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ABSTRACT

In this paper, we investigate results on relationship between
different semantics of place/transition Petri nets based on
labelled partial orders. We also discuss relationships be-
tween so called commutative processes representing collec-
tive token philosophy and individual process semantics of
place/transition nets.

1 INTRODUCTION

The study of concurrency as a phenomenon of systems
behavior becomes much attention in recent years, because
of an increasing number of distributed systems, multipro-
cessors systems and communication networks, which are
concurrent in their nature. Petri nets are one of the most
prominent formalisms for both understanding the concur-
rency phenomenon on theoretical and conceptual level and
for modelling of real concurrent systems in many application
areas, see e.g. Jensen (1997), Volume III. Among others,
they became an accepted platform for modelling, control and
analysis of various kinds of discrete event dynamic systems
(Cassandras and Lafortune 1999) including communication
networks (see e.g. Billington, Diaz, and Rozenberg 1999)
and flexible manufacturing systems (see e.g. Zhou and Di
Cesare 1993), and for modelling and analysis of workflow
processes (van der Aalst, Desel, and Oberweis 2000, van
der Aalst and van Hee 2002), to mention only a few of
them.
There are many reasons for that, among others the combina-
tion of graphical notation and sound mathematical descrip-
tion, see e.g. Desel and Juhás (2001) for a more detailed
discussion.

Very often, the thesis of Carl Adam Petri (Petri 1962)
written in the early sixties is cited as the origin of Petri
nets. However, Petri did of course not use his own name for
defining a class of nets. Moreover, this fundamental work
does not contain a definition of those nets that have been
called Petri nets later on, i.e. the definition of place/transition
6171-4244-1306-0/07/$25.00 ©2007 IEEE
Petri nets, which follows the concept of vector addition
systems (Karp and Miller 1969) and can be understood as
a natural extension of Petri’s definition. A place/transition
Petri net (shorty a p/t net) is a weighted directed graph with
two kinds of nodes, interpreted as places and transitions,
such that no arc connects two nodes of the same kind. The
arcs are weighted by positive integers. Graphically, places
are usually depicted by circles, transitions by rectangles. A
local state of a place of a p/t net is given by a nonnegative
integer, or graphically by a number of black tokens in a
place. The global state of a p/t net, called a marking, is
constituted by all local states. Formally, a marking can
be given as a multiset of places (called also bag), or as a
vector of nonnegative integers. Given a transition t, the set
of places, which are connected with t by an arc ingoing to t,
is called pre-set of t. The set of places, which is connected
with t by an arc outgoing from t, is called the post-set of
t. Transitions of a p/t net can occur, changing the state of
the net, and their occurrences represent events. Namely, a
transition can occur (it is also said that it is enabled to fire),
if each place in its pre-set contains at least so much tokens
as the weight of the connecting arc. If an enabled transition
occurs, then it removes from each place in its pre-set the
number of tokens given by the weight of the connecting
arc and adds to each place in its post-set the number of the
tokens given by the weight of the connecting arc.

As mentioned by Tony Hoare in Hoare (2002): Different
definitions (of semantics) can be safely and consistently
used at different times and for different purposes. It is a
characteristic of the most successful theories, in mathematics
as well as in natural science, that they can be presented in
several apparently independent ways, which are in a useful
sense provably equivalent.

In this paper we investigate the relationship between
the different variants of semantics of place/transition Petri
nets.

There are several ways to describe concurrency in com-
putations of Petri nets. The simplest way is to extend the
usual sequential semantics, where sequences of transition
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Figure 1: A p/t-net together with two process nets, where
transition c occurs after transition a or transition b.

occurrences describe computations of nets, to semantics of
sequences of steps of transitions which are enabled to oc-
cur concurrently in a marking. Here steps are multisets of
transitions, which enable to express auto-concurrency.

However it can be easily checked, that in this way
concurrent executions of transitions can be expressed only
in a restricted way. For illustration, consider the marked
p/t net (i.e. a p/t net with a fixed initial marking) given in
Figure 1. Here transition c can occur after transition a and
concurrently to the sequence ac transition b can occur. This
kind of a non-sequential computation cannot be directly
expressed by a step sequence.

Therefore, labelled partial order seems to be a better
choice to formalize non-sequential semantics (see e.g. Pratt
1986, Grabowski 1981). The above mentioned computa-
tion can be described by the left (labelled) partial order
in Figure 2. In this concrete computation, it is enough to
take a partial order between executed transitions. Because
in a computation some transitions can repeatedly occur,
in general one has to use labelled partial orders (shortly
LPOs). Vertices of such an LPO (usually called events)
are then labelled by transitions of the net. These LPOs are
called pomsets (partially ordered multisets) in Pratt (1986),
emphasizing their close relation to partially ordered sets (we
have multisets here because the same transition can occur
more than once in a pomset, formally represented by two
distinct events labelled by the same transition name). LPOs
are called partial words in Grabowski (1981), emphasizing
their close relation to words or sequences; the total order
of elements in a sequence is replaced by a partial order.
Actually, pomsets and partial words do not distinguish iso-
morphic LPOs, because the order of transition occurrences
only depends on the labels.

The natural question arises: which partial orders, la-
belled by transitions of a marked p/t net, do express non-
sequential computations of a given marked p/t net?

