
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

USING ONTOLOGIES FOR SIMULATION INTEGRATION

Perakath Benjamin
Kumar Akella
Ajay Verma

Knowledge Based Systems, Inc.
1408 University Drive East

College Station, TX 77840 U.S.A.
ABSTRACT

This paper describes the motivations, methods, and
solution concepts for the use of ontologies for simulation
model integration. Ontological analysis has been shown to
be an effective initial step in the construction of intelligent
systems. However, the modeling and simulation
community has not taken advantage of the benefits of
ontology management technology. Moreover, the
popularity of semantic technologies and the semantic web
has provided several beneficial opportunities for the
modeling and simulation communities of interest. The
paper outlines the technical challenges in simulation
integration and describes an ontology-based method that
addresses these challenges. An example military combat
simulation application scenario is used to illustrate the
practical benefits of the simulation model integration
approach.

1 MOTIVATIONS

A key motivation for distributed, federated simulation
modeling is to allow for the decomposition of the target
system into smaller, more manageable components and to
distribute the model development effort among different
organizations and functional groups. Once the component
simulation models have been developed, there is a need for
mechanisms to assemble a simulation model of the entire
target system in a manner that ensures accomplishment of
system performance goals. The U.S. federal government’s
ongoing investments in distributed simulation and
initiatives such as the High Level Architecture (HLA) have
been motivated significantly by this idea. The idea of
distributed simulation is also critical to the success of
Simulation Based Acquisition (SBA) for federal
acquisition programs.

Designing and building a federated simulation
involves several inter-related activities, including the
following activities.
1081-4244-1306-0/07/$25.00 ©2007 IEEE
1. Members of the simulation modeling team must
agree upon a core “community of interest”
ontology.

2. The distributed and negotiation-based nature of
the simulation model design process requires the
sharing of knowledge that is described at different
levels of abstraction using a variety of
terminology sets / ontologies and housed in a
heterogeneous collection of simulation tools /
databases.

3. Simulation application designers lack of a
common set of template reference simultaion
models (i.e., a “simulation model design
handbook”) that has generally accepted validity
and well defined criteria for application.

4. The need to reuse pre-existing (“legacy”)
simulation models, data, and tools.

5. The need to fuse and harmonize information at
multiple levels of abstraction.

6. The need to faciliate semantic information
exchange between different simulation models,
tools, and databases.

The research described in this paper addresses the
technology requirements implied by the above activities.
We now outline the challenge of component based
simulation and composability—key ideas that motivate our
work.

1.1 The Challenges of Component-Based Distributed
Simulation and Composability

From a software engineering perspective, a “component” is
an independently deployable set of software services. The
component-based approach to software development is an
area of intense research and development in the
information technology community. This approach seeks
to provide the mechanisms that will allow developers to
assemble software systems from collections of re-usable
parts or building blocks. This approach has been very
successful in the hardware world as evidenced by the "plug
1

Benjamin, Akella, and Verma
and play" hardware peripherals for computers. The path to
success has been considerably slower in the software arena
owing to the inherent complexity of software. The
convergence to a relatively robust set of "standard"
languages and protocols in the past few years augurs well
for increasing plug compatibility in the software domain.
The challenge of component-based software has not,
however, been adequately addressed in the simulation
community. In particular, lacking are methods and tools
that address the hard technical challenges of semantic
interoperability and semantic composability.

1.1.1 Key Challenge 1: Semantic Inaccessibility

The semantic rules of the component simulation tools and
the semantic intentions of the component designers are not
advertised or in any way accessible to other components in
the federation. This makes it difficult, even impossible, for
a given simulation tool to determine the semantic content
of the other tools and databases in the federation, termed
the problem of semantic inaccessibility. This problem
manifests itself superficially in the forms of unresolved
ambiguity and unidentified redundancy. But, these are just
symptoms; the real problem is how to determine the
presence of ambiguity, redundancy, and their type in the
first place. That is, more generally, how is it possible to
access the semantics of simulation data across different
contexts? How is it possible to fix their semantics
objectively in a way that permits the accurate interpretation
by agents outside the immediate context of this data?
Without this ability—semantic information flow and
interoperability—an integrated simulation is impossible.

