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ABSTRACT 

The problem of optimizing decision variables in a single-
stage replenishment loop with capacity-constrained batch 
processing is examined. Simulation and response surface 
methods are used to model total inventory and delivery 
performance for a continuous-review reorder point system 
and a single-card Kanban system. Performance tradeoff 
curves based on optimal settings are created using non-
linear optimization. The area under these curves is used as 
a single response for comparison. If tradeoff curves are 
experimentally replicated, main and interaction effects 
can also be statistically analyzed. Results show that under 
time-varying demand the reorder point system performs 
slightly better. Improvements in performance with setup 
time reduction are similar for both systems. 

1 INTRODUCTION 

Kanban and reorder point systems are both commonly 
used in supply chain replenishment. However, the differ-
ences with respect to the decision-making logic and per-
formance are not always well understood. This paper 
seeks to provide insight into the behavior of these types of 
“pull” replenishment. Performance under capacity-
constrained batch processing with significant setup times 
is of particular interest. The issue of optimally setting the 
decision variables, such as lot sizes, the number of Kan-
ban cards or the reorder point, is addressed. A methodol-
ogy that allows comparison of replenishment systems 
when each is run under optimal settings is presented. 
Along with differences due to replenishment logic, the ef-
fects of demand rates and lot setup times are also investi-
gated.  

Kanban systems have become well accepted, in part 
due to their simplicity and transparency. Specifically, 
some of the advantages can be identified as follows. First, 
Kanban systems do not require a separate inventory in-
formation system. Second, they are more robust with re-
spect to information accuracy. For example, since replen-
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ishment is not based on a current count, unaccounted for 
loss of inventory will not affect future replenishment in 
the same way as within a reorder point system. Third, 
Kanban systems are better at supporting continuous im-
provement. The status of orders is visible on the shop 
floor and adjustments can be made without interfacing 
with the information system. Finally, Kanban systems na-
turally limit the maximum inventory in the replenishment 
loop. This is important in the event of a failure within the 
replenishment loop, such as a machine breakdown. 

However, it can be argued that continuous-review re-
order point systems also have unique strengths. The set-
ting of the reorder point is more flexible. Since it is not 
associated with the status of Kanban cards the order point 
need not be a multiple of the lot size. As well, reorder 
point systems are more likely to use the information sys-
tem to transmit orders upstream electronically. This could 
mean that orders are communicated more quickly and re-
sponsiveness is improved. Finally, reorder point systems 
consider backorder information whereas Kanban systems 
do not. This may be an advantage when demand is highly 
variable or seasonal.  

Figure 1 illustrates the inventory positions over time 
for a single-card Kanban system with three cards in the 
replenishment loop. The order size associated with each 
Kanban is the lot size, LS. It can be observed that when 
demand increases and the inventory position becomes 
negative, the next order cannot be placed earlier than the 
next replenishment arrival, no matter how high backor-
ders become. Figure 2 illustrates a similar scenario using 
a continuous-review reorder point system. In this case or-
der placements are independent of delivery times even 
when the inventory position is negative. The final order 
illustrated is placed as soon as the inventory position falls 
one lot size below the reorder point. 

Krajewski et. al (1987) concluded that there was not 
much difference between Kanban and reorder point per-
formance. Other factors, like scrap rates, were found to 
have a greater impact on performance than the choice of 
replenishment system. Yang (1998) concluded a Kanban 
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system was superior. However, the Kanban logic was 
modified to essentially allow lot sizes of one and dis-
patching facilitated by setup time reduction. Since the lot 
sizing and dispatching policies were not consistently ap-
plied, it cannot be stated that the replenishment logic was 
responsible for the inferior performance of the reorder 
point system. Enns (2006a) explored the effects of se-
quentially processing lots of the same part type to reduce 
setups. This study concluded reorder points systems out-
performed Kanban systems with or without reduced-setup 
dispatching. Suwanruji and Enns (2006) concluded that 
reorder point systems are generally superior unless de-
mand patterns are level, in which case it is possible for a 
Kanban system to perform slightly better due to decreased 
lot interarrival time variability. 
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Figure 1: Replenishment with kanban system 

