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ABSTRACT

Large, heterogeneous volumes of simulation data are cal-
culated and stored in many disciplines, e.g. in climate and
climate impact research. To gain insight, current climate
analysis applies statistical methods and model sensitivity
analyzes in combination with standard visualization tech-
niques. However, there are some obstacles for researchers
in applying the full functionality of sophisticated visualiza-
tion, exploiting the available interaction and visualization
functionality in order to go beyond data presentation tasks.
In particular, there is a gap between available and actually
applied multi-variate visualization techniques. Furthermore,
visual data comparison of simulation (and measured) data is
still a challenging task. Consequently, this paper introduces
a library of visualization techniques, tailored to support ex-
ploration and evaluation of climate simulation data. These
techniques are integrated into the easy-to-use visualization
framework SimEnvVis - designed as a front-end user inter-
face to a simulation environment - which provides a high
level of user support generating visual representations.

1 INTRODUCTION

Increasing computing power enables modelers to generate
larger simulation data sets. When trying to identify their un-
derlying properties — such as patterns and statistical relations
between the variables — exploration increasingly becomes
the bottleneck. Furthermore, there is an increasing demand
for methods which support the evaluation of the reliability
of conclusions based on simulation data.

For instance, in climate research a combination of sta-
tistical (e.g. clustering) and visualization methods (e.g. func-
tion plots, 2D-maps) are applied to explore the simulation
data and to evaluate the reliability of models (e.g. analyzing
multi-run experiment output). However, the application of
visualization focuses on standard techniques. These pro-
vide easily understandable plots such as time series graphs,
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bar charts and (animated) colored 2D-maps, ensuring their
comprehension by a large audience. However, these plots
are mainly restricted to uni-variate data and analysis of
special parts of a large data set at once, often leading to
a loss of overview. Thus, they are only of limited use de-
tecting possibly interesting, partly unknown features in the
multi-variate data, such as model inconsistencies or specific
model configurations of interest. Furthermore, standard
model comparison and evaluation techniques typically dis-
play difference plots or juxtaposed images, and may be
ineffective for in-depth data diagnosis tasks. Here, draw-
backs occur because the underlying data values are no longer
visible (in difference images) and comparing individual val-
ues or simulation data for small regions may be difficult or
even impossible in juxtaposed images.

Typical systems in the climate context for produc-
ing graphical representations range from Excel and Mat-
lab, general purpose visualization systems and geographic
information systems (e.g. ArcGIS <www.esri.com/
software/arcgis>) to special purpose visualization
solutions. However, there is a gap between the available
methodology of sophisticated visualization systems and the
applied visualization functionality in this field. In particular,
due to the size of the simulation data, researchers tend to
display their data sets statically in one image. Thus, the
immense potential of interaction functionality (brushing &
linking, overview & detail, focus & context) is exploited
only marginally.

Therefore, the approach of this paper is to provide a
variety of visualization and interaction methods to handle,
analyze and evaluate simulation data effectively. For this
purpose, a library of highly interactive visualization tech-
niques has been compiled, providing both standard tech-
niques and techniques adapted to the special requirements
of the analysis of climate and climate impact model data.
Besides a variety of tailored standard visualization (spa-
tial and temporal scalar and vector data visualization) this
paper presents special solutions for the comparative visual-
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ization of model output, and for multi-variate visualization
for multi-run simulation experiments.

Furthermore, problems occur in making the variety of
in the climate research context partly unknown techniques
available for the heterogeneous data sets (coupled multi-
dimensional and multi-variate scalar and vector data on
different grids). To support users in generating suitable
representations, mechanisms to guide them and to semi-
automatically “design visualizations” need to be provided.
Therefore, the easy-to-use, modular framework SimEnvVis
has been developed that enables modelers from different
research backgrounds (meteorology, physics, biology,...) to
get access to the various, state-of-the-art visualization tech-
niques.