1.1.2 Key Challenge 2: Logical Disconnectedness

Even given a solution to the problem of semantic
interpretability, however, a further problem impedes full
cooperation among disparate systems/sub-systems.
Suppose, for instance, we have determined that a certain
representation R1 in a design model M1 is semantically
equivalent to a representation R2 in a given analysis model
M2, and that both R1 and R2 stand for the same entity.
Thus, the models M1 and M2 both carry information about
P. Suppose now that the information about P in M2 is
updated. This requires a change in the information carried
about P in M1. The fact that it is known that R1 and R2
are semantically equivalent in and of itself has no bearing
whatever on whether the implications of the change in M2
will be propagated to M1. The problem in question is that
the constraints between the particular pieces of information
generated by various component tools within the
simulation federation are rarely maintained. This is
referred to as the problem of logical disconnectedness.
10
2 ONTOLOGY-BASED SIMULATION MODEL
INTEGRATION METHOD

The principal hypothesis that underlies our method is as
follows: Semantic Information Exchange and Integration
for distributed simulation based applications will be
effectively enabled using an ontology-directed approach
that automates the mediation, sharing, and interchange of
semantic information from multiple types of domain and
simulation specification models (Benjamin et. al 2006a).

2.1 Ontologies and Ontological Analysis in
Simulation Integration

A key assumption is that the simulation modeling
environment has a set of pre-existing (and possibly partial)
ontology models. Different types of ontology models have
been found to be useful for simulation model integration as
shown in Figure 1.
1. Domain Ontologies. These are representations of the

knowledge in a well-circumscribed domain of interest.
A domain might be organized based on natural
phenomena (e.g., Biology, Physics, Geology) or based
on man-made systems (e.g., Transportation,
Telemetry, Semiconductor Equipment, etc.).

2. Community Of Interest (COI) Ontologies. These are
knowledge models that are organized around
communities of practice that share a common goal.
Examples of Communities of Interest include Military
Command and Control, Modeling and Simulation,
Military Combat, Clinical Medicine, etc.

3. Simulation Tool Ontologies. These ontologies
represent knowledge that is encoded within simulation
modeling tools. These ontologies capture the (implicit
or explicit) ontological commitments made by the
designers of these simulation tools. In our research,
we have studied the ontologies of several commercial
simulation tools including ARENA, Witness, and
FLAMES, and a few simulation tools used primarily
within the military M&S community such as
EAAGLES, AMBER, and JSAF.

Our experience indicates that it is possible to design
the COI Ontologies using multiple domain ontologies.
This design process involves the integration and
harmonization of multiple, possibly overlapping domain
ontologies as depicted in Figure 1. We have also identified
the need to perform comparative ontology analysis that
maps the Community of Interest Ontologies to the different
Simulation Tool ontologies (for the set of simulation tools
that are used in the context of a federated simulation
exercise).
82

Benjamin, Akella, and Verma
Figure 1. Ontology-based Simulation Integration involves Analysis Using Multiple Ontologies
A set of baseline ontology models will establish a
mechanism for performing mapping / comparative analyses
between the target simulation tool ontologies and reference
Community of Interest (COI) ontology. The value derived
through ontology model comparisons to determine
potential integration mismatches is illustrated in Figure 2.

Figure 2. Using Ontology Comparison for Mismatch
Assessment

Broadly, knowledge modeling mismatches are
categorized as Language Level and Knowledge Level
mismatches (see Klein 2001). Language Level mismatches
occur because of differences in syntax and expressivity (of
the languages used to represent multiple ontologies /
applications). Knowledge Level mismatches are grouped
1083
into two broad categories: (1) Conceptualization
Mismatches and (2) Explication Mismatches.