Reorder
Point

0

LS

Time

Order Placements

Lead time
Lead time

Lead timeLead time

LS

Figure 2: Replenishment with reorder point system 

Comparing replenishment strategies, such as reorder 
point or Kanban systems, raises the issue of performance 
measurement. In many cases some measure of delivery 
performance, such as mean tardiness or proportion of de-
liveries from stock, is of interest. However, delivery per-
formance is dependent on the inventory levels carried 
within the system. A tradeoff exists between delivery per-
16
formance and inventory levels. Therefore, most compari-
son studies take both types of measures into account. 

The problem then becomes one of dealing with two 
performance measures simultaneously. One approach is to 
set the performance level for one measure the same across 
all replenishment systems and then make comparisons on 
the basis of the other measure. For example, inventory le-
vels could be set the same across all replenishment sys-
tems and comparisons made on the basis of delivery per-
formance. The main challenge is to determine decision 
variable settings, such as lot sizes, Kanban cards or reor-
der points, that will result in equal inventory levels. This 
generally requires extensive experimentation. As well, 
conclusions are limited to results obtained at one particu-
lar inventory level. Jacobs and Whybark (1992) provided 
a study comparing material requirements planning (MRP) 
and reorder point systems using this approach. 

Another approach is to develop tradeoff curves. This 
requires obtaining inventory and delivery performance 
results over a range of relevant values. If the curve for one 
replenishment system dominates another, it can be con-
cluded that this replenishment system is superior. An ad-
vantage of this approach is that conclusions are based on a 
range of inventory or delivery service levels, not one par-
ticular point. Whybark and Williams (1976) illustrated 
this approach in an early study on safety leadtimes and 
safety stocks in MRP systems.  

However even with the use of tradeoff curves there is 
the problem of which decision variables to change in gen-
erating the tradeoff curves and what settings to use for the 
decision variables that remain fixed. For example, in 
Kanban systems the decision may be to select a particular 
lot size and vary the number of Kanban cards to experi-
mentally generate the tradeoff curves. Reorder point ex-
periments could then be run by using the same lot size 
and varying the reorder point. Other decision variables 
that could be considered include the number of transport-
ers (or frequency of delivery) and, if the system is capac-
ity constrained, the dispatch rule. The approach of varying 
only the number of Kanban cards or the reorder point 
while holding all other decision variables constant was 
used by Suwanruji and Enns (2006).  

Conclusions based on the tradeoff curve approach 
will be valid for the conditions tested but may not be gen-
eralizable, especially given that the fixed decision vari-
ables may not be optimally set. For example, it may be 
that the lot sizes are not set near optimal and this may af-
fect the relative performance of the Kanban and reorder 
point systems. Furthermore, there is no reason to believe 
that optimal lot sizes for the Kanban system will necessar-
ily be the same as those for the reorder point system. Ide-
ally comparisons should be made when all the decision 
variables for each replenishment system are optimally set. 
Comparisons under these conditions would allow more 
robust conclusions to be drawn. 
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The problem of finding optimal decision variables is 
not trivial. Even for simple problems, this is difficult be-
cause the decision variables interact and must be consid-
ered simultaneously. Enns (2006b) illustrated a method-
ology for comparing Kanban and continuous-review 
reorder point replenishment using optimal settings. The 
current study extends this research by considering multi-
ple experimental factors, such as demand rates and setup 
times, simultaneously. As well, select factors are run at 
three levels so that the linearity of behavior can be inves-
tigated.

The next section describes the methodology devel-
oped. A single-stage, capacity-constrained scenario to fa-
cilitate experimentation is then described. Experimental 
designs, results, analysis and conclusions follow. 