The answer has close relationships with the step se-
mantics. Namely, in Grabowski (1981), Kiehn (1988) it is
suggested to take as non-sequential computations labelled
618
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Figure 2: Underlying partial orders of process nets from
Figure 1.

partial orders satisfying: For each slice of events (i.e. for
each maximal set of unordered events) there holds: The
concurrent step of events in this slice is enabled to occur in
the marking obtained by occurrence of all events smaller
than the slice. Technically, a labelled partial order with a
special structure can be associated to each step sequence
in a natural way. In such a labelled partial order, the slices
are exactly the sets of events which represent the occurred
steps of transitions. These slices are totally ordered with
respect to the ordering given by the step sequence, i.e. the
labelled partial orders associated with step sequences are
stepwise linearized (every event belongs exactly one slice).
The criterion whether a labelled partial order is a compu-
tation can be elegantly reformulated using step sequences
as follows (Kiehn 1988): A labelled partial order l po is
a computation iff for every slice S there exists a labelled
partial order l poS of a step sequence with slice S, which
includes l po. Let us call the labelled partial orders which
fulfil the above criterion enabled to occur. Observe that per
such a definition, labelled partial orders of step sequences,
which are enabled to occur in a marked p/t net, are enabled.
Moreover, every enabled labelled partial order can be per
definition obtained by intersection of a set of labelled par-
tial orders of some enabled step sequences. An important
property of enabled labelled partial orders is their closeness
w.r.t. sequentialization: if a labelled partial order l po is
enabled, then every labelled partial order which includes
l po is enabled.

Another possibility to express non-sequential compu-
tations of p/t nets, is to take processes of Goltz and Reisig
(1983), which are special kind of acyclic nets, called occur-
rence nets, together with a labelling which associates the
places (called conditions) and transitions (called events) of
the occurrence nets to the places and transitions of the orig-
inal nets preserving pre- and post-sets in the way illustrated
in Figure 1. Processes can be understood as (unbranched)
unfoldings of the original nets: every event in the process
represents an occurrence of its label in the original net. Ab-
stracting from conditions of process nets, labelled partial
orders on events representing transitions are defined. These
labelled partial orders, called also runs here, express only
the causality between events and tell us in addition which



Juhás, Lehocki, and Lorenz
events happen independently, in contrast to enabled labelled
partial orders, which can contain some sequentializations of
events, which are not causally ordered. A special role play
those runs, which are minimal w.r.t. inclusion: they express
the minimal causality between events. An important result
relating enabled labelled partial orders and minimal runs
was proven in Kiehn (1988), Vogler (1992), Vogler (1992):

• Every enabled labelled partial order includes a run.
• Every run is an enabled labelled partial order.
• Therefore, minimal enabled labelled partial orders

equal minimal runs.

In contrast to sequential semantics and step semantics,
processes distinguish between the history of tokens. An
example is shown in Figure 1. The process nets distin-
guish a token in place p3 produced by the occurrence of
transition a from a token in place p3 produced by the oc-
currence of transition b. As a consequence, one occurrence
sequence, e.g. abc or one step sequence, e.g. {a,b}{c}
can be a sequentialization of two different processes. The
process semantics defined in Goltz and Reisig (1983) is
also called individual token semantics. Notice that in the
case of the process semantics of safe nets (with at most
one token in a place), any occurrence sequence and any
step sequence uniquely determine a process. Therefore, in
Best and Devillers (1987) the collective token semantics,
which does not distinguish between the history of tokens,
is introduced. Technically, it is defined using an equiva-
lence relation between processes. Roughly speaking, the
equivalence relates processes differing only in permuting
(swapping) unordered conditions representing tokens on the
same place of the original net. For example, the processes
in Figure 1 are equivalent w.r.t. swapping equivalence. The
intended meaning of the corresponding equivalence class,
called also commutative process, is that c occurs either later
than a or later than b. For commutative processes there
holds that any occurrence sequence and any step sequence
uniquely determine a commutative process.

Thus, we establish the relationships between different
kinds of Petri net semantics on a common level given by
related sets of LPOs. Namely, given two kinds of semantics
represented by a set of labelled partial orders A and a set
of labelled partial orders B, we investigate

• whether the set B is a subset of the set A, and
• whether each labelled partial order from A is a

sequentialization of a labelled partial order from B.
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2 PLACE/TRANSITION NETS

2.1 Mathematical Preliminaries

We use N to denote the nonnegative integers and N+ to
denote the positive integers. Given two arbitrary sets A and
B, the symbol BA denotes the set of all functions from A
to B. Given a function f from A to B and a subset C of
A we write f |C to denote the restriction of f to the set C.
The symbol 2A denotes the power set of a set A. Given a
set A, the symbol |A| denotes the cardinality of A and the
symbol idA the identity function on the set A. We write id
to denote idA whenever A is clear from the context. The
set of all multisets over a set A is denoted by NA. The
addition of multisets over a finite set A is denoted by +.
Given two multisets m and m′ over A, m+m′ is defined by
∀a∈ A : (m+m′)(a) = m(a)+m′(a). Notice that (NA,+) is
the free commutative monoid over A. We do not distinguish
between a subset X ⊆ A and its characteristic multiset mX
given by m(x) = 1 for each x ∈ X and m(x′) = 0 for each
x′ ∈ A\X . Finally, we write as usual ∑a∈A m(a)a to denote
the multiset m over A. Given a binary relation R ⊆ A×A
over a set A, the symbol R+ denotes the transitive closure
of R and R∗ the reflexive and transitive closure of R.

