Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

LANDMARK PAPER REPRISE - EFFICIENT AND PORTABLE 32-BIT RANDOM VARIATE GENERATORS

Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

EFFICIENT AND PORTABLE 32-BIT
RANDOM VARIATE GENERATORS

Pierre L’Ecuyer
Département d’informatique
Université Laval
Ste-Foy, Qué., Canada, G1K 7P4.

ABSTRACT

‘This paper presents some Multiplicative Linear Congru-
ential Generators (MLCGs) and one generator that combine
two MLCGs. The individual MLCGs use short multipliers
that are nearly optimal based on the spectral test. The short-
ness of the multipliers leads to fast and portable implementa-
tions. The combination method produces a generator whose
period is the least common multiple of the individual periods.
These generators can also be split into many “independent”
generators (i.e. that produce disjoint subsequences) and it
is easy to skip a long subsequence of numbers without doing
the work of generating them all.

1. INTRODUCTION

Generating random variates between 0 and 1 is fun-
damental to stochastic simulation and has been the sub-
ject much theoretical research; see Bratley, Fox and Schrage
(1983), Knuth (1981) and Niederreiter (1978). But still, the
most commonly used generators on today’s computers are
far from perfect. Some are bluntly bad, others have a rather
weak theoretical justification; see e.g. Modianos, Scott and
Cornwell (1984).

All practical “random variate” generators on comput-
They
produce a periodic sequence of numbers which should look
“apparently random”. A generator is thus defined by a finite

ers are actually deterministic finite state automata.

state space S, a function f: S — S and an initial state so
called the sced. The state of the generator evolves according
to the recursion

i=1,2,3,...

(1)

si:= f(si—1),

and the current state s; at stage 1 is usually transformed into
a real value between 0 and 1, according to

Ui := g(si) (2

275

where g : § — (0,1). The period of the generator is the
smallest positive integer p such that for some integer v > 0,

Uipp = Ui foralli > v. (3)

The choice of f and g should be based on a firm the-
oretical ground. A good generator should be fast, use few
computer memory words, be portable and above all, have
good statistical behavior.

A rather popular kind of generator today is the multi-
plicative linear congruential generator (MLCG), for which
f(s) = as MOD m;
4
g(s) = s/m;
where the modulus m and the multiplier @ < m are positive
integers. The maximal period of such a generator is p =
m — 1; when m is prime, it is attained if e is a primitive
element modulo m (see Knuth (1981), page 19).

MLCGs with too small modulus have too short periods
to be used safely for serious applications, while MLCGs with
large modulus are often tricky to implement, especially on
smaller word size computers. Wichmann and Hill (1982)
and Bratley, Fox and Schrage (1983) have proposed a very
efficient way to implement a portable MLCG with modulus
m using only integers between 0 and m, when a satisfies :

(5)

a? < m.

Fishman and Moore (1986) made an exhaustive search
of all multipliers a for a MLCG with modulus m = 23! —~ 1,
to find the “optimal” ones, based on the spectral test in
dimensions 2 to 6. Unfortunately, none of their 400 best
multipliers satisfy the inequality (5). We have done a similar
search for the best multipliers a, but among those which
satisfy (5). The search has been made for a collection of
values of m, namely the 50 largest primes smaller than 231,
These multipliers are nearly optimal based on the spectral
test and yield generators that are much easier to implement.
A summary of the results appears in section 2 of this paper.

P. L’Ecuyer

Often, the whole sequence of numbers produced by a
generator must be split into disjoint subsequences, to pro-
duce so called “independent streams”. This is usually nee-
essary e.g. for variance reduction purposes. Sometimes, the
disjoint subsequences must be split further to make indepen-
dent replications. In a simulation software environment, all
this splitting could be done beforehand, provided that (i)
the period of the underlying generator is long enough and
(ii) for any positive integer k, there is a fast way to “jump”
from state s; to state s;4x (without generating all intermedi-
ate values, of course). The latter is easily done with a MLCG
(see Marse and Roberts (1983) and L'Ecuyer (1986)). To ob-
tain longer periods, one could combine two or more pseudo-
random number generators. The combination is also an in-
tuitively appealing heuristic, often supported by empirical
tests, to improve the statistical behavior of the generators.
A convenient combination method should keep property (ii)
above. Some methods, like shuffling (Nance and Overstreet
(1978)}, don’t.

Consider a family of ! generators where for j = 1,...,1,
generator j is a MLCG with modulus m; and multiplier aj,
and evolves according to :

sii 1= fj(85i-1) = aj85,i—1 MOD m;. (6)

We may combine these individual MLCGs to obtain a gen-
erator whose state at stage i is denoted by s;. If s; is a
function of only s,,... +»$1,i, then jumping from s; to s;4x
can be done easily : it suffices to jump from s;,; to 8,44 for
F=1,...,1,ie. for each individual MLCG, and then make
the combination.

The combined 32-bit generator presented in section 3 of
this paper is based on this approach, with ¢ = 2. Its period
exceeds 2.3 x 10°%, It has been submitted to a battery of
statistical tests, with highly satisfactory results.

L’Ecuyer (1986) contains a formal presentation of the
combination method used here, a more extensive discussion
on implementation considerations and on the search for good
multipliers, and the results of statistical tests.