2 METHODOLOGY 

In the case of single-card Kanban systems the two deci-
sion variables most often considered are the lot size and 
the number of Kanban cards, or containers, in the replen-
ishment loop. For continuous-review reorder point replen-
ishment systems it is the lot size and the reorder point. 
These decision variables interact in determining perform-
ance and cannot be treated independently. Furthermore, 
there are commonly at least two types of performance 
measure of interest, one related to the inventory level and 
the other to delivery performance. A tradeoff between 
these two types of measure exists. Therefore the problem 
is one of obtaining the desired performance across multi-
ple performance measures through the selection of multi-
ple interacting decision variables. Since relationships to 
analytically deal with such problems are non-existent, an 
experimental approach is required. Response surface me-
thods (RSM) can be used for analysis and optimization if 
appropriate data can be collected. 

In this research simulations are first run based on an 
experimental design where both lot sizes and the number 
of Kanban cards or reorder points are changed over a 
range of values. The results from these runs can then be 
used to create a response surface model for the inventory 
levels. Another response surface model can be developed 
for the delivery performance. Equation 1 shows an exam-
ple of a cubic model for a Kanban system with only two 
decision variables, appropriate for a single product sce-
nario. The decision variables are KC, the number of Kan-
ban cards, and LS, the lot size. The two separate responses 
are TI, a measure of the inventory, and SL, a measure of 
the delivery service level. In this research TI is defined to 
be the total system inventory count, all inventory in transit. 
SL is defined as the proportion of deliveries from stock 
(i.e. not backordered). 
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One approach to find good combinations of decision 
variables is to set a target delivery service level, SL, and 
use nonlinear optimization to find the decision variables 
that will minimize the inventory, TI. Since the decision 
variables must be integer, this requires the use of integer 
programming. Equation 2 illustrates an example optimiza-
tion model where the proportion of deliveries from stock 
is targeted to be 0.85. 

IntegerLSKC
SLts
TIMin

,
85.0..

:
 (2) 

The inequality in the constraint is necessary since in-
teger values for the decision variables make it impossible 
to obtain a service level of exactly 0.85. Since TI is being 
minimized, the solution procedure will try to obtain an SL
value that is as small as possible without violating the 
constraints.

By plugging in various targeted service levels and 
solving Equation 2 each time, a performance tradeoff 
curve can be generated. This approach can be used for 
both the Kanban and the reorder point system. It is then 
possible to visually determine if one curve dominates the 
other.  

This type of approach is based on tradeoff curves 
created using fitted models. A better approach is to take 
the decision variable combinations along the optimal tra-
deoff curves and run them in the actual simulation model. 
This not only allows the fitted model errors to be elimi-
nated but also allows the tradeoff curves to be experimen-
tally replicated. A single response, namely the area under 
the curve, can then be used for statistical evaluation. Fig-
ure 3 illustrates two sets of tradeoff curves, each repli-
cated three times, along with the user-selected service 
level bounds (dashed lines) on which basis areas are to be 
compared. In this illustration the reorder point system 
(ROP) dominates the Kanban system (Kbn) since it results 
in less area under (or to the left of) the curve.  

Statistical differences between the areas for the two 
sets of response curves can be evaluated using analysis of 
variance (ANOVA) techniques. This approach allows 
both main and interaction effects to be evaluated when 
there are multiple experimental factors, resulting in nu-
merous sets of tradeoff curves.  

This methodology is summarized in Figure 4. Refer-
ence will be made to the specific steps in this flow chart 
when discussing the simulation experiments in Section 4. 
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Figure 3: Tradeoff curves for area calculations 

2. Run designed simulation experiments 
 Factors: Lot sizes (LS)
   Kanbans (KC), reorder points (OP)
 Measures: Total Inventory (TI), Service Level (SL)