2.2 Place/Transition Net Definitions

Let us now recall the basic definitions of p/t nets, the partial
order based semantics and their algebraic semantics.

Definition 1 (Place/Transition Net). A place/transition net
(shortly p/t net) N is a quadruple (P,T,F,W ), where (P,T,F)
is a net and W : F → N+ is a weight function.

Places and transitions of a net are also called elements
of the net. As usual, places are drawn as cycles, transitions
as boxes, and the flow relation is expressed using arcs
connecting places and transitions.

Let (P,T,F) be a net and x ∈ P∪T be an element. The
preset •x is the set {y ∈ P∪T | (y,x) ∈ F}, and the post-set
x• is the set {y∈ P∪T | (x,y)∈ F}. Given a set X ⊆ P∪T ,
this notation is extended as follows:

•X =
⋃
x∈X

•x and X• =
⋃
x∈X

x• .

For technical reasons, we consider only nets in which every
transition has a nonempty and finite pre-set and post-set.

Definition 2. A place/transition net (shortly p/t net) N is
a quadruple (P,T,F,W ), where (P,T,F) is a net and W :
F → N+ is a weight function.

We extend the weight function W to pairs of net ele-
ments (x,y) satisfying (x,y) 6∈ F by W (x,y) = 0. To avoid
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confusion, sometimes we will write N = (PN ,TN ,FN ,WN)
to denote N = (P,T,F,W ).

A marking of a net N = (P,T,F,W ) is a function m :
P → N, i.e. a multiset over P. Graphically, a marking is
expressed using a respective number of black tokens in each
place.

Definition 3 (Marked p/t-net). A marked p/t-net is a pair
(N,m0), where N is a p/t-net and m0 is a marking of N
called initial marking.

2.3 Sequential Semantics

Definition 4 (Occurrence rule). Let N = (P,T,F,W ) be a
p/t-net. A transition t ∈ T is enabled to occur in a marking
m of N iff m(p) ≥W (p, t) for every place p ∈ •t. If a
transition t is enabled to occur in a marking m, then
its occurrence leads to the new marking m′ defined by
m′(p) = m(p)−W (p, t)+W (t, p) for every p∈ P. We write
m t−→m′ to denote that t is enabled to occur in m and that
its occurrence leads to m′.

Definition 5 (Occurrence sequence, Reachability). Let N =
(P,T,F,W ) be a p/t-net and m be a marking of N. A
finite sequence of transitions σ = t1 . . . tn, n ∈ N is called
an occurrence sequence enabled in m and leading to mn if
there exists a sequence of markings m1, . . . ,mn such that

m
t1−→ m1

t2−→ . . .
tn−→ mn.

The marking mn is said to be reachable from the marking
m.
In a marked p/t-net, markings reachable from the initial
marking m0 are shortly called reachable markings.

3 PARTIAL ORDER BASED SEMANTICS

3.1 Step Semantics

In this section we recall the definition of step semantics for
p/t nets. For more details see e.g. Vogler (1992).

The occurrence of single transitions can be extended
to the occurrence of multisets of transitions, called steps.

Definition 6 (Step occurrence rule). Let N = (P,T,F,W )
be a p/t-net. A multiset of transitions s ∈ NT , called step,
is enabled to occur in a marking m of N iff

∀p ∈ P : m(p)≥ ∑
t∈T

W (p, t) · s(t).
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If a step s is enabled to occur in a marking m, then its
occurrence leads to the new marking m′ defined by

∀p ∈ P : m′(p) = m(p)+ ∑
t∈T

(W (t, p)−W (p, t)) · s(t).

We write m s−→ m′ to denote that s is enabled to occur in
m and that its occurrence leads to m′.

Definition 7 (Step sequence). Let N = (P,T,F,W ) be a
p/t-net and m be a marking of N. A finite sequence of
steps (step sequence) σ = s1 . . .sn, n ∈ N is called a step
sequence enabled in m and leading to mn if there exists a
sequence of markings m1, . . . ,mn such that

m
s1−→ m1

s2−→ . . .
sn−→ mn.

Proposition 1. The marking m′ is reachable from the mark-
ing m if and only if there exists a steps sequence enabled
in m and leading to m′.

3.2 Labeled Partial Orders

In this section we recall the definition of semantics of p/t
nets based on labelled partial orders, also known as partial
words (Grabowski 1981) or pomsets (Pratt 1986). For the
presented results see e.g. Vogler (1992).

Definition 8 (Directed graph, (Labelled) partial order). A
directed graph is a pair (V,→), where V is a finite set of
nodes and →⊆V ×V is a binary relation over V called the
set of arcs. As usual, given a binary relation → we write
a→ b to denote (a,b) ∈→.

A partial order is a directed graph po = (V,<), where
< is an irreflexive and transitive binary relation on V .