2 RELATED WORK

Visualization techniques representing simulation data have
been developed for many years, and a wide variety of tech-
niques - especially for spatial and temporal data - has been
elaborated, see e.g. Wong and Bergeron (1997) and Mueller
and Schumann (2003) for an overview. However, there are
still challenges concerning certain tasks when analyzing
simulation data. This is especially true comparing spatial
patterns in model runs with each other and with measured
data visually (Pagendarm and Post 1995). This “compar-
ative visualization” allows the analysis of data differences
between data sets on the image (Zhou, Chen, and Webster
2002) and on the data level (Gelin 2002). However, typical
systems in the context of model simulations still focus on
image level comparison.

Furthermore, the analysis of multi-run simulation ex-
periments in high dimensional model parameter spaces is
still a challenging problem. Visualizations in this context
range from overview about variable statistics (bar charts,
e.g. rank correlations in tornado graphs), showing parts
of the parameter space (2D visualization, scatterplots) to
visualization of whole high-dimensional parameter spaces
(scatterplot matrices, parallel coordinates, star glyphs), see
Cooke and van Noortwijk (2000) for an overview. Although
first interaction techniques are used (e.g. Cooke and van
Noortwijk (2000) apply interactive filtering to parallel coor-
dinates to focus on model states of interest), there is still a
high potential for using sophisticated interaction techniques
(e.g. reordering and highlighting) to improve navigation in
high dimensional spaces.

Moreover, there is an increasing demand for information
about model uncertainties. To apply them in the (visual) data
analysis process and to communicate simulation results and
their uncertainty to desision-makers, tailored visualization
techniques need to be developed which intuitively code the
data and its uncertainty in the same image. Therefore, tech-
niques displaying uncertainties have been proposed (Pang,
Wittenbrink, and Lodha 1997, Djurcilov et al. 2001, Gri-
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ethe and Schumann 2005), but are not yet widespread in
simulation background such as climate modelling.

Besides the general purpose development of visualiza-
tion methods for simulation data, it is necessary to adapt
to the application context and its specific conventions and
tasks. For meteorological and climate data in particular,
a variety of visualization techniques have been developed
(see Schroder 1997 and Treinish 1999 for an overview)
and adapted to the background specifics (see e.g. American
Meteorological Society 1993). Techniques for the visual-
ization of meteorological and climate data have for instance
been built for scattered data (Treinish 1994), for scalar data
on 2D-regular grids (Stier et al. 2005), for scalar data
on 3D-regular grids (Riley et al. 2003), for vector data
(Griebel et al. 2004) and for data in their temporal con-
text (Saito et al. 2005). Additionally, some methods have
been elaborated to visualize the data in a multi-variate way
(Macédo, Cook, and Brown 2000, Doleisch, Muigg, and
Hauser 2004, Stier et al. 2005). However, the application of
sophisticated interaction techniques in meteorological and
climate studies is restricted to a few examples (Treinish
1999, Macédo, Cook, and Brown 2000, Doleisch, Muigg,
and Hauser 2004).

To give researchers access to such techniques,
there is a variety of monolithic tools and toolk-
its which specialize in visualizing meteorological
and climate data (Generic Mapping Tools (GMT)
<gmt.soest.hawaii.edu>), GrADS <grads.
iges.org/grads>, MAGICS <www.ecmwf.int/
publications/manuals/magics>, MCcIDAS
<www.unidata.ucar.edu/software/mcidas>,
Metview <www.ecmwf.int/publications/
manuals/metview/index.html>, Ocean Data
View <odv.awi-bremerhaven.de>, Vis5D
<visb5d.sourceforge.net>, and FERRET
<ferret.wrc.noaa.gov/Ferret>. Due to
their easy-to-use interfaces to plug in simulation
data sets, these tools are widespread among certain
sub-disciplines (e.g. GMT and Ferret for oceano-
graphic research). However, in comparison with
current visualization systems and toolkits (e.g. AVS
<www.avs.com>, OpenDX <www.opendx.org>,
InfoVis-Toolkit <ivtk.sourceforge.net>, Spotfire
<www.spotfire.com>, there are some limitations
which hamper new insights into hidden structures in the
multi-variate model output, especially because they focus
on the spatial visualization of individual variables.