Conceptualization mismatches occur because of the
differences in the granularity and scope of different
ontologies (for example, a general ontology of space
transportation resources versus an ontology of resources
used for range system reconfiguration).

Explication mismatches are of three types: (i)
Terminology, (ii) Modeling Style, and (iii) Encoding.
Terminology mismatches arise because of the ambiguity of
natural language and the naming conventions used by
different organizations. The most common terminology
mismatches are those caused by synonyms (using different
words to refer to the same concept) and homonyms (the
difference in meaning of the same word used in different
contexts).

Modeling Style mismatches occur because of modeling
paradigm differences (for example, using temporal logic
based on time points versus time intervals) and modeling
conventions (for example, to allow for the distinction
between types and instances, and allowing for the
representation of relational properties such as transitivity
and symmetry).

Encoding mismatches occur due to formatting
conventions (date formats) and differences in scale (units
of measure differences, etc.).

Benjamin, Akella, and Verma
2.2 Example Application Scenario

Before describing our methodology, we outline an example
military combat simulation application scenario. This
scenario is used to illustrate the method in the subsections
that follow.

Figure 3 show an example tactical air combat scenario.
In this case, two F/A-18C Hornets are pitted against two
MiG-23 Floggers. The latitude and longitudes of the
aircraft, MiG23 Orbit, trigger locations (CM1 and CM2),
F/A-18 Orbit, and route for the BASE are depicted. Also
represented in the figure are the aircraft call signs, initial
altitude, initial heading, initial speed, and competency
factor; radius of orbits (MiG-23 and F/A-18); distance
between two trigger locations (CM1 and CM2); and
distance between aircraft and nearest trigger locations.
The F/A-18C fighters employ Electronic Suppression
Measures (ESM) and radar to continuously track and
monitor the position of MiG23 aircrafts. While the MiG23
aircrafts don’t have ESM capability, their radars are active
to locate F/A-18C fighters.

We now describe our method and illustrate its
application using the above example scenario. Our
Ontology-Based Simulation Model Integration Method
involves four inter-related activities: (1) Assess
Simulation Goals and Context, (2) Establish / Configure
210 36’ 49’’ N, 610 53’ 18’’ E
Call Sign - F18-1
Altitude - 29962 feet,
Heading - 330

Speed - 360 Knots
Competency - 0.85

210 56’ 7’’ N,
620 9’ 25’’ E
Radius 10 NM

240 43’ 32’’ N,
590 15’ 2’’ E
Radius 10 NM

MiG23
Orbit

F18
Orbit

210 40’ 59’’ N, 620 23’ 49’’ E
Call Sign - F18-2
Altitude - 29475 feet,
Heading - 3220

Speed - 360 Knots
Competency - 0.85

230 57’ 34’’ N, 590 35’ 5’’ E 230 56’ 12’’ N, 650 53’ 37’’ E

220 40’ 14’’ N, 650 55’ 19’’ E220 42’ 3’’ N, 590 48’ 33’’ E

CM1

CM2
BASE

220 18’ 26’’ N,
600 52’ 53’’ E

210 45’ 59’’ N,
600 25’ 30’’ E

210 30’ 57’’ N,
590 44’ 50’’ E

210 52’ 46’’ N,
580 39’ 59’’ E

240 37’ 56’’ N, 610 51’ 39’’ E
Call Sign - MiG23-2
Altitude - 29100 feet,
Heading - 1900

Speed - 400 Knots
Competency - 0.85

240 43’ 12’’ N, 600 36’ 4’’ E
Call Sign - MiG23-1
Altitude - 28700 feet,
Heading - 1450

Speed - 400 Knots
Competency - 0.8

91
 m

il
es

72
 m

ile
s

46
 m

ile
s

40
 m

ile
s

210 36’ 49’’ N, 610 53’ 18’’ E
Call Sign - F18-1
Altitude - 29962 feet,
Heading - 330