Two nodes v,v′ of a partial order (V,<) are called
independent, if v 6< v′ and v′ 6< v. Denote co< ⊆V ×V the
set of all pairs of independent nodes of V . A co-set in a
partial order (V,<) is a subset S ⊆V fulfilling:

∀x,y ∈ S : xcoy.

A slice is a maximal co-set.
If vcov′ =⇒ v = v′, then we say that < is total order. If

the relation co is transitive, then we say that < is stepwise
linearized.

For a co-set S of a partial order (V,<) and a node
v ∈V \S we write:

• v < S, if v < s for a s ∈ S, and
• vcoS, if vcos for all s ∈ S.

If < is stepwise linearized, we also write S < S′ for
two slices S,S′ of < whenever v < S′ for an event v ∈ S.
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Given partial orders po1 = (V,<1) and po2 = (V,<2),
we say that po2 is a sequentialization of po1 if <1⊆<2. If
a sequentialization po2 of po1 is a total order, we say that
po2 is linearization of po1 and if po2 is stepwise linearized,
we say that it is step linearization of po1.

A labelled partial order is a triple l po = (V,<, l), where
(V,<) is a partial order, and l is a labelling function on
V . If X is a set of labels of l po, i.e. l : V → X, then for a
slice S ⊆V , we define the multiset |S| ⊆ NX by

∀x ∈ X : |S|(x) = |{v ∈V | v ∈ S∧ l(v) = x}|.

We use the above notation defined for partial orders also
for labelled partial orders.

Two labelled partial orders (V1,<1, l1),(V2,<2, l2) are
isomorphic iff there exists a bijection γ : V1 →V2 between
nodes which preserve the partial order relation and the
labelling function, i.e. ∀v1,v2 ∈ V : v1 <1 v2 ⇐⇒ γ(v1) <
γ(v2)∧ l(v1) = l(γ(v1)).

Consider from now a fixed p/t net N = (P,T,F,W ). Ob-
viously, the step sequences can be characterized by stepwise
linearized labelled partial orders.

Definition 9. Let σ = s1 . . .sn (n∈N) be a sequence of steps
from NT . Then the stepwise linearized labelled partial order
l poσ = (V,<, l) with l : V → T and with slices S1, . . .Sn
satisfying |Si| = si and i < j ⇒ Si < S j for every i, j ∈
{1, . . .n} is said to be associated to σ .

As it was observed in Kiehn (1988), the step sequences
can be used to define enabledness of labelled partial orders.

Definition 10. A labelled partial order l po = (V,<, l) with
l : V → T is said to be enabled to occur in a marking m
(shortly enabled in m) iff the following statement holds:
Every step linearization of l po is associated to a step
sequence enabled to occur in m.

Directly from the above definitions, we can also observe
that the labelling of a linearization of an enabled labelled
partial order is an occurrence sequence.

Remark 2. The sequence of transitions σ = l(v1) . . . l(vn)
is an occurrence sequence enabled in m and leading to m′

if and only if the total order ({v1, . . . ,vn},≺, l) satisfying
∀i, j ∈ {1, . . . ,n} : i < j⇒ ei ≺ e j is enabled in m and leads
to m′. This total order is said to be associated to occurrence
sequence σ .

Looking to the definition of enabledness of a step, we
obtain the following proposition:

Proposition 3. If a labelled partial order l po = (V,<, l)
with l : V → T is enabled to occur in a marking m then the
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the following statement holds: For every co-set C of < and
every p ∈ P:

m(p)+ ∑
v∈V∧v<C

(W (l(v), p)−W (p, l(v)))≥ ∑
v∈C

W (p, l(v))

Actually, the definition of enabledness can be reformu-
lated considering only slices of labelled partial orders (for
the proof see e.g. Vogler 1992).

Proposition 4. A labelled partial order l po = (V,<, l) with
l : V → T is enabled to occur in a marking m if and only if
the following statement holds: For every slice S of < there
exists a step linearization l poS of l po associated to a step
sequence enabled to occur in m, with S being a slice in
l poS.

It is easy to observe that enabled labelled partial orders
are closed w.r.t. sequentializations.

Proposition 5. If a labelled partial order is enabled in m
and leads to m′, then every its sequentialization is enabled
in m and leads to m′.

Special enabled labelled partial orders are those which
are minimal w.r.t. inclusion.

Definition 11 (Enabled labelled partial order). A labelled
partial order l po = (V,<, l) enabled in m is said to be
minimal iff there exists no labelled partial order l po′ =
(V,<′, l) enabled in m with <′⊂<.

We say that a set of labelled partial orders enabled to
occur in m over the same set of events is compatible if the
intersection of the labelled partial orders from this set is a
labelled partial order enabled in m.

Definition 12. Let m be a marking of N. Let l : V → T
be a labelling and let ≪ be a set of partial orders on V
satisfying: (V,<, l) is a labelled partial order enabled to
occur in m for every partial order < from ≪ .

If the labelled partial order l po = (V,≺= ∩<∈≪, l) is
enabled to occur in m w.r.t. N, then we say that the set of
labelled partial orders C m

N {(V,<, l) |<∈≪} is compatible
w.r.t. N and m. C m

N and l po are said to be associated with
each other.

The following proposition says that enabled labelled
partial orders can be constructed by intersection of labelled
partial orders associated to step sequences. In other words,
for every enabled labelled partial order there exists an as-
sociated compatible set of labelled partial orders.