3 A VISUALIZATION TECHNIQUE LIBRARY
3.1 General Approach

The approach of this work is to compile a library of visual-
ization techniques, and thus, making a variety of methods
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available for climate modelers which are suitable for ex-
ploring and evaluating large sets of multi-variate data. Such
a library reduces the requirements for a user to have knowl-
edge of internal data structures and flows as well as of
current visualization developments. To increase the user
acceptance of such a library, background specific standard
techniques are provided, enriched by a set of alternative
(multi-variate) visualizations. Challenges compiling such a
library are the heterogeneity of input data sets (especially
to achieve a high error tolerance, e.g. for simulation data
with inconsistencies) and the amount of data (handling large
data sets in the visualization process interactively).

Therefore, to reduce development costs, the functional-
ity of existing visualization systems has been used, supplying
easy-to-use interfaces. However, for large data, standard
systems are subject to efficiency restrictions. Thus, op-
timized library techniques can be implemented directly,
enabling direct access to data structures and hardware re-
sources. This flexible library design allows the coupling
of different systems and programming languages and the
combination of generally applicable visual methods with
the domain specific requirements (e.g. adapting terms or
background dependent color maps), reusing existing visu-
alization software if necessary.

Consequently, a library was compiled which supports
a variety of input data characteristics (1D, 2D, 3D, ND,
different grid types, ...) and analysis tasks, focusing on
exploration and evaluation tasks, providing overview tech-
niques for spatial and temporal data, enabling users to filter
their data and dynamically reload details on demand.

3.2 Standard Visualization Techniques for Climate
Model Simulation Output

To supply a range of standard visualizations with a manifold
of functionalities to (climate) modelers, the following visu-
alization modules for base data classes have been provided
(using OpenDX):

e 1D visualization: a set of time series plots (analysis
of single temporal variables and comparison of
variables)

e 2D/2.5D visualization: combined color, isolines
and height mapping (analysis of spatial distributions
and relations)

e 2D flow visualization: streamlines, glyphs and
color mapping (analysis of different features of a
2D vector field)

e 3D visualization: intersecting planes, parallel
planes, isosurfaces, decomposition methods, vol-
ume rendering

On one hand, these techniques include mechanisms for
adapting the generated representations to the background
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Figure 1: Streamline and arrow visualization of the hori-
zontal ocean velocity field generated with the CLIMBER-3
model.
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Figure 2: Colored representation of net primary production
of tropical broad-leaved evergreen trees.

and to the data specifics, for instance providing suitable
color maps, adding additional geographic information (for
a better orientation), mapping the data to the globe (to
analyze conditions around the poles) and changing between
interpolated and discrete data mapping.

Figure 1 shows an example for a 2D flow visualization,
tailored to display ocean vector fields. Here, the vertically
aggregated horizontal ocean vector field generated with the
CLIMBER-3 climate model (Montoya et al. 2005) has
been mapped to streamlines and arrow glyphs of constant
length, both color-coded by the vector field magnitude. This
procedure avoids problems of glyph occlusion and hardly
visible glyphs. The image illustrates a certain region of
interest, interactively selected by the user, and represents
extreme ocean flow conditions around the Cape Horn region.
On the other hand, a variety of parameters have been supplied
to enable a broad range of exploration tasks. For instance,
a set of transparency maps has been provided, allowing the
highlighting of extremes on demand.

A problem using standard techniques displaying gridded
spatial data occurs at high resolutions. Then, the visual
representations of single values or of value ranges of interest
become very small (down to a single pixel representation
on the display and smaller). As a solution to this problem, a
mechanism to interactively highlight value ranges of interest
has been integrated, using additional glyphs representing
these value ranges of interest. Figure 2 illustrates this for
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the example of the LPJ vegetation model output (Sitch et al.
2003). Here, a regular grid with a resolution of 720x360
grid cells makes it nearly impossible to identify single data
values. Thus, extreme values of net primary production are
accentuated using small colored glyphs. Overlapping may
not be avoidable, and therefore, as a first simple strategy,
glyphs are ordered by their values back to front, displaying
the most extreme values without occlusion.

