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ABSTRACT 

In this study, we mainly explore how to optimally allocate 
the computing budget for a multi-objective ranking and se-
lection (MORS) problem when the measure of selection 
quality is the expected opportunity cost (OC). We define 
OC incurred to both the observed Pareto and non-Pareto 
set, and present a sequential procedure to allocate the repli-
cations among the designs according to some asymptotic 
allocation rules. Numerical analysis shows that the pro-
posed solution framework works well when compared with 
other algorithms in terms of its capability of identifying the 
true Pareto set.   

1 INTRODUCTION 

Due to the complexity of most real-world systems, it is 
very hard or even impossible to analytically evaluate the 
performance measures of these systems and find their op-
timal decision variables. Therefore, simulation is com-
monly used to evaluate such complex systems and opti-
mize their responses. When the number of system designs 
to be compared is relatively small and the input parameters 
to the systems are discrete, ranking and selection (R&S) 
techniques are commonly applied to determine the best 
system with optimal settings for the input parameters, 
where “best” is defined in terms of the maximum (or 
minimum) expected value of some function of the simula-
tion output. 

There are quite a number of review papers available in 
this field (Goldsman and Nelson 1998; Kim and Nelson 
2003; Swisher, Jacobson and Yücesan 2003). One common 
issue critical to the R&S problem is how to measure the 
evidence of correct selection. In most studies, the selection 
quality is measured by the probability of correct selection 
(PCS), which is the probability that the selected system is 
the best system. Under this measure of selection quality, 
two main distinct lines of research exist for solving the 
51-4244-1306-0/07/$25.00 ©2007 IEEE
R&S problem. One is the indifference-zone procedure (Ri-
nott, 1978) based on a least-favorable configuration (LFC) 
formulation to allocate additional replications. Recent re-
search in this area has resulted in improvements over Ri-
nott’s original two-stage procedure. These include the two-
stage procedure with elimination at the first stage (Nelson 
et al. 2001), two-stage procedure with subset selection at 
the first stage (Alrefaei and Alawneh 2004), and the se-
quential procedure incorporating sample mean information 
from the previous stages (Chen and Kelton 2004). Another 
line of research is based on an average case analysis to al-
locate additional replications. Typical works are the opti-
mal computing budget allocation (OCBA) procedures de-
veloped in Chen et al. (2000) and Chen, Chen and Yücesan 
(2000). The OCBA framework follows a Bayesian meth-
odology and allocates additional replications by solving the 
problem as an optimization problem, in which PCS is 
maximized with a given total computing budget available. 
Lee et al. (2006) extended both the OCBA procedure and 
the PCS concept to address the multi-objective ranking and 
selection (MORS) problem, the R&S problem with sys-
tems being evaluated in terms of more than one perform-
ance measure. In their solution framework, they incorpo-
rate the concept of Pareto optimality into the OCBA 
procedure and try to find all non-dominated Pareto set of 
solutions for the decision makers. To evaluate the quality 
of the Pareto set, the concept of PCS is generalized into 
Type II/I error corresponding to the Pareto/non-Pareto set, 
which measures the probability that at least one design 
from the Pareto/non-Pareto set is dominated/non-
dominated. The paper derived asymptotic allocation rules 
for simulation replications and developed a sequential pro-
cedure (MOCBA) to iteratively allocate the simulation rep-
lications (according to the asymptotic rules) to identify the 
non-dominated Pareto set of solutions. 

Another measure of selection quality distinct from 
PCS is the expected opportunity cost (OC), which is de-
fined as the difference in means between the best and the 
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selected system. While PCS fails to reflect how poor a po-
tential incorrect selection might be, OC does intuitively de-
scribe how far away the selected system is from the true 
best system. The expected OC as a measure of selection 
quality is applied in some Bayesian decision theoretic 
methods, in which additional replications are also allocated 
based on average case analysis but in a way that the ex-
pected value of information gained from those replications 
is maximized (Chick and Inoue 2001). Chick (2003) pre-
sented a selection procedure which can provide an upper 
bound for the expected OC of a potentially incorrect selec-
tion in a frequentist sense. The expected OC guarantee is 
applicable to all configurations of the mean rather than the 
LFC required in the indifference-zone approach. The paper 
bridged a gap between the indifference-zone approach 
(with frequentist guarantees) and the Bayesian approach to 
selection procedures (where the expected OC is consid-
ered). Within the OCBA framework, the expected OC as 
the measure of selection quality is applied and studied in 
He, Chick and Chen (2006). The paper extended the origi-
nal OCBA approach based on maximization of the PCS to 
a new OCBA procedure seeking minimization of the ex-
pected OC. In this study, our main purpose is to study how 
the expected OC can be applied to measure the quality of 
the Pareto set in solving the MORS problem, and how the 
simulation replications should be allocated among the de-
signs when measure of selection quality is changed from 
type II/I error of the Pareto/non-Pareto set to the OC of 
those sets.  