Proposition 6. Let l po = (V,≺, l) be a labelled partial
order enabled to occur in m w.r.t. N. Then there exists a set
X of labelled partial orders compatible w.r.t. N and m such
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that each labelled partial order from X is associated to a
step sequence enabled to occur in m and X is associated
to l po.

Proof. Directly from the enabledness of l po, for every
slice S of (V,≺) there exists a step sequence of N enabled
to occur in m with associated labelled partial order (V,<, l)
enabled to occur in m satisfying: S is slice of (V,<) and
≺⊆<β . Clearly, the intersection of these partial orders
equals ≺, i.e. the set of these labelled partial orders is
compatible w.r.t. N and m and associated to l po.

In other words, the previous proposition together with
the definition of enabledness says that every enabled labelled
partial order can be constructed from LPOs associated to
step sequences.

3.3 Processes and Runs

Definition 13 (Occurrence net). An occurrence net is a net
O = (B,E,G) satisfying:

1. |•b|, |b• | ≤ 1 for every b ∈ B (places are un-
branched).

2. O is acyclic, i.e. the transitive closure G+ of G is
a partial order.

Places of an occurrence net are called conditions and tran-
sitions of an occurrence net are called events.

The set of conditions of an occurrence net O = (B,E,G)
which are minimal (maximal) according to G+ are denoted
by Min(O) (Max(O)). Clearly, Min(O) and Max(O) are
slices w.r.t. G+. To avoid confusion, sometimes we will
write O = (BO,EO,GO) to denote O = (B,E,G).

Definition 14 (Process). Let (N,m0) be a marked p/t-
net,with N = (P,T,F,W ). A process of (N,m0) is a pair
K = (O,ρ), where O = (B,E,G) is an occurrence net and
ρ : B∪E → P∪T is a labelling function, satisfying

1. ρ(B)⊆ P and ρ(E)⊆ T .
2. ∀e ∈ E, ∀p ∈ P : |{b ∈ •e | ρ(b) = p}| =

W (p,ρ(e)) and
∀e ∈ E, ∀p ∈ P : |{b ∈ e• | ρ(b) = p}| =
W (ρ(e), p).

3. ∀p ∈ P : |{b ∈Min(O) | ρ(b) = p}|= m0(p).

Two processes K1 = ((B1,E1,G1),ρ1) and K2 =
((B2,E2,G2),ρ2) are isomorphic (in symbols K1 ' K2) iff
there exist bijections γ : B1 → B2,δ : E1 → E2 such that
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∀b ∈ B1,∀e ∈ E1 :

(b,e) ∈ G1 ⇐⇒ (γ(b),δ (e)) ∈ G2,

(e,b) ∈ G1 ⇐⇒ (δ (e),γ(b)) ∈ G2,

ρ1(b) = ρ2(γ(b)),ρ1(e) = ρ2(δ (e)).

Definition 15 (Run). Let K = (O,ρ) be a process of a
marked p/t-net (N,m0). The labelled partial order l poK =
(E,G+|E×E ,ρ|E) is called run of (N,m0) representing K.

A run l po = (E,<,ρ|E) of (N,m0) is said to be minimal
iff there exists no other run l po′ = (E,<′,ρ|E) of (N,m0)
with <′⊂<.

It is well known (see e.g. Kiehn 1988, Vogler 1992,
Vogler 1992) and easy to show from definition of processes
that:

Proposition 7. Every run of (N,m0) is enabled in m0.

From proposition 5 and proposition 7 follows:

Proposition 8. If a labelled partial order is a sequential-
ization of a run of (N,m0), then it is enabled in m0.

The important result completing the relationship be-
tween enabled labelled partial orders and runs was proven
in Kiehn (1988), Vogler (1992), Vogler (1992).

Theorem 9. If a labelled partial order is enabled in m0 in
a p/t net N, then it is a sequentialization of a run of the
marked p/t net (N,m0).

As a consequence we obtain:

Theorem 10. A run of (N,m0) is minimal if and only if it
is a minimal labelled partial order enabled in m0.

The previous theorem (together with the definition of
enabledness of LPOs, compatible sets of enabled LPOs, and
the fact that (minimal) enabled LPOs can be constructed from
LPOs of step sequences) says that every minimal run can
be constructed from step sequences. In other words, LPOs
associated to step sequences gives enough information about
minimal runs, i.e. about the necessary causality between
events in runs.

4 SUMMARY

In order to summarize the relationships between occurrence
sequences, step sequences, enabled LPOs and processes
stated above we can compare the related sets of LPOs
associated to them.

Given a p/t net N and a marking m0, let us denote:
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• the set of (isomorphism classes of) LPOs associated
to occurrence sequences enabled in m0 by SEQ,

• the set of (isomorphism classes of) LPOs associated
to step sequences enabled in m0 by STEPSEQ,

• the set of (isomorphism classes of) LPOs enabled
to occur in m0 by ENABLED and the set of (iso-
morphism classes of) minimal LPOs enabled to
occur in m0 by MINENABLED

• the set of (isomorphism classes of) runs of (N,m0)
by RUN and the set of (isomorphism clsses of)
minimal runs of (N,m0) by MINRUN.