4 COMPARATIVE VISUALIZATION OF CLIMATE
RELATED MODEL OUTPUT

Comparison of model output plays an important role in eval-
uating models. In particular, this includes inter-comparison
of model simulations and to compare them with measured
data. However, problems arise when comparing multi-
variate data, e.g. when analyzing how well a simulation
reproduces real world system states. Here, three problem
classes of rising complexity can be identified:

1. comparison of simulation data from a single sim-
ulation run (different time slices, space regions, or
variables),

2. inter-comparison of two simulation runs and com-
parison of simulated with measured data, and

3. comparison of a large set of simulation runs in an
ensemble/multi-run experiment scenario.

A major challenge in all these classes is to compare the
spatial patterns of the (partly 3D, time-dependent) data
multi-variately.

Typically, either many juxtaposed images (image level)
are used, or the data complexity is strongly reduced and
data are compressed. This is done by the computation
of aggregated variables, e.g. by the reduction of the spatial
dimensionality and by the comparison of the temporal trends
in the resulting time series only, by using clustering mapping
multi-variate data into a single variable, or by reducing the
dimensionality of a whole multi-run simulation ensemble
using sensitivity or uncertainty measures. On one hand,
global patterns can be easily perceived using image-level
visualization, and at the same time, occlusions are avoidable,
but small-size or even single grid point-related regional or
local patterns are difficult to compare. However, a large
number of variables reduces the efficiency of such an image
level comparison.

On the other hand, abstraction strategies enable dy-
namic generation of simplified views onto the simulation
data. However, to apply such abstraction methods and to get
knowledge about the underlying data, strategies are required
to show data slices or sub-sets on demand, preserving the
spatial and temporal reference of the data. For instance,
when using clustering, information about original data vari-
ables may be lost. Thus, to improve the user’s confidence
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in such methods, cluster properties (e.g. cluster centroids)
and the original data need to be reloaded and displayed on
demand (see Nocke, Schumann, and B6hm 2004, Nocke,
Schlechtweg, and Schumann 2005).

Although data-level comparison methods that visualize
several data sets in composed images (typically in their spa-
tial reference), were introduced already in 1995 (Pagendarm
and Post 1995), they are still not widespread (an exception
is the explicit mapping of data differences only). How-
ever, there is potential to use such methods for evaluating
simulation data, e.g. coding spatial/temporal uncertainties
intuitively.

To classify visual comparison methods, we assume the
following criteria:

level of comparison: image level, data level,
kind of data space to be compared: temporal
phenomena, spatial phenomena, hybrid, multi-
dimensional parameter spaces,

e number of dependent variables to be compared:
single variable, bi-variate, multi-variate,

e representation space: time-series plots, 2D maps,
3D volume visualization, multi-variate visualiza-
tion, hybrid,

e difference coding: explicitly (calc. of differences)
vs. implicitly (displ. the original data values),

e data abstraction to be compared: original values
vs. derived values (e.g. cluster properties),

e kinds of involved grids: similar vs. varying grids.

In the following sections, visualization examples for the
problem classes mentioned above will be shown, illustrating
different comparison strategies.

4.1 Comparison of Simulation Data from a Single
Simulation Run

Typically, animation techniques are used to visualize spatio-
temporal data. However, this hampers the comparison of
spatial structures and the tracking of interesting features.
Instead, 3D visualization becomes a suitable approach, map-
ping time to one of the axes (see Figure 3).

In doing so, features of interest can be tracked and
easily compared in their temporal evolution. Figure 3 (top-
left) uses an interactively selected set of parallel slices to
explore the dynamics of spatial pressure patterns, where
extreme values are highlighted (brown for regions of high
pressure and green for regions of low pressure). In Figure 3
(bottom), the initial state of the same model variable and the
extremes of changes related to this initial state are displayed,
focusing on both positive changes (yellow to dark red), and
negative ones (light to dark blue). To get an impression of
the patterns of original values in the initial state, the related
slice is displayed using a separate (gray-scale) color map.
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Figure 3: 3D comparative representation of spatio-temporal
sea level pressure conditions simulated with the climate
model CLM (Bohm et al. 20006); top-left: parallel slices
displaying extremes of the original values; top-right: semi-
transparent isosurfaces; bottom: differences of the extremes
related to the initial time step.