Speed - 360 Knots
Competency - 0.85

210 56’ 7’’ N,
620 9’ 25’’ E
Radius 10 NM

240 43’ 32’’ N,
590 15’ 2’’ E
Radius 10 NM

MiG23
Orbit

F18
Orbit

210 40’ 59’’ N, 620 23’ 49’’ E
Call Sign - F18-2
Altitude - 29475 feet,
Heading - 3220

Speed - 360 Knots
Competency - 0.85

230 57’ 34’’ N, 590 35’ 5’’ E 230 56’ 12’’ N, 650 53’ 37’’ E

220 40’ 14’’ N, 650 55’ 19’’ E220 42’ 3’’ N, 590 48’ 33’’ E

CM1

CM2
BASE

220 18’ 26’’ N,
600 52’ 53’’ E

210 45’ 59’’ N,
600 25’ 30’’ E

210 30’ 57’’ N,
590 44’ 50’’ E

210 52’ 46’’ N,
580 39’ 59’’ E

240 37’ 56’’ N, 610 51’ 39’’ E
Call Sign - MiG23-2
Altitude - 29100 feet,
Heading - 1900

Speed - 400 Knots
Competency - 0.85

240 43’ 12’’ N, 600 36’ 4’’ E
Call Sign - MiG23-1
Altitude - 28700 feet,
Heading - 1450

Speed - 400 Knots
Competency - 0.8

91
 m

il
es

72
 m

ile
s

46
 m

ile
s

40
 m

ile
s

Figure 3. Example Tactical Air Combat Scenario
10
Baseline Models, (3) Perform Simulation Integration
Assessment, (4) Determine Integration Information Flow
Requirements, and (4) Generate Model Integration Advise.

2.3 Simulation Integration Method

The activities of the simulation integration method are
described in greater detail in the following paragraphs.

2.3.1 Assess Simulation Goals and Scope

Preliminary and important steps in the development of the
simulation models are to define the simulation modeling
goals and the purpose, scope, and level of detail. Access to
an explicit representation of simulation objectives, scope,
levels of detail, experiment plans, and performance criteria
would assist (by providing “context”) with the downstream
design and integration of the component simulation
models. In particular, the results of this assessment may be
used later to perform in-context interpretations of the
component simulation models, the simulation data, and the
different ontology models.

In our example simulation based training model
scenario, the simulation goals and scope are expressed as
follows:
84

Benjamin, Akella, and Verma
1. Enhance pilot skills in the areas of Target
Acquisition, Communications, Situational
Awareness, Weapons Employment, and
Electronic Warfare for 2V2 DCA missions.
Instructor observations include assessment of
pilot performance in critical areas such as airspace
management, sensor employment, and post
engagement status communication. The
performance factors (for pilot performance
evaluation) include aircraft closure rate, weather,
enemy electronic emissions, multiple targets,
onboard weapons, and radar efficiency.

2. The reference ontology models (in this case, the
COI reference ontology is the “military combat
simulation ontology”) is used to unambiguously
interpret the terminology and concepts that are
embodied within the description of the simulation
goals (e.g., the meaning of the terms “Target
Acquisition, Communications, Situational
Awareness, Weapons Employment, and
Electronic Warfare”).

2.3.2 Establish and Allocate Model Requirements

The next simulation activities are (1) determine the
simulation modeling requirements and (2) allocate the
requirements to the different component models within the
simulation federation. In our example, the overall combat
10
mission functions may be decomposed into (a) the Friendly
Aircraft combat functions, (b) Enemy Aircraft combat
functions, and (c) the Combat Environment functions. An
IDEF0-based representation of the functional requirements
(for the example scenario) is shown in Figure 4. Perform
Simulation Integration Assessment
Simulation integration assessment involves four inter-
related activities: (1) Perform Process Mismatch Analysis,
(2) Perform Object Mismatch Analysis, (3) Perform
Abstraction Analysis, and (4) Perform Data Mismatch
Analysis. These activities are described in the following
subsections.