3. Build response surface models 
             TI as response 
             SL as response 

4. Optimize LS and KC or OP settings
 Min TI
 s.t. SL constraints (50% to 95%) 

LS, KC and OP integers 

5. Generate trade-off curves using simulation 
TI versus SL

 Replicate tradeoff curves 

6. Calculate area under trade-off curves 

7. Perform statistical comparison 
Area as response 

1. Experimental Factor 
    Two levels of replenishment systems (Kbn or ROP)

Figure 4: Methodology flow chart 

3 EXPERIMENTAL SCENARIO 

A basic illustration of the scenario used in this research is 
shown in Figure 5. There are two part types that come 
from suppliers and are then processed on the same capac-
ity-constrained machine. The completed lots of processed 
parts become finished goods that are consumed by indi-
vidual customers taking single items. The customer de-
mand for each part type is Poisson but the rate is adjusted 
every time unit according to a seasonal demand pattern. 
The expected demand for both part types follows a sinu-
soidal pattern. The mean demand is treated as an experi-
mental factor. The demand pattern amplitude is assumed 
to equal 0.2 times the mean and the cycle length is 250 
time units. However, the demand patterns for the two part 
types are offset by 125 time units. Therefore the aggregate 
workload requirement at the machine is fairly constant 
through time. The actual demand rate during each time 
unit is based on sampling from a Normal distribution cen-
16
tered around the expected demand rate indicated by the 
sinusoidal demand curves. The standard deviation of this 
distribution is specified to be 0.1 times the expected de-
mand rate. Figure 6 illustrates an example of the demand 
patterns for the two part types, P1 and P2, through one 
demand cycle. In this diagram a time unit is assumed to 
equal one day. 
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Figure 5: Configuration of single-stage system 
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Figure 6: Demand pattern 

Replenishment is controlled by a single-card Kanban 
(Kbn) or a continuous-review reorder point (ROP) system. 
Performance is measured in terms of total inventory 
counts, TI, and the proportion of customer demand filled 
from stock, SL. If the desired part type is not in stock, a 
customer backorder is placed and then filled as soon as 
finished goods inventory is replenished. 

The two part types are assumed to be identical in 
terms of processing and replenishment time requirements. 
However a unique setup is required for each part type and 
they are not interchangeable with respect to the supply 
source or customer demand. This assumption simplifies 
the number of decision variables that must be dealt with 
since the lot sizes and the number of Kanban cards or re-
order points for both part types are assumed to be equal. 
The lot setup time for both part types is an experimental 
factor. Each part in the lot requires a processing time of 
0.008 time units. There is no uncertainty associated with 
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these times. When a lot has been completed, it is immedi-
ately made available as finished goods to meet customer 
demand. 

The logic for placing a replenishment order for the 
single-card Kanban system (Kbn) is given by Equation 3, 
where Qi,t is the order quantity for part type i at time t.
This equation assumes the Kanban card is released up-
stream for recirculation when a container is completely 
depleted.  

i
i
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OQOTORFGLSKC

Q
1)()1(
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,
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where: 
KCi  - Number of Kanban cards for part type i
FGi,t - Qty of part type i finished goods in stock  

 ORi,t - Qty of part type i orders released to sup-
plier but not yet filled 

 OTi,t - Qty of part type i in transit 
 OQi,t - Qty of part type i in queue or on machine 

When a lot of parts is depleted by customer demand, 
the Kanban card associated with this lot, or container, is 
made available for return to the supplier. There are 24 
transporters in continuous circulation in each of the re-
plenishment loops. The circuit for these is shown as 
dashed lines in Figure 5. It is assumed these transporters 
also carry other parts from the suppliers to the plant and 
therefore circulate even if there are no Kanban orders to 
fill for the given part types. Once a transporter makes a 
delivery from the supplier it immediately picks up any 
waiting Kanban cards for the same part type and then be-
gins the return trip to the supplier. The number of cards 
picked up may be zero or any integer value. The expected 
travel time to the supplier is described by a Gamma dis-
tribution with a mean of 8 and a standard deviation of 0.8 
time units.  

The supplier is assumed to always have parts in stock 
so there is no delay in filling any Kanban order. The tra-
vel time to the workstation follows the same distribution 
as the travel time to the supplier. The lots arriving at the 
capacity-constrained machine join a queue if the machine 
is busy. Lots are processed in first-come-first-served 
(FCFS) order, with each lot incurring a setup. The as-
sumptions are such that the Kanban cards and containers 
in circulation could be considered equivalent. A further 
assumption is that the decision variables remain constant 
through time despite the seasonality of demand.  