To track features in general, semi-transparent isosurfaces
can be used, showing when data exceed (appearance of
colored image areas), or remain below (disappearance of
colored image areas) a certain threshold, and the extent of
exceedance for such pressure thresholds of interest (Figure
3 top-right).

As a further family of methods to compare simu-
lated data of an individual run, multi-variate metaphor-
based iconic visualizations can be applied (Figure 4, Nocke,
Schlechtweg, and Schumann 2005). Here, simulation data
from a regular grid, reflecting the extremely low precip-
itation conditions, have been mapped to the locations of
observation stations, to compare the multi-variate maize har-
vest conditions in the different regions. For this purpose,
six parameters indicating the potential yield loss of maize
have been derived from the simulated precipitation (B6hm
et al. 2003). Furthermore, to identify regional agricultural
differences, these parameters have been derived and clus-
tered. They have been subjected to a multi-variate cluster
analysis, to identify endangered regions based on multiple
risk indicators. To get insight into the clustering results, the
cluster centroids representing the mean properties of a cer-
tain cluster have been visualized (see Figure 4). Therefore,
maize icons were separated into six parts (one for each yield
loss indicators), representing either bad conditions (brown,
narrow cobs), middle (light yellow, middle-thick cobs) or
good conditions (yellow, broad cobs) for the associated
indicators.

In particular, such a multi-variate visualization provides
an overview about dependencies between the individual in-
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Figure 4: Spatial representation of cluster analysis results for
six parameters describing the drought risk for maize in the
northeast Brazil, derived from a REMO model simulation.

dicators and enables users to compare their spatial patterns
together in a single image. Furthermore, regions of identical
cluster membership are merged by the developed visualiza-
tion technique, resulting in larger icons. Thus, homogeneous
regions can be easily distinguished from heterogeneous ones,
based on a multi-variate analysis of the underlying simula-
tion data properties. However, this kind of representation
for multi-variate clustered data is still restricted to one sim-
ulation or measured data set at a time (image level). Further
research is needed to examine, whether icons can be used
to compare two data sets in one image, too.

4.2 Inter-comparison of Two Simulation Runs and
Comparison of Simulated with Measured Data

Comparison of spatially represented data sets in one image
is still a challenging task (e.g. considering different grids).
A typical procedure is to map the data to the same grid and
to visualize differences on this grid. However, this may lead
to inaccuracies (smoothing of extreme values) and a loss
of the original data values in the visualization. A further
challenge is to visualize uncertainties of a model simulation
in an easy-to-understand manner.

To illustrate these problems and propose first solutions,
Figure 5 compares clustered risk indicators as derived from
a model simulation with those computed from measured
station data. For this kind of visualization, the aggregated
risk indicator rank was derived, identifying the overall risk of
maize yield loss based on the six indicators as used in section
4.1 (see also Figure 4). Then, in a first version, both the
aggregated measurement- and simulation-related data value
of a station are color-mapped to the upper and the lower part
of a square and laid out to the station positions (see Figure 5
left). Furthermore, the values of the cluster centroids a data
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Figure 5: Comparison of (clustered) potential yield loss risk
for maize, derives from measured data and simulated model
results (REMO); left: using square glyphs; right: using
color-coding (simulation data) and transparency (difference
between simulation and observation) on a triangulated grid.

point belongs to can be displayed for both data sets instead of
the original values and augmented by two legends to evaluate
if the (spatial) cluster structures of simulated data resembles
that of the measured data. This representation allows the
comparison of the simulation results at each station location
with the value measured there, without losing information
about the original values.

Drawbacks are occlusion problems in regions with a
high station density, and difficulties in separating larger
regions of good model predictions from bad ones. Further-
more, high values (bad conditions) catch the eye due to the
color map used, focusing on extreme values. Thus, to get
an overview of the simulation quality, a second technique
using transparencies to map differences to triangulated sta-
tion values has been compiled into the library (see Figure
5 right). To preserve the absolute values, either simulation
or measured data are mapped to color. The differences
between both data sets are mapped using transparencies
(low difference is represented by high opacity), more or
less occluding the underlying grid. This gives an intuitive
impression on the quality of the model results to represent
regional risk indicator patterns. The representation clearly
shows that certain regions with good (green) and medium
(yellow) growing conditions for maize in coastal regions
and in the interior are well reproduced by the model. It
also depicts that the simulation over-estimated the potential
yield loss for maize in the regions between coast and inland
linked to an underestimation of the simulated rainfall there.