We now describe the problem considered in this study. 
Suppose we have a set of n designs, each of which is 
evaluated in terms of H performance measures through 
simulation, we consider a MORS problem which is to find 
an optimal allocation of the simulation replications to the 
designs so that the non-dominated set of designs can be 
identified with the lowest expected OC at the least expense 
in terms of simulation replications. The organization of this 
paper is as follows. In Section 2, we first define the ex-
pected OC of selecting certain designs into the Pareto set, 
then introduce the asymptotic allocation rules and the se-
quential multi-objective computing budget allocation 
(MOCBA) procedure developed for solving the MORS 
problem. Some numerical analyses are carried out in Sec-
tion 3. Finally some conclusions and future research direc-
tions are summarized in Section 4. 

2 THE MOCBA SOLUTION FRAMEWORK 

Without loss of generality, we assume that minimization of 
the objectives is our goal in this study. Also we assume 
that the random variables considered follow continuous 
distributions. 
514
2.1 A Bayesian Framework and the 
Concept of Dominance 

We establish the following notation. 
S :  The design space, i.e., S n= . 

pS : True Pareto set. 

pS% : Observed Pareto set. 
c
pS : True non-Pareto set. 
c
pS% : Observed non-Pareto set. 

iN : Number of replications allocated to design i. 
H  : Number of performance measures for each design. 

iμ : Vector of true performance measures of design i. 

iμ% : Vector of random variables representing the true per-
formance measures of design i. 

ˆ iμ : H l×  matrix representing l independent simulation ob-
servations for H performance measures of design i. 

ikμ : Sample mean of the simulation output for the kth ob-
jective of design i; 

 
1

1 ˆ .
l

s
ik ik

sl
μ μ

=

= ∑  

2
ikσ : Variance of the simulation output for the kth objective 

of design i, which is to be estimated by sample vari-
ance 

 ( )22

1

1 ˆ .
1

l
s

ik ik ik
sl

σ μ
=

= −
− ∑ μ  

In this study, to make the problem more tractable, we 
assume that performance measures of the designs are inde-
pendent of each other. We also assume that simulation out-
puts obtained from the following situations are independ-
ently distributed: 1) different replications; 2) different 
designs; 3) different performance measures of the same de-
sign. We apply a Bayesian framework in which the true 
performance measure iμ  is regarded as a random variable 
and to be estimated by simulation observations ˆ iμ . As-
sume that each unknown performance measure ikμ  has a 
normal distribution as its prior distribution, and no prior 
knowledge on the performance of any design is available 
before conducting simulation. Given that 1 2ˆ ˆ ˆ, ,..., l

ik ik ikμ μ μ  
are  independent simulation observations for the kth ob-
jective of design  and 

l
i 2

ikσ  is the known variance of the 
kth objective of design i, then according to DeGroot 
(1970), the true performance measure ikμ  can be described 
by its posterior distribution given below. 

 
( )iikikik NN 2,~~ σμμ  
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In this way, to compare unknown true performance 
measures ikμ  and jkμ  is to compare random variables ikμ%  
and jkμ%  following the above posterior distribution derived 
from currently available simulation output.  

In a noise-free situation, design j dominates design i, 
denoted by j ip , if the following condition holds with at 
least one inequality being strict: 

 
 for 1, 2,..., .jk ik k Hμ μ≤ =  (1) 

 
Thus, if design i is dominated, there exists at least one de-
sign j which satisfies the above condition. On the other 
hand, if design i is non-dominated, then for any other de-
sign j, design i has at least one objective better than its cor-
responding objective. 

When the performance measures subject to noise, we 
need to consider the relationship among the designs in 
terms of probability or expected value as detailed in the 
following sections. 