The logic for the continuous-review reorder point 
(ROP) system is given by Equation 4. 
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where: 
OPi  - Order point for part type i
BOi,t  - Quantity of part type i backordered 
1

The implementation for reorder point replenishment 
is different in that customer backorders are considered in 
the replenishment decision. In this research, all other as-
sumptions for the reorder point system were consistent 
with those for the Kanban system, including the delays in 
order transmission to the suppliers.  

4 EXPERIMENTAL DESIGN 

This section describes the experimental design, the ex-
periments and the process to obtain the optimal decision 
variables along each of the tradeoff curves dictated by the 
experimental design. Discrete-event simulations were per-
formed using Arena  5.0 (Kelton, Sadowski, and Stur-
rock 2004) and response surfaces were created using De-
sign-Expert® 7.0 software (Montgomery 2001). 

4.1 Factorial Design 

Three experimental factors were used in this research, as 
indicated by Step 1 in Figure 4. The first factor was the 
replenishment system (Sys). This was run at 2 levels; 
namely the Kanban system (Kbn) and the reorder point 
system (ROP). The second factor was the demand rate 
(DR). This was run at three levels. The third factor was 
the lot setup time (ST) and this was also run at 3 levels. 
Table 1 summarizes the settings used for each of the fac-
tors. A full factorial design meant that the total number of 
tradeoff curves along which optimal settings had to be de-
termined was 18. 

Table 1: Factor settings  
Factors Levels

Sys Kbn, ROP
DR 30, 40, 50
ST 0.1, 0.2, 0.3

4.2 Simulations for Response Surfaces 

As shown in Step 2 of Figure 4, combinations of lot sizes 
(LS) and Kanban cards (KC) or order points (OP) were 
run to obtain tradeoff curves in the region of optimal deci-
sion variable combinations for each factor setting combi-
nation. Three replications of each tradeoff curve were run. 
A typical set of curves, averaged across the three replica-
tions, is shown in Figure 7 as dashed lines. This figure is 
for curves obtained with Sys set as Kbn, DR as 40 per unit 
time and ST as 0.2 time units. Each curve represents use 
of a different number of Kanban cards and the points 
along each curve moving toward the right represent in-
creasing lot sizes.  

Typically at least seven Kanban or reorder point set-
tings were used along with each of at least 6 lot size set-
tings. This means at least 42 combinations were used in 
generating the data from which to create each of the 18 
628
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response surfaces. Since each curve was replicated 3 
times, the total number of simulation runs was at least 
2268 (42*3*18). Each simulation run was 2750 time units 
in length, with the first 250 time units used for initializa-
tion. 
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Figure 7: Tradeoff curves for response surfaces 

4.3 Response Surface Models 

Using sets of tradeoff curves similar to those illustrated in 
Figure 7 it was possible to generate separate response sur-
face models for both the inventory, TI, and delivery ser-
vice level, SL, measures. This conforms to Step 3 in Fig-
ure 4. 

Observations with service levels below 50% and 
above 99% were eliminated. It was then found that a cu-
bic model, similar to the one shown in Equation 1 fit both 
the TI and SL responses very well. As examples, Equa-
tions 5 and 6 illustrate the response surfaces obtained for 
Kbn with DR=40 and ST=0.2. These equations were gen-
erated using Design-Expert®. 

 TI = +7208.51896 
  -158.95079    * LS
  -777.20402    * KC
  +11.78467    * LS * KC
  +1.12471    * LS2

  +26.82223    * KC2

  -0.034387   * LS2 * KC
  -0.15455    * LS * KC2

  -2.72865E-003  * LS3

  -0.32885    * KC3         (5) 

SL =-50.42506 
  +0.99890    * LS
  +3.55111    * KC
  -0.033513    * LS * KC
  -7.69164E-003   * LS2

  -0.092943    * KC2

  +1.16369E-004   * LS2 * KC
  +1.72967E-004   * LS * KC2

  +2.12824E-005   * LS3

  +1.05648E-003   * KC3        (6) 
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4.4 Optimal Tradeoff Curves 

Optimal combinations of lot sizes and Kanban cards or 
reorder points along each of the tradeoff curves were next 
determined, as indicated in Step 4 of Figure 4. The re-
sponse surface models were solved to minimize total in-
ventory, TI, while target service levels, SL, were incre-
mented by 2.5% over the range of 50% to 95%. This was 
done using the Excel Solver® add-in. 