The problem gets even more complicated if the data
sets to be compared are 3D. For isolated problems, special
solutions can be elaborated. As a special case, we assume
that differences between model runs are quite small and the
modeler is interested in analyzing these small differences.
Then, if there are only small spatial variations in the data,

708

Flechsig, and Bohm

special visualization techniques can be built. Figure 6 shows
two examples of an isosurface-based comparison of small
differences between two model runs. Because such isosur-
faces tend to penetrate each other, a first solution is to let the
user translate the grids (and thus the isosurfaces) relative to
each other (Figure 6 left). This allows the comparison of
overall shapes, however, there are still problems comparing
single values or small regions. Thus, for flat isosurfaces
(suitable e.g. for atmospheric variables), a method has been
developed that analyzes, whether a certain point of one of
the isosurfaces lies above or below the other isosurface or
if the isosurfaces penetrate each other at this point. This
information is then shown using red (above), blue (below)
and white (cut) value (Figure 6 left).

Figure 6: Comparison of two isosurfaces (temperatures,
CLM model); left: displacement of the isosurfaces to avoid
occlusions; right: color coding of one isosurface with the
point-to-point difference between the two isosurfaces.

4.3 Comparative Visualization of Multi-run Experiment
Outputs

To improve the understanding of model output from simu-
lation ensembles, visual analysis in combination with statis-
tical methods is commonly used (Cooke and van Noortwijk
2000). However, a large number of tested model parame-
ters and a large number of simulation runs to be compared
require alternative visualization approaches. Showing a cer-
tain plot may often lead to a loss of overview. Thus, our
approach is to consequently follow Shneiderman’s Mantra
“Overview first, zoom and filter, then details on demand”
(Shneiderman 1996), offering users a variety of views on
their multi-run experiment output data. In particular, this
includes a high degree of interactivity such as ordering and
highlighting data.

To get an overview, the library provides a variety of
techniques to visualize statistical aggregations of experiment
run ensembles, for instance information on the sensitivity
of the model results based on variations of the different
parameters. To identify and compare the sensitivities, stan-
dard visualization techniques such as scatter plots can be
used. However, using several such plots may lead to a loss
of orientation between them. Thus, a graphical table has
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| facter_sequ| avg_crdifp| std_crdifp | avg_eff | std_eff

Figure 7: Visualization of sensitivity measures of a global
sensitivity analysis (SWIM model Hattermann et al. 2005).

been implemented, mapping variable values to colored bars
(one bar for each table cell), mapping low values to large
bars from center to left (in yellow color), medium values to
small bars (black) and high values to large bars from center
to right. As an example, Figure 7 right displays the average
and standard deviation of two model outputs (eff, crdifp) of
a global sensitivity analysis (Morris 1991) of the hydrolog-
ical model SWIM (20 model parameters considered, 8400
model runs). This graphical table allows a compact display
of many variables at a glance. Interactive reordering helps
to find hidden patterns within the data.

Based on such an overview, the user can select sensitive
parameters and compare the related model runs in detail.
Especially suitable for analyzing high-dimensional data (for
both independent and dependent variables) with up to 15
variables are parallel coordinates. To efficiently use the
screen space, this technique lays out the coordinate axes
parallel and draws, according to the two variable values, a
line between neighboring axes. Arranging several axes in
this way and drawing lines between them leads to a bunch
of polylines. This is illustrated in Figure 8. Here, the most
sensitive parameters for the SWIM model output variable
crdiff have been selected and ordered by their significance
(left to right), and are displayed with the two outputs crdifp
(res_25) and eff (res_26). Then, to reveal patterns, the
user can interactively change line transparencies and select
certain variable value ranges. In this case, model runs of
extreme low values of crdifp have been selected and the
related lines have been color-coded, resulting in a certain
polyline pattern (see Figure 8).