. The relationship between these sets w.r.t. set inclusion
is given as follows:

SEQ⊆ STEPSEQ⊆ ENABLED,

RUN⊆ ENABLED.

Another important relationship between these sets is
the relationship w.r.t. sequentialization. Taking two sets
X ,Y of LPOs, we denote by X c Y fact that each LPO from
X is a sequentialization of an LPO from Y , i.e. each LPO
from X includes an LPO from Y :

SEQ c STEPSEQ c ENABLED c RUN.

As a consequence:

MINENABLED = MINRUN.

Importantly, enabled labelled partial orders and there-
fore also minimal runs can be constructed from LPOs as-
sociated to step sequences.

5 COMMUTATIVE PROCESSES AND RUNS

As mentioned in the introduction, one occurrence sequence
can be in general a sequentialization of two different pro-
cesses. On the other hand, there are in general many
occurrence sequences, which are sequentializations of one
process. One may wonder if there exists an equivalence
on occurrence sequences and an equivalence on processes,
which will respect the relation ”being a sequentialization”
between occurrence sequences and processes in the follow-
ing sense: two occurrence sequences are equivalent if and
only if they are sequentializations of equivalent processes.
This question is investigated in Best and Devillers (1987):
For finite occurrence sequences and processes with a fi-
nite number of events, which are of interests in this paper,
such equivalences are identified and shown to be the finest
equivalences with the property.
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Definition 16. Let (N,m0) be a marked p/t-net, with N =
(P,T,F,W ). Let K = (O,ρ), be a process of (N,m0) with
O = (B,E,G). Let b1,b2 ∈ B, b1 cob2 and ρ(b1) = ρ(b2).
We define G1 = {(b1,e) | (b2,e) ∈ G} and G2 = {(b2,e) |
(b1,e) ∈ G}. Then we define G′ = G1 ∪G2 ∪ (G∩ (E ×
B))∪ (G∩ ((B\{b1,b2})×E)). Thus, G′ is obtained from
G by interchanging arcs from b1 and b2. Finally, we define
swap(K,b1,b2) = ((B,E,G′),ρ).

As it is shown in Best and Devillers (1987):

Theorem 11. Let K = (O,ρ) be a process of a marked
p/t net (N,m0) with O = (B,E,G). Let b1,b2 ∈ B, b1 cob2
and ρ(b1) = ρ(b2). Then swap(K,b1,b2) is a process of
(N,m0).

Definition 17. Let K1 = ((B,E,G),ρ) and K2 be processes
of a marked p/t net (N,m0). Then we define K1 ≡1 K2
if there are conditions b1,b2 ∈ B such that b1 cob2 and
ρ(b1) = ρ(b2) and K2 is (isomorphic to) swap(K1,b1,b2).

It is easy to see that ≡1 is symmetric. Thus, ≡∗
1 is an

equivalence relation on processes of (N,m0).

Definition 18. The equivalence relation ≡∗
1 on processes

of (N,m0) is called swapping equivalence. The equivalence
classes of processes w.r.t. the swapping equivalence are
called commutative processes of (N,m0).

The searched equivalence on occurrence sequences is
defined in Best and Devillers (1987) using a relation ≡0 as
follows:

Definition 19 (Exchange relation ≡0 on occurrence se-
quences). Let N be a p/t net and m0 be a marking of N. Let
σ1 = t1 . . . ti−1titi+1ti+2 . . . tn,σ2 = t1 . . . ti−1ti+1titi+2 . . . tn be
occurrence sequences of N enabled to occur in m0. Then
σ1 ≡0 σ2 iff σ = {t1} . . .{ti−1}{ti, ti+1}{ti+2} . . .{tn} is a
step sequence of N enabled to occur in m0.

Again, it is easy to see that ≡0 is symmetric and
therefore ≡∗

0 is an equivalence relation.

Definition 20. The equivalence relation ≡∗
0 on occurrence

sequences of N enabled to occur in m0 is called exchange
equivalence.

The relationship between exchange equivalence classes
and swapping equivalence classes proven in Best and Dev-
illers (1987) says:

Theorem 12. Let N be a p/t net and m0 a marking of N. Let
σ1,σ2 be occurrence sequences of N enabled to occur in
m0 and let K1,K2 be processes of (N,m0) such that the total
labelled partial order associated to σi is a linearization of



Juhás, Lehocki, and Lorenz
the run representing Ki (i ∈ {1,2}). Then σ1 ≡∗
0 σ2 if and

only if K1 ≡∗
1 K2.

Moreover, as it is proved in Best and Devillers (1987)
for the finite case, ≡∗

0 and ≡∗
1 are the finest equivalences

which satisfy the above result: These equivalences partition
the set of occurrence sequences and processes respectively
into finest equivalence classes such that the relation ”being
a sequentialization” define a bijection on these classes.

As a consequence, these result extend on runs and en-
abled labelled partial orders. The relation a on runs, relating
runs if and only if the processes represented by these runs
are swapping equivalent, is an equivalence relation. Simi-
larly, the relation ` on the set of all labelled partial orders
enabled in a fixed marking, which relates these labelled
partial orders if and only if some of their linearizations are
associated to exchange equivalent occurrence sequences, is
an equivalence relation.