2.2 Construction of the Observed Pareto Set 

During the computing budget allocation process, the Pareto 
set is constructed based on observed performance, named 
as the observed Pareto set. We define design j dominates 
design  by observation, denoted byi ˆj ip , if the following 
condition holds with at least one inequality being strict: 

 
  for 1,2,..., .jk ik k Hμ μ≤ =  
 
Then the observed Pareto set  can be constructed by 

putting those designs  into  if no design 
pS%

i pS% j  exists such 

that ˆj ip . The rest of the designs are then put into the ob-

served non-Pareto set . c
pS%

2.3 Quality of the Observed Pareto Set in terms of 
Expected Opportunity Cost 

In this study, we evaluate the quality of the observed 
Pareto set in terms of expected opportunity cost (OC) 
which may incur in the following two cases: 1) a design is 
non-dominated but it is selected into the non-Pareto set; 2) 
a design is dominated but it is selected into the Pareto set.  

In the single objective problem, suppose the selected 
best design is denoted as i, and the true best design is de-
noted as d*. Then the OC is defined as: 

 

   *

0  if  *
.

0  if  *i d

i d
OC

i d
μ μ

=⎛
= − = ⎜≥ ≠⎝
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Here the OC is the same in terms of both selecting the se-
lected best design i and missing the true best design d*. 

However, in the multi-objective case, both the selected 
best and the true best are not one single design but a set of 
designs. This gives rise to several issues we need to ad-
dress. Firstly, the OC of selecting the not truly non-
dominated designs into the observed Pareto set  is not 
the same as the OC of having those truly non-dominated 
designs in the observed non-Pareto set . Secondly, to 
define the OC of design i, which design should design i 
compare with (serving the purpose of design  in the 
single objective case) for calculating its OC? Thirdly, as 
the OC is also with more than one performance measure, 
how to evaluate the OC when there is more than one objec-
tive? 

pS%

c
pS%

*d

2.3.1 The Opportunity Cost of the Observed Pareto 
and Non-Pareto Set 

We begin to address the first two issues in this section. For 
the first issue, we can define the OC for both  and  
to handle the two types of OC incurred due to including the 
dominated designs into the observed Pareto set while miss-
ing the truly non-dominated designs.  

pS% c
pS%

For the second issue, we realize that there is no unique 
way to define the OC for the two sets. We intend to borrow 
the idea from the single objective case and try to find a ref-
erence design based on which to compute the OC. We first 
consider how to define OC for the observed Pareto set . 

When design i is selected into  but it is dominated, its 
OC should be defined in terms of the minimum amount de-
sign i needs to “move” in each objective such that design i 
becomes non-dominated. This measures how much better 
design i could have been if design i were non-dominated 
and no OC incurred to it. Suppose we use  to represent 
the best objective of design i in reference to design j, i.e., 

pS%

pS%

*
ijk

 ( )*
1,...,

arg minij ik jkk H
k μ μ

=
= − . 

Then, if for each design ,j S j i∈ ≠ , 

 ( )
1,...,

min 0ik jkk H
μ μ

=
− <  

holds, no design is better than design i at its best objective, 
therefore design i becomes non-dominated. The reference 
design, denoted as , should be the one furthest away 
from design i at its best objective, i.e., 

*
id

 
  ( )*

1,2,...,,
arg max min .i ik Hj S j i

d μ μ
=∈ ≠

≡ −k jk
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)Here the (
1,2,...,
min ik jkk H

μ μ
=

−  is to find out the best objective 

of design i in reference to design j. Once this objective of 
design i is good enough, design i is not dominated by de-
sign j. However, design i can still be dominated by other 
designs. So the Max operator is to find out the design 
which dominates design i to the greatest extent.  

Then the OC of selecting design i into pS%  can be de-
fined as follows: 

 

   ( ) (* *1 1
1

,..., .
i i

H

i ik i iHd k d d H
k

OC Iμ μ μ μ μ μ
=

= − ≥ ≥∑ )*
i

)*d H

 

where  is an indicator function 

defined as:  
( *1 1

,...,
i i

i iHd
I μ μ μ μ≥ ≥

( ) *

* *1 1

1 if  for 1,..., .
,...,

0 otherwise.
i

i i

ik d k
i iHd d H

k H
I

μ μ
μ μ μ μ

≥ =⎧⎪≥ ≥ = ⎨
⎪⎩

 

Note that, in the deterministic case, since design  domi-
nates design i for sure, the indicator function can be omit-
ted in this case. 