2.3.2.1 Perform Process Mismatch Analysis

This activity identifies simulation integration and
composability issues that arise because of inter-process
mismatches. The analysis is performed across multiple
processes in simulations targeted for integration. Multiple
types of process comparisons have been developed,
including the comparisons described in the following list.

1. Input – Output Inconsistencies: if the output of
activity A is input to B, then there should be a
precedence between A and B. If there is a
precedence relationship between B and A, then
the two information pieces (object dependencies
and precedence) contradict each other.
Figure 4. Example Functional Requirements Analysis – an Important Step in Federated Simulation Model Design
85

Benjamin, Akella, and Verma
2. Missing inputs: any input to an activity should
either be produced by some other activity in the
process or is an input to the process itself
(external input). Here the inputs necessary for a
given activity are calculated to be the inputs
required for each task in the activity minus the
objects produced internally within the activity.

3. Unused outputs: any object produced by an
activity in a process should either be consumed by
some other activity or should be the goal or
desired output of the process itself (output of the
process).

4. Rate mismatch: the rate of flow of “flow objects”
out of a given activity must be compatible with
the rate at which a downstream activity is
expecting flow object arrivals.

5. Infeasible resource allocations: the sum of
allocation of resources to the component model
activities must be less than or equal to the overall
model resource availability.

Figure 5 shows a detailing of our example scenario
that illustrates the information exchange between two
combat simulation tools. The illustration also identifies the
types of data that must be exchanged in order to simulate
the scenario.

Suppose that we use Simulation “Tool 1” to simulate
the dynamics of multiple aircraft and Simulation “Tool 2”
to mimic the performance of a ground based radar in the
108
emerging scenario. Assume that several aircraft are
airborne with friendly Blue aircraft and enemy Red
aircraft. Suppose also that a friendly ground station is
tracking various aircraft through radars that ultimately
influences the strategy employed by Blue force in
combating the Red force. In this example, Tool 1
simulates the Red and Blue forces, while Tool 2 simulates
the Ground Based Radar system. Initially the Red force is
outside the range of the ground based radars and hence the
Blue force is operating without the knowledge of the
whereabouts of the Red force. In time, as the Red force
gets closer it becomes visible to ground based radar. The
radar tracks both Blue and Red aircraft. Therefore, it is
initially tracking all the Blue force aircraft as they move
within range. As soon as the Red aircraft become visible,
they are also tracked and their position and heading
information are dynamically conveyed to Blue force. The
dynamic information updates enable the Blue force to react
in an appropriate manner as it engages the Red force in
combat.

The process mismatch analysis information for the
above scenario is illustrated in Figure 6. This example
illustrates the types of mismatches that might occur as the
Blue aircraft, the Ground Based Radar, and the Red aircraft
communicate with each other during the simulation
execution. In particular, the example shows mismatches
between the following attributes: (1) Coordinate_System,
(2) Time_Unit, (3) Distance_Unit, (4) Time_Step_Value,
and (5) Reference_Frame.
Figure 5. Dynamic Information Exchange in a Federated Air-To-Air Combat Simulation Scenario
6

Benjamin, Akella, and Verma
Figure 6. Process Mismatch Analysis Example
Ontological analysis helped facilitate the process
mismatch analysis techniques described earlier in this
section. In particular, the ontology mappings between
multiple ontolologies identified the semantic and
terminological differences of the information represented
in the simulation process models.