Table 2 illustrates an example of the optimal decision 
variables obtained for one tradeoff curve. These results 
are for Kbn with DR=40 and ST=0.2.

Table 2: Optimal tradeoff curve settings 
LS KC TI SL Util
82 10 898 0.537 0.835
75 11 913 0.550 0.853
76 11 931 0.597 0.851
77 11 950 0.641 0.848
71 12 964 0.651 0.865
72 12 984 0.699 0.862
67 13 1002 0.713 0.879
63 14 1025 0.741 0.894
64 14 1050 0.792 0.890
65 14 1074 0.839 0.886
66 14 1099 0.883 0.882
67 14 1124 0.922 0.879
63 15 1142 0.930 0.894
64 15 1169 0.967 0.890

5 EXPERIMENTAL RESULTS 

This section presents the results obtained when the opti-
mal decision variable combinations are run experimen-
tally and then analyzed using Area as a response. 

5.1 Optimal Experimental Tradeoff Curves  

Each of the 18 optimal tradeoff curves was replicated 3 
times using the same simulation model and run lengths as 
previous. This is indicated as Step 5 in Figure 4. 

A sample set of curves, averaged across three replica-
tions, with DR=40 is shown in Figure 8. From this graph 
it is obvious that the ROP system outperforms the Kbn
system at each setup time, especially at lower service lev-
els.

The optimal experimental curve for the Kanban sys-
tem with DR=40 and ST=0.20 is also shown plotted as a 
solid line on Figure 7. The fact that this line is above the 
tradeoff curves used to generate the response surface con-
firms it is closer to optimal. 

5.2 Tradeoff Curves Areas 

The areas under each replication of all the “optimal” tra-
deoff curves was next calculated, as indicated in Step 6 of 
9
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Figure 4. For convenience, calculations were constrained 
to be for the region with service levels between 75% and 
90%.  
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Figure 8: Optimal experimental tradeoff curves 

The areas were calculated using an algorithm that as-
sumed straight line segments between the points along the 
tradeoff curves. Computations were made using a Visual 
Basic for Applications (VBA) macro in an Excel work-
book. For example, the areas calculated for the three rep-
licated tradeoff curves using the settings shown in Table 2 
were 158.540, 157.266 and 157.005. 

5.3 Statistical Analysis 

Finally, as illustrated by Step 7 of Figure 4, the Area re-
sponse was analyzed using Analysis of Variance 
(ANOVA). The least-squares reduced model based on all 
optimal tradeoff curves is shown as Equation 7. The sys-
tem variable (Sys) was treated as –1 for Kbn and +1 for 
ROP.

Area = 96.68 - 0.8053 Sys - 1.752 DR - 147.7 ST + 5.700 
DR*ST + 0.07104 DR*DR  (7) 

This model had an R2-value of 99.8%. Residual anal-
ysis also confirmed a good fit. The sums of squares and p-
values for this model are shown as Table 3.  

Table 3: ANOVA results 
Sum of Mean F p-value

Source Squares df Square Value Prob > F
Model 96335.66 5 19267.13 6577.47 < 0.0001
Sys 35.02 1 35.02 11.96 0.0012
DR 92591.39 1 92591.39 31609.1 < 0.0001
ST 2323.74 1 2323.74 793.28 < 0.0001
DR*ST 779.92 1 779.92 266.25 < 0.0001
DR*DR 605.59 1 605.59 206.74 < 0.0001
Residual 140.6 48 2.93
Lack of Fit 55.83 12 4.65 1.98 0.0571
Pure Error 84.78 36 2.35
Cor Total 96476.27 53
163
Figure 9 shows a surface plot for the Area response 
using Kbn. The surface plot for ROP was very similar. 
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Figure 9: Surface plot of Area

6 DISCUSSION OF RESULTS 

This section examines the behavior of the replenishment 
systems in greater detail. 