2. GOOD MULTIPLIERS

It is well known (see Marsaglia (1968) or Knuth (1981))
that all the k-tuples Pix = (Uis1,...,Uisx) of successive
variates generated by a MLCG lie on a set of equidistant
parallel hyperplanes in the k-dimensional hypercube fo, 1]%.
The spectral test (see Knuth (1981)) computes the maximal
distance dx(m,a) between any pair of adjacent parallel hy-
perplanes in dimension k. The smaller that maximum, the
better is the generator, but there is a theoretical lower bound
d;.(m) on dx(m, a); see Knuth (1981), p. 105.

We applied the spectral test for the 50 largest primes m
smaller than 2%! — 1 to find, among all multipliers e < \/m
that are primitive elements modulo m, those that perform
well in every dimension & between 2 and 6. More specifically,
we found those pairs (m, a) for which the normalized worst
case measure

Ma(m.a) = min, AL ™
is the largest (the closest to unity). The three best are given
in table 1. These are much better than the often recom-
mended pair (m = 2147483647, = 16807) (see Schrage
(1979)), for which Mg(m, a) = .3375, and nearly as good as
the best pair found by Fishman and Moore (1986), namely
(m = 2147483647,0 = 742038285), for which Mg(m,a) =
.8319. Each of these three MLCGs is easy to implement
in any high level language using the technique explained in
Bratley, Fox and Schrage (1983), page 201.

Table 1. The three best (m, a) pairs.

m a Mg(m,a)
2147483399 40692 .8051
2147483563 40014 .7885
2147482811 41546 .7870

3. A COMBINED 32-BIT GENERATOR

We propose a combined generator based on the following
recursion :
$1,6 o= (40692 X s;,;_;) MOD 2147483399;
82,0 1= (40014 x s3s_1) MOD 2147483563;
8i:= (81,0 + 83, — 2) MOD 2147483562;
Ui := (si +1)/2147483563;
where 31,0 and s3,0 are appropriate initial seeds. Again,

a portable implementation is easily done in any high level
language, using the technique suggested above for each of

Efficient and Portable 32-Bit Random Variate Generators

the two individual components. The validity of the com-
bination follows from Lemma 1 in L’Ecuyer (1986). The
two individual MLCGs have periods py = 2147483398 and
p2 = 2147483562 respectively. The period of the combined
generator is the least common multiple of the individual pe-
riods, namely (py x p3)/2 = 2.30584 x 10'®, A Pascal code
for this generator, and the results of extensive statistical test-
ing, appear in L’Ecuyer (1986). The tests raised no apparent
defects.

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada grant
A5463 and FCAR-Quebec grant # EQ2831. The author
thanks prof. Bennett L. Fox for many helpful suggestions.

REFERENCES

Bratley, P., Fox, B. L. and Schrage, L. E. (1983). A Guide
to Simulation. Springer-Verlag, New York.

Fishman, G. S. and Moore III, L. S. (1986). An Exhaustive
Analysis of Multiplicative Congruential Random Num-
ber Generators with Modulus 23! — 1. SIAM Journal on
Scientific and Statistical Computing 7, 1, 24-45.

Knuth, D. E. (1981) The Art of Computer Programming :
Seminumerical Algorithms, vol. 2, second edition. Ad-
dison-Wesley.

L'Ecuyer, P. (1986). Efficient and portable combined pseu-
do-random number generators. Research report no.
DIUL-RR-8612, Département d’informatique, Universi-

té Laval, Ste-Foy, Québec, Canada.

Marsaglia, G. (1968). Random Numbers Fall Mainly in the
Planes. Proceedings of the National Academy of Sciences
of the United States of America G0, 25-28.

Marse, K. and Roberts, S. D. (1983). Implementing a
Portable FORTRAN Uniform (0,1) Generator. Simu-
lation 41, 4, 135-139.

Modianos, D. T., Scott R. C. and Cornwell, L. W. (1984).
Random Number Generation on Microcomputers. In-
terfaces 14, 2, 81-87.

Nance, R. E. and Overstreet Jr., C. (1978). Some Experi-
mental Observations on the Behavior of Composite Ran-
dom Number Generators. Operations Research 26, 5,
915-935.

Niederreiter, H. (1978). Quasi-Monte Carlo Methods and
Pseudo-random Numbers. Bulletin of the American
Mathematical Society 84, 6, 957-1041.

Schrage, L. (1979). A More Portable Fortran Random Num-
ber Generator. ACM Transactions on Mathematical
Software 5, 2, 132-138.

Wichmann, B. A. and Hill, I. D. (1982). An Efficient and
Portable Pseudo-random Number Generator. Applied
Statistics 31, 188-190.

AUTHOR’S BIOGRAPHY

PIERRE L’ECUYER is an Adjoint Professor in Com-
puter Science at Laval University, Ste-Foy, Québec, Canada.
He received the B.Sc. degree in mathematics in 1972, and
was a college teacher in mathematics from 1973 to 1978. He
then received the M.Sc. degree in operations research and
the Ph.D. degree in computer science, in 1980 and 1983 re-
spectively, both from the University of Montreal. From 1980
to 1983, he was also a research assistant at I’'Ecole des Hautes
FEtudes Commerciales, in Montreal. His research interests are
in Markov renewal decision processes, approximation meth-
ods in dynamic programming, discrete-event simulation and
software engineering. He is 2 member of ACM, IEEE, ORSA
and SCS.

Pierre L’Ecuyer
Département d'informatique
Pavillon Pouliot

Université Laval

Ste-Foy, Qué., Canada

G1K 7P4

(418) 656-3226

