour from the start of “tour of duty”. This is 
also called the 14-Hour rule.  A driver shall not drive for 
more than 11 hours following 10 consecutive hours off 
duty. This is also called the 10-Hour rule.  Three hours in 
the 14 hour work window covers inspections, fueling, and 
loading or unloading time. Any delay over 3 hours imme-
diately begins to erode the 11 hours the driver has avail-
able to drive. 
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A driver shall not drive after having been on duty for 70 
hours during a consecutive 8 day period. A driver may re-
start the 8 day period after a consecutive 34 hour off duty 
period. This is also called the 70-Hour rule.  Table 2 
summarizes these basic rules. 

Table 2: Summary of Driver Hours of Service 
Regulations 

Driving Time 11 hours 
Total On-Duty Time 14 consecutive hours 
Off-Duty Time 10 consecutive hours 
Total Time (Driving + 
On-Duty, Not Driving + 
Off-Duty) 

24 hours 

Cumulative On-Duty 70 hours in 8 days 
Cumulative On-Duty 
“Restart” Period 

34 hour restart at any 
point in a driver’s 7 or 8 
day cycle 

Based on the above rules and regulations, the Driver 
class was modeled using discrete event scheduling and a 
rigorous state transition model as illustrated in Figure 4. A 
driver can either be on-duty or off-duty.  In either case, 
they can be currently allocated a task.  Thus, at any point 
of time, a driver can be in only one of the following 4 
states – on duty without task (idle), on duty with task 
(busy), off duty with task, or off duty without task.  For 
simplicity, we assume that if a driver must go off duty 
while assigned a task, that the task stays with the driver.   

Figure 4: Driver State Diagram 
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The modeling of the transportation network involved de-
veloping Java classes using the ModelElement or Sched-
ulingElement base classes from the JSL.  The implemen-
tation of the framework was tested on small cases for 
which the exact sequence of events and resource alloca-
tions were known in advance.  This verified that the Java 
coding represented what was intended.  We then devel-
oped a larger case study for testing purposes and to illus-
trate the statistical quantities captured by the model.  This 
is briefly discussed in the next section. 

3 EXAMPLE CASE STUDY AND RESULTS 

In this section, we illustrate the output available from the 
framework. It is not our intention here to fully analyze 
this system.  Rather we are using this example to simply 
illustrate some of the capabilities of the framework.  A 
full analysis is beyond the scope and page limitation of 
this paper. 

The framework was tested using some of the data 
from a case study by Taylor et al. (2004). The case study 
addressed several problems in transportation, specifically 
driver dispatching and tour formation in full truckload 
trucking. The case study involved North American freight 
movements for JB Hunt (JBHT). The network was com-
posed of 11 high freight density terminal cities within the 
JBHT terminal city network. The terminal city network 
and freight lanes (defined as a city-to-city pairing) used in 
the case study are illustrated in Figure 5. 

Figure 5: Terminal City Network (Taylor et al. (2004)) 

For this example, we assumed that the loading and 
unloading time distributions are constant with a value of 1 
hour. In addition, we assumed that the allowable distance 
for deadheading and bobtailing was 1000 miles to make 
sure that the locations on all the lanes are included in the 
search for a driver. The time, at which the first load is 
generated, and the time between load generation was as-
sumed to be exponential with the mean value of 1 hour. 
We assumed that the average speed of the driver was 60 
miles/hour. The driver selection rule was based on select-
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ing the driver which takes minimum expected time to de-
liver the load. The truck and trailer selection rule was 
based on selecting the first idle truck and trailer in the idle 
lists. The bobtail and deadhead location were selected as 
the ones which were closer to the origin within the de-
fined range of 1000 miles (Petre’s (2000) thesis was also 
based on selecting the deadhead or bobtail location within 
the user defined range). The origin probability for all the 
origins was calculated as the percentage of freight gener-
ated from each of the cities acting as an origin. The desti-
nation probability was calculated as the percentage of 
freight generated for all origin-destination pairs.  The 
starting allocation of resources in the network is given in 
Table 3. 

Table 3: Resource Distribution for Case Study 
Region City #drivers #trucks #trailers 
A Atlanta 8 12 14 
B Louisville 7 11 13 
C Detroit 7 11 13 
D Chicago 8 12 14 
E Kansas City 6 10 12 
F Little Rock 10 14 16 
G Memphis 3 7 9 
H Lowell 7 11 13 
I OK City 6 10 12 
J Dallas 9 13 15 
K Houston 9 13 15 

The framework collects summary statistics at the network, 
location and resource levels.  These statistics include such 
quantities as:  average number of loaded and unloaded 
miles (by driver, network, and sub-divided into dead-
head/bobtail miles), resource utilization (driver, truck, 
trailer), average number of loads waiting at origins and in 
the network, average time spent waiting by loads, the av-
erage system time for loads, and the throughput of the 
network, etc. 