2.3.2.2 Perform Object Mismatch Analysis

This activity identifies simulation integration issues that
arise because of simulation object mismatches. This is
accomplished by performing comparative analyses of the
objects that reside within the different simulation models.
We have developed different types of comparative analysis
techniques including (1) Syntactic Analysis, (2)
Topological Analysis, (3) Lexical Semantic Analysis, (4)
Compositional Semantic Analysis, and (5) Information
Fusion.
 The above example illustrates the mismatches in the
terminology and semantics of multiple Radar ontologies.
Natural Language Processing (NLP)-based semantic
analysis techniques are used to interpret and compare the
text within the “Description” fields shown in the figure.
 Perform Abstraction Analysis This activity will
perform abstraction level mismatch analysis to (1) identify
simulation integration issues that arise because of multiple
levels of abstraction and (2) to determine information flow
requirements between simulations that are at different
levels of abstraction.
 The level of abstraction of a model determines the
amount of information that is contained in the model
(Benjamin et. al 1998). The quantity of information in a
108
model decreases with the levels of abstraction. Thus, a
“low level abstraction” model contains more information
than a “high level abstraction” model. To illustrate,
consider the simple example shown in Figure 7. Model M
transforms Input I to Output O. A decomposition of M
into M1, M2, and M3 shows a detailing of input – output
transformations that is hidden at the more abstract level.
Thus, I1, I2, and I3 are transformed by M1, M2, and M3 to
O1, O2, and O3, respectively, at the “lower” level of
modeling abstraction. This shows how the quantity of
information contained at the lower level is more than at the
higher levels. Therefore, it is convenient to think of
abstractions as a mechanism for selectively “hiding”
information.

M1

M2

M3
I3

I2

I1

O2

O3
O1

M
I O

Abstract

Detailed

Figure 7. Abstractions in Modeling
7

Benjamin, Akella, and Verma
Our abstraction analysis is used with different types of
models: (1) Process Models, (2) Ontology Models, and (3)
Information Models.

An essential ingredient of abstraction analysis is
ontology-based reasoning. The focus Community of
Interest (COI) Ontology Reference Model and the
mappings between the COI ontology and the different
component simulation tool ontologies are used to (1)
interpret and (2) disambiguate (at the semantic level) the
concept descriptions within the multi-level modes. We
have designed several “abstraction analysis rules” that are
used for the ontology-based abstraction analysis. These
rules are described below.

Consistency with respect to mean: checks whether
the abstraction parameter (e.g., time taken) is the same, on
average, across different levels of abstraction. This
involves identifying the beginning and the end of a given
process and then navigating through each activity to
calculate the total processing time.

Consistency with respect to variance of process
duration: checks whether the variation in the abstraction
parameter (e.g., time taken) is the same across multiple
levels of abstraction. This involves calculating the variance
of the parameter, performing F-tests for equality of
variances, etc.

Object definition consistency (omission): checks for
differences in object specifications across different levels
of abstraction. This involves identifying objects in the
detailed model that are not defined in the high-level model.
This also involves evaluating object definitions/properties
from the ontology models.

Object definition consistency (substitution): checks
for differences in object specifications across different
levels of abstraction. An object in the detailed model may
exist in the high-level model but may be known by a
different name, or may be a generalization. For example,
the detailed model may distinguish different types of
fighter planes but the high-level model may refer to all of
them by one name. Again, this involves evaluating object
definitions/ properties from the ontology models.

Variable unit mismatch: This rule checks if the
variables used in the two models to be integrated are
consistent with respect to units. Detailed models
sometimes use a finer unit of time (e.g., hours or minutes
instead of days or weeks).

2.3.2.3 Perform Data Mismatch Analysis

This activity identifies simulation integration issues that
arise because of simulation data mismatches. This activity
focuses attention on the data models used to represent
information within the component simulation tools that are
part of the federation. The data model representations
covered by our mismatch analysis include (1) the Unified
Modeling Language (UML) and (2) the Entity Relationship
(ER) modeling language. The data mismatch analysis
10
results are used to (1) diagnose potential simulation
integration issues and (2) determine simulation integration
(inter-tool) information flow requirements.

2.3.3 Assess and Harmonize Mismatch Analysis
Results

The mismatch analysis results from the (1) process, (2)
object, and (e) data perspectives are harmonized. The
results of this activity are used to (1) mediate the
information flows between the component simulation tools
through mismatch resolution and (2) determine (execution-
time) information exchange requirements between the
component simulation tools. We have implemented an
Ontology-Driven Translation Generation technique that
uses the inter-tool ontology mappings to automate the
generation of translators between the component
simulation tools (see Benjamin et. al. 2006a).