Definition 21. Let K1,K2 be processes of a marked p/t net
(N,m0) and let l po1, l po2 be runs representing K1,K2, re-
spectively. Then the equivalence relation a on runs given by
l po1 a l po1 ⇐⇒ K1 ≡∗

1 K2 is called swapping equivalence
on runs of (N,m0). The equivalence classes of runs w.r.t.
the swapping equivalence are called commutative runs of
(N,m0).

Definition 22. Let N be a p/t net and m0 be a marking
of N. Let l po1, l po2 be labelled partial orders enabled to
occur in m0. Then the equivalence relation ` on the set of
all labelled partial orders enabled to occur in m0 given by:

• l po1 ` l po1 if and only if there exists occurrence
sequences σ1,σ2 such that the total labelled partial
order associated to σi is a linearization of l poi
(i ∈ {1,2}) and σ1 ≡∗

0 σ2

is called exchange equivalence on labelled partial orders
of N enabled to occur in m0. The equivalence classes
of labelled partial orders enabled to occur in m0 w.r.t.
the exchange equivalence are called commutative labelled
partial orders enabled to occur in m0.

From Theorem 12 and the results on relationships be-
tween runs and enabled labelled partial orders we get:

Theorem 13. Let N be a p/t net and m0 a marking of N.
Let l po1, l po2 be labelled partial orders enabled to occur
in m0 and let l po′1, l po′2 be runs of (N,m0) such that l poi
be a sequentialization of the run l po′i (i ∈ {1,2}). Then
l po1 ` l po2 if and only if l po′1 a l po′2.

Thus, the equivalences `,a partition the set of enabled
labelled partial orders and runs respectively into commuta-
tive enabled labelled partial orders and commutative runs
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Figure 3: Occurrence of a transition t from a marking m to
a marking m′ and its interpretation as a concurrent rewriting
of the transition t and the marking x.

such that the relation ”being a sequentialization” define a
bijection between them.

6 ALGEBRAIC SEMANTICS OF PETRI NETS: AN
OVERVIEW

In Meseguer and Montanari (1990) a different approach to
non-sequential semantics of Petri nets is proposed: processes
terms are generated from elementary rewrite terms using
two algebraic operations, namely concurrent and sequential
composition.

In this algebraic approach a transition t is understood
to be an elementary rewrite term, allowing to replace the
marking pre(t) by the marking post(t). Markings are (fi-
nite) multisets of places and for concurrent composition of
markings usual multiset addition is used. Markings with
this addition form a free commutative monoid over the set
of places. Any marking consisting of a single place p is
understood to be an elementary term rewriting p by p itself.

Process terms are constructed inductively from elemen-
tary terms using operators for sequential and for concurrent
composition, denoted by ; and ‖, respectively. Each process
term has an associated initial marking and final marking.

Initial and final markings are necessary for sequential
composition: Two process terms can be composed sequen-
tially only if the final marking of the first process term
coincides with the initial marking of the second one.

For concurrent composition of two process terms, the
initial marking of the resulting term is obtained by concurrent
composition of the initial markings of the two composed
terms, and likewise for the final marking.

For example, the single occurrence of a transition t
leading from a marking m to a marking m′ can be then
understood as a concurrent composition of the elementary
term t and the term corresponding to the marking x which
satisfies m = x+ pre(t) and m′ = x+ post(t), where + de-
notes a suitable operation on markings. The non-sequential
behavior of a net is given by equivalence classes of process
terms defined by a set of equations. As it is observed in
Meseguer and Montanari (1990), the set of all markings un-
derstood as objects together with the equivalence classes of
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process terms forming the morphisms rises in a symmetric
monoidal category.

In Degano, Meseguer, and Montanari (1996) it is shown
that an equivalence class of process terms as defined in
Meseguer and Montanari (1990) corresponds to a swapping
equivalence class of processes, according to collective token
semantics of p/t-nets.

In the individual token approach, where single processes
are of interest (Goltz and Reisig 1983), one has to take more
sophisticated algebras than usual multisets with addition.
For example, in the case of concatenated and strongly
concatenated processes (Sassone 1998), the conditions of
processes are ordered to remove ambiguous possibilities
of concatenation. In case of pre-nets (Sassone 2004), the
authors use strings instead of multisets for markings. One
of the main reasons why (finite) multisets of places with
usual multiset addition (i.e. free commutative monoids)
were never used to describe individual token semantics is
that process terms belonging to a single equivalence class
have never been distinguished.

The question is how we can understand single process
terms, or better, what information do they give us. Is
it possible to receive single labelled partial orders which
are enabled from process terms given by collective token
semantics from Meseguer and Montanari (1990), where the
simple algebra of multisets of places with multiset addition
is used?

In Juhás (2005), we show that it is possible. Namely, we
show a general way, how to attach partial orders to process
terms and then how to obtain enabled labelled partial orders
and therefore also minimal runs.

There is a strong connection between the algebraic
process term semantics mentioned above and the partial order
based semantics. Each process term α defines a partially
ordered set of events representing transition occurrences in
an obvious way: an event e2 depends on an event e1 if
the process term α contains a sub-term α1;α2 such that e1
occurs in α1 and e2 occurs in α2.