Finally, if the user wants to get further details on patterns
as well as on the single values, the data can be displayed in a
graphical table. To illustrate this, a deterministic screening
experiment in the space of the three most sensitive parameters
was performed, and these parameters are displayed together
with the run number and the two model output variables
crdifp and eff (see Figure 9). To display a maximal number
of data records, the cells have been shrunk to the size of one
pixel. Thus, the modeler gets an overview about the whole
simulation ensemble, can interactively re-sort columns and
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Figure 8: Parallel coordinate representation of the SWIM
experiment scenario; the seven most sensitive parameters
are ordered by their significance (from left to right).
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Figure 9: Graphical table representation of a deterministic
screening experiment with SWIM (840 runs); sorted by
model output crdifp (res_04).

thus reveal dependency structures (e.g. identify multi-variate
input conditions that lead to certain outputs data value ranges)
and acquire values of interest by resizing the related rows.

5 THE SimEnvVis FRAMEWORK

Researchers are familiar with certain visualization enviro-
ments and techniques, and typically focus on a limited set of
tasks (e.g. find trends, present/communicate the results). To
reduce the obstacles to use a new visualization framework,
there must be a strong advantage doing so — in contrast to ex-
isting visualization tools such as Vis5SD — especially provid-
ing sophisticated visualization techniques and easy-to-use in-
terfaces to them. Therefore, the SimEnvVis framework (as a
frontend of the Multi-Run Simulation Environment SimEnv:
<www.pik-potsdam.de/software/simenv>; in-
put via NetCDF interface) has been developed, providing
a variety of the presented techniques to climate modelers.
SimEnvVis is designed as a visualization server, handling
server and client resource constraints on different hard and
software platforms, ensuring a high portability.
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Figure 10: Selection of visualization techniques ordered by
their suitablility in the SimEnvVis framework.

Besides these technical issues, the manifold of inte-
grated visualization techniques — partly not known to cli-
mate modelers — requires a substantial support selecting
and parameterising these techniques. Our approach is to
provide a visualization design wizard, which hides internal
system details and enables modelers to concentrate on the
analysis process itself. Figure 10 depicts part of the wizard,
showing available visualization techniques ordered by an
automatically calculated suitability.

Therefore, a two-step rule-based mechanism has been
developed, which generates images based on metadata, user
goals and profiles (see Nocke and Schumann 2002, Nocke
and Schumann 2004, Lange, Nocke, and Schumann 2006).
In a first step, the general suitability of a visualization
technique is estimated based on important metadata only
(e.g. no. of variables and data records). In a second step,
these techniques are parameterized based on rules. This
includes the selection of a visual mapping strategy (e.g.
isolines or/and coloring), the selection of a mapping of
certain variables to certain visual attributes (e.g. temperature
to colors) and the fine-tuning of the parameters (e.g. selection
of a color map). The following example illustrates two rules,
adapting the suitability of a certain mapping strategy:

getMetaData (Attributes, "Number") > 3 ?[+=0.7];
hasGoal ("overview") & hasGoal ("trends")?[+=0.1];

To futher increase the system acceptance to new users,
parameter dialogs can be simplified on demand, focusing
on main parameters only, using the others in default mode.
Thus, learning phase can be simplified, still allowing full
visualization control in later stages.

6 DISCUSSION AND CONCLUSION

In this paper, a library of visualization techniques for model-
ing and simulation in climate background has been proposed.
Therefore, standard visualization as well as in this field non-
typical representations have been provided and adapted to
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the specific application requirements. This library enables
climate modelers to get new insides into the simulation data.
The paper summerizes the state-of-art in climate visualiza-
tion and contributes a systematic analysis of chances of
comparative visualization and the application of alternative
techniques for different types of comparison tasks. Finally,
to support modelers generating images suitable for their
current data and goal, the paper introduces the easy-to-use
visualization framework SimEnvVis. It has been successful
in the analysis of a variety of simulation data sets, and we
have had positive feedback from climate researchers.
However, there are still challenges for future work. This
includes improving the proposed techniques and further
testing them with the modeler’s requirements. A further
challenge is to apply visualization to all phases of the
modeling process (e.g. illustrating the structure of the model
itself, see e.g. Schulz, Schumann, and Nocke 2006).
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