3 SOLUTION APPLICATION EXAMPLE

We have designed a solution application framework that
provides automated support for the simulation integration
method. The solution is called the Ontology-based
Simulation Integration Framework (OSIF) (Figure 8).
OSIF provides a “visual programming environment” for
rapidly composing, building, and maintaining federated
simulations.

Central to the OSIF solution concept are (1) OSIF
Model Libraries and (2) Reference Libraries. The “OSIF
Model Libraries” contain template models that encapsulate
structural and behavioral information that will allow for the
rapid composition of simulation from re-usable component
parts. The modeling procedure will involve selecting
appropriate templates, editing the templates, and
composing complex models by connecting multiple
components together. The model libraries will include
ontology templates, process (behavior) templates,
information meta-models, design patterns, and example
simulation models. The “Reference Libraries” refer to re-
usable and extendible “domain models,” including
reference ontologies, reference process models, and
reference information meta-models. The reference
libraries will provide a mechanism for composing and
integrating (at the semantic level) external simulation
models and tools from other environments / vendors. The
model Composition Workspace is used to browse and edit
the model libraries and provide a graphical user interface
for M&S application composition. The Composability
Assessment Tools (CAT) are invoked to (2) diagnose
mismatches between candidate models that are to be
integrated and (2) generate model reconfiguration advice to
revise model library components or candidate new models
that need to be integrated into the OSIF. The Ontology
Driven Translator Generator is used to generate translator
code between external models / tools and the OSIF.
88

Benjamin, Akella, and Verma
Figure 8. OSIF Conceptual Architecture
4 POTENTIAL BENEFITS

The principal short-term benefit of the solution described
in this paper is the significant reduction in time and effort
needed for developing and deploying distributed
simulation applications. Other important benefits are (1)
significant increases in the quality of information sharing
and communications for distributed modeling and
simulation applications, and (2) significant reductions in
the time and effort for semantic knowledge sharing,
communication, and semantic integration for modeling and
simulation applications. We are currently working on
designing and configuring multiple demonstration
applications of this research that will facilitate the
development and execution of distributed military
simulations to support Simulation Based Acquisition.
Longer term, we anticipate that this solution will provide a
sustainable mechanism for building simulations that
interoperate and share information at the semantic level.

REFERENCES

Benjamin, P.C., Erraguntla, M, Delen, D., and Mayer,
R.,1998. Simulation Modeling at Multiple Levels of
Abstraction, In Proceedings of the 1998 Winter
Simulation Conference, Washington, DC. 1998.

Benjamin, P. and M. Graul (2006a). A framework for
adaptive modeling and ontology-driven simulation.
Proceedings of SPIE, Enabling Technologies for
Simulation Science X, Vol.6227
108
Klein, M., Combining and Relating Ontologies: An
Analysis of Problems and Solutions. Workshop on
Ontologies and Information Sharing, pp. 53-62, In
Proceedings of IJCAI – 2001, Seattle, WA. August.

Petty M. D., and E. W. Weisel, “A Composability
Lexicon”, Proceedings of the Spring 2003 Simulation
Interoperability Workshop, Orlando FL, March 30-
April 4 2003, pp. 181-187, 2003.

AUTHOR BIOGRAPHIES

PERAKATH BENJAMIN is Vice President (R&D) at
Knowledge Based Systems, Inc. (KBSI), and manages and
directs the R&D activities at KBSI. Dr. Benjamin has been
responsible for developing advanced technology that is
being applied throughout industry and government.

KUMAR V. AKELLA is a research scientist at
Knowledge Based Systems, Inc. (KBSI). Dr. Akella's
areas of expertise include simulation modeling, ontology-
based semantic search, computer based training, design of
experiments, data and text mining.

AJAY VERMA is a research scientist at Knowledge
Based Systems, Inc. (KBSI) since 2000. Dr. Verma has
conducted extensive research and developed applications
in dynamics and controls, simulation, data mining, system
identification, signal processing, image processing,
optimization, neural networks.
9