*
id

When the performance measures subject to noise, we 
define design  in terms of expected value as follows: *

id
 

 ( ) ( )*

1,2,...,,
arg max min 0 .i ik jk ik jkk Hj S j i

d E Iμ μ μ μ
=∈ ≠

⎡≡ − −⎣ % % % % ⎤≥ ⎦  (2) 

 
Suppose ijkμ%  is the random variable representing the dif-
ference in means of the kth objective between design i and 
design j. Then ijkμ%  follows normal distribution with mean 

ijk ik jkf fδ = −  and variance 2 2 2
ijk ik i jk jN Nσ σ σ= + . So 

 

 

( ) ( )
( )

( )

( ) ( )
0

0

.

ik jk ik jk

ik jk ik jk ik jk

ijk

ijk ijk ijk ijk

E I

E P
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f Z Z

μ μ μ μ

μ μ μ μ μ μ

σ δ

∞

⎡ ⎤− − ≥⎣ ⎦
⎡ ⎤= − ≥ ≥⎣ ⎦

=

= + Φ −

∫

% % % %

% % % % % %
 (3) 

 
where ( )ijkf x  and ( )xΦ  are the PDF and CDF of stan-

dard normal distribution, ijk ijk ijkZ δ σ= −  is the standard-
ized statistic. From (2) and (3) we have, 

 
  ( ) ( )*

1,2,...,,
arg max min .i ijk ijk ijk ijkk Hj S j i

d f Zσ δ
=∈ ≠

⎡ ⎤≡ +⎣ ⎦ZΦ −

 
Now we can define the expected  in the presence of 
noise as follows: 

iOC
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 Due to the independence assumption on the perform-
ance measures, we have 
[ ]

( ) (

( ) ( )
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For all designs selected into the observed Pareto set pS% , 
the average approximated OC is: 
[ ]

( ) ( ) (* * * * *

1 1

1 0

p

i i i i i
p

S

HH

id k id k id k id k id m
k mi Sp

m k

E OC

f Z Z P
S

σ δ μ
= =∈

≠

⎡ ⎤ )= + Φ − ≥⎢ ⎥⎣ ⎦∑∑ ∏

%

%

%
%

 (4) 

Now we consider how to define OC for the observed 
non-Pareto set. For a truly non-dominated design i, if it is 
selected into the observed non-Pareto set c

pS% , the OC of 

missing design i in the observed Pareto set pS%  incurs. 
Again we propose to define  in terms of the minimum 
amount design i needs to “move” in each objective such 
that design i becomes dominated. Given that  is the best 
objective of design i in reference to design j, then 

iOC

*
ijk

( )*

1,...,
arg maxij jk ikk H

k μ μ
=

= −  in this case. As design i is non-

dominated, there should be no design which is better than 
it at its best objective. Once we find a design ,j S j i∈ ≠ , 

which satisfies ( )
1,...,

max 0jk ikk H
μ μ

=
− < , design i becomes 

worse than design j even at its best objective. Therefore 
design i becomes dominated. The reference design, de-
noted as *

ig , should be the design that is closest to design i 
in terms of its best objective, i.e.,  

{ }
( )*

, 1,2,...,
arg min max .i jj S j i k H

g μ μ
∈ ≠ ∈

≡ −k ik  

Here ( )
1,2,...,
max jk ikk H

μ μ
=

−  is to find out the objective that de-

sign i is the best in reference to design j. Once this objec-
tive of design i is not as good as design j, design i becomes 
dominated by design j. The Min operator is to identify the 
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)ik

design to which design i needs to “move” with the least ef-
fort to become dominated. 

Accordingly, we define  as: iOC

  ( ) (* *

1
.

i i

H

i ikg k g k
k

OC Iμ μ μ μ
=

= − ≥∑
Similarly when noise is involved in the performance meas-
ures, design *

ig  can be any one design with certain prob-
ability, we redefine it in terms of expected value as fol-
lows: 

{ }
( ) (*

, 1,2,...,
arg min max .i jk ikj S j i k H

g E Iμ μ μ μ
∈ ≠ ∈

⎡ ⎤≡ −⎣ ⎦)jk ik≥  (5) 

Suppose jikμ%  is the random variable representing the dif-
ference in means of the kth objective between design j and 
design i. Then jikμ%  follows normal distribution with mean 

jik jk ikf fδ = −  and variance 2 2 2
jik jk j ik iN Nσ σ σ= + . By 

doing similar manipulations as in (3), we can arrive at, 

{ }
( ) ( )*

, 1,2,...,
arg min max .i jik jik jik jikj S j i k H

g f Zσ δ
∈ ≠ ∈
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)

 

So the expected OC can be defined as: 
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When considering all designs in c
pS% , we have the following 

average expected OC: 

[ ] ( ) ( )* * * *

1

1 .C
p i i i iC

p

H

S g ik g ik g ik g ikc
ki Sp

E OC f Z Z
S

σ δ
=∈

⎡= +⎢⎣∑∑%
%