6.1 Main and Interaction Effects 

The ANOVA results show that the difference between the 
Kbn and ROP performance is statistically significant. 
However, differences are relatively small and it is likely 
practical considerations would dominate the choice of 
which replenishment system to implement. 

The demand rate (DR) and lot setup time (ST) both 
have a significant impact on performance. As well, there 
is an interaction effect between these. Figures 10 and 11 
show interaction plots generated using Design-Expert®. 
Figure 10 shows that Area decreases linearly with setup 
times (ST) at each demand rate (DR). However, the rate of 
improvement with setup time reduction is greatest at high 
demand rates, as indicated by an increasing slope as the 
demand rate increases. 
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0



Enns
100

120

140

160

180

200

220

240

25 30 35 40 45 50 55
Demand Rate, DR

Ar
ea

Kbn_.1
Kbn_.2
Kbn_.3
ROP_.1
ROP_.2
ROP_.3

ST=.3

ST=.2

ST=.1

 Figure 11: Plot of Area versus DR

6.2 Adjustment of Service Levels 

Several observations were also made on the decision vari-
able settings required to obtain targeted service levels, SL.
First, the Kanban system is very granular in that increas-
ing or decreasing the number of cards by one can result in 
a big change in delivery performance. In this research the 
lot size was also allowed to change when targeting a spe-
cific service level. However, in practice it is likely that 
fixed lot sizes would be used. For this reason practitioners 
like Toyota sometimes change the frequency of lot deliv-
eries when adjustments to service levels are desired, such 
as when demand changes temporarily. In this research the 
frequency of lot deliveries was not a decision variable. 
The delivery pattern provided by the transporters was as-
sumed fixed. 

It was also observed that in the case of the reorder 
point system lot sizes affect delivery performance very 
little even if it is acceptable to change them. The reason is 
due to the use of backorder information. As lot sizes are 
decreased, more orders are simply released into the re-
plenishment loop. In other words, there is no limit to the 
orders that are released at any given time, unlike with 
Kanban systems. This behavior is illustrated in Figure 12. 
Each curve segment represents increasing lot sizes at a 
given order point (OP) level. If the lot sizes become too 
small, there are too many setups and machine utilization 
becomes too large. Service levels then fall off sharply, as 
illustrated by some of the tails on the segments. Fortu-
nately, reorder point systems allow order points to be 
changed by as little as a single unit. This makes adjust-
ment much less granular than for Kanban systems, where 
changing the number of cards is equivalent to adjusting 
by a complete lot size. 

7 CONCLUSIONS 

A methodology for finding optimal decision variable set-
tings for replenishment systems has been demonstrated in 
this research. This allows comparisons to be made on a 
more equitable basis. As well, use of the area under trade-
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off curves as a response has been illustrated. This helps 
overcome the problem of dealing with multiple interde-
pendent responses. It also facilitates performing statistical 
analysis of main and interaction effects, as illustrated in 
Section 5.3, to improve theoretical understanding of re-
plenishment behavior. However, this methodology is 
likely too cumbersome to be used in practice, especially 
as the number of decision variables increases. 
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Figure 12: ROP performance as a function of lot sizes 

This research has also contributed to understanding 
the behavior of replenishment systems by looking at three 
levels of factor settings. The linearity of behavior can 
therefore be examined. Results show that performance 
changes linearly with setup times under optimal settings. 
As well, at high demand levels the rate of improvement 
due to setup time reduction is greater. It is also interesting 
to note that the behavior of the two replenishment systems 
examined is very similar. The ability to use one model to 
fit the Area response for both the Kanban and reorder 
point experimental data confirms this.  
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