According to the definition of process terms, one can
use process terms of a special form to express all step
sequences. We will call these terms step sequence terms.
But there are also process terms, which give labelled partial
orders which have less ordering than the labelled partial
orders of any step sequence. An example is the terms of
form (a;c) ‖ b expressing the left run from Figure 2.

Thus, we see that a labelled partial order derived from
a process term might equal a run. But this is not the
case in general because the structure of process terms is
too simple for representing any partial order. This fact
is illustrated in Figure 4. The run po associated to the
process in Figure 4 is shown in Figure 5. This enabled
labelled partial order expresses the true causalities between
the occurred transitions. It is easy to show by induction
on the structure of process terms that this partial order
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a  b 

 d  c 

Figure 4: A process net whose associated run cannot be
derived directly from any associated process term (see Fig-
ure 5).

 

a  b 

 d  c 

Figure 5: The run po corresponding to the process in Fig-
ure 4.

cannot be generated by any process term. It is proven in
Gischer (1988) that a labelled partial order is generated by
concurrent and sequential composition from single element
labelled partial orders if and only if it does not contain the
shape of so a called N-form (the shape with four nodes
connected as in the Figure 5, with absenting arc between the
node b and c). As a consequence, we get the characterization
of labelled partial orders which are associated to process
terms of a p/t net: a labelled partial order is associated with
a process term of a p/t net if and only if it is N-free.

The first important question is whether each labelled
partial order of a process term is enabled. We show in Juhás
(2005) the positive answer using a simple procedure.

Thus, we have that each labelled partial order of a
process term is enabled, but not each enabled labelled partial
order can be described by a process terms. In other words,
with respect to non-sequentiality expressed by single process
terms we can see that they are more expressive than single
step sequences, but less expressive than enabled labelled
partial orders.

But because every enabled labelled partial order can be
obtained by intersection of labelled partial orders of enabled
step sequences, in the same way it can be obtained from
process terms.
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6.1 Summary Revisited

To summarize the relationships between the process term
semantics of p/t nets and the partial order based semantics
of p/t nets we get the following results.

Denote by TERM the (isomorphism classes of) LPOs
associated to process terms of an algebraic p/t net N′ with
initial marking m0 we get:

STEPSEQ⊆ TERM⊆ ENABLED,

TERM c ENABLED.

6.2 Process Terms and Commutative Processes

With respect to the result from Degano, Meseguer, and
Montanari (1996), which shows that an equivalence class
of process terms can determine more than one run, but no
run is determined by process terms from different equiva-
lent classes, we show in Juhás (2005), that labelled partial
orders of two process terms include runs given by swap-
ping equivalent processes if and only if these process terms
are equivalent. We show this one-to-one correspondence
between Best-Devillers commutative processes and equiv-
alence classes of process terms using the idea of attaching
LPOs to single partial orders and then using the relationship
of these LPOs to enabled LPOs and therefore to minimal
runs. Let us mention that to show this result in this way
is much simpler than the way the similar result was shown
in Degano, Meseguer, and Montanari (1996) or recently in
Coja-Oghlan and Stehr (2003), where in order to show the
correspondence, the processes are first equipped with op-
eration of sequential and concurrent composition and then
their correspondence to process terms is investigated. In
general, most of the results showing the correspondence
between algebraic semantics and process semantics based
on process nets is done in this way, for example Degano,
Meseguer, and Montanari (1996), Sassone (1996), Sassone
(1998), Gadducci and Montanari (1998), Bruni et al. (1998),
Sassone (2000), Coja-Oghlan and Stehr (2003), including
our previous works (Desel, Juhás, and Lorenz 2000, Desel,
Juhás, and Lorenz 2001, Desel, Juhás, and Lorenz 2001a,
Juhás, Lorenz, and Šingliar 2003). It is usually quite com-
plicated, because one has to deal with complex definitions
of process nets of the related net class. After defining the
both compositions one has to prove that the resulting struc-
ture is still a process net, that all process nets are generated
etc. Further, one has to compare processes equipped with
concurrent and sequential composition with process terms
which are formally entities of different nature. It is much
easier as well as more clear to compare LPOs with LPOs:
namely LPOs attached to process terms with (minimal)
enabled LPOs and (minimal) runs w.r.t. sequentialization.
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logic as a unifying framework for Petri nets. In Unifying
Petri Nets, ed. H. Ehrig, G. Juhás, J. Padberg, and G.
Rozenberg, Springer, LNCS 2128, 250–303.

Vogler, W. 1992. Modular construction and partial order
semantics of Petri nets. LNCS 625.



Juhás, Lehocki, and Lorenz
Vogler, W. 1992. Partial words versus processes: a short
comparison. In Advances in Petri Nets, Springer, LNCS
609, 292–303.

Vogler, W. 2002. Partial order semantics and read arcs.
Theoretical Computer Science 286(1):33–63.

Winkowski, J. 1980. Behaviours of concurrent systems.
Theoretical Computer Science 12:39–60.

Winkowski, J. 1982. An algebraic description of system
behaviours. Theoretical Computer Science 21:315–340.

Zhou, M. C., and F. Di Cesare. 1993. Petri Net Synthesis
for Discrete Event Control of Manufacturing Systems.
Kluwer.

AUTHOR BIOGRAPHIES
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