We configured the model to run for 10 replications of 
10000 time units (hours) with a warm up period of 500 
hours.  When possible we attempted to validate the results 
as compared to the results in Petre (2000). In our model, a 
driver can be in one of four states – Busy (on duty with 
task), Idle (on duty without task), off duty with task, and 
off duty without task. If we add up the results for all the 
drivers in these states, it should be close to the total num-
ber of drivers in the system. In our case, the drivers in 
these states add up close to the total number of drivers i.e. 
80 (see Table 4). The sum of number of off duty drivers 
with and without task is close to the total number of driv-
ers off duty. 

In addition, the number of off duty drivers should be 
close to half of the total number of drivers because a 
driver’s day consists of a maximum of 14 hours in a day 
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or 11 hours if all the time was spent in driving. The num-
ber of idle drivers suggests that there shouldn’t be many 
tasks lined up in the dispatch queue. The number of tasks 
in the dispatch queues as seen in Table 4 is very low. Out 
of 10000 loads generated in the system 9973 have been 
processed. Around 14 are still being processed as seen by 
the number of loads in IncomingLoadsQueue. The aver-
age time spent in the transport queue is expected to be 
around the time spent in loading which is around 1 hour, 
which it is. 

Table 4: Summary Results for Test Case (cont.) 
Time Weighted Average number of 
Busy Drivers 

10.4880 

Time Weighted Average number of Idle 
Drivers 

27.7946 

Time Weighted Average number of Off 
Duty Drivers (Average #Off Duty 
Drivers With Task + Average #Off 
Duty Drivers Without Task) 

41.7173 

Time Weighted Average number of Off 
Duty Drivers With Task 

7.8755 

Time Weighted Average number of Off 
Duty Drivers Without Task 

33.8417 

Time Weighted Average number of 
Busy Trucks 

18.3636 

Time Weighted Average number of 
Busy Trailers 

18.3636 

Time Weighted Average number in 
Dispatch Pick Up Queue  

0.0908 

Time Weighted Average number in 
Transport Pick Up Queue 

1.568 

Time Weighted Average number in 
BobTail Pick Up Queue 

1.685 

Time Weighted Average number in 
DeadHead Pick Up Queue 

0.6766 

Time Weighted Average number in In-
coming Loads Queue 

14.43 

Average Time in Dispatch Pick Up 
Queue 

0.090 

Average Time in Transport Pick Up 
Queue 

1.565 

Average Time in BobTail Pick Up 
Queue 

10.510 

Average Time in DeadHead Pick Up 
Queue 

10.959 

Average Time in Incoming Loads 
Queue 

14.405 
187
Table 5: Sample Network Statistics 
Average BobTail (unloaded) miles per Load 334.224 

Average DeadHead (unloaded) miles per 
Load 

351.620 

Average Transport (loaded) miles per load 425.830 

Average Total miles per load 1111.674 

Average Load System Time 18.421 

Total Number of Loads processed 9973.0 

The illustrated statistics in Tables 4 and 5 are similar to 
those obtained in Petre (2000) when available.  Although 
not reported here, the framework collects all standard sta-
tistical summary measures (e.g. average, standard devia-
tion, half-width, minimum, maximum, etc) and can write 
the values to Excel or any database automatically. 

4 SUMMARY AND FUTURE RESEARCH 

The purpose of this research was to analyze and identify 
the fundamental elements necessary for modeling a ge-
neric Full Truck Load transportation network via simula-
tion. We classified and organized the modeling elements 
into a coherent set of objects having attributes, behaviors, 
and inter-relationships to form a framework. We provided 
a standardized model of the object-oriented transportation 
framework using the UML for documentation and dis-
semination of the framework. We used the framework to 
simulate a realistic truckload network using the data from 
a realistic test case. The performance statistics indicate 
that the framework can simulate such realistic networks. 
Using this framework, the user can develop and simulate 
their own truckload networks. This research has provided 
a prototype by which additional transportation elements 
can be modeled.  

Future work should involve the modeling of addi-
tional dispatching algorithms (e.g. based on a dynamic 
driver assignment mathematical model),  the development 
of decision and selection rules based on customer due 
dates, an improvement in the underlying connection to 
spatial models (e.g. maps), the incorporation of cost mod-
els, the modeling of LTL networks, and the modeling of 
vehicle routing networks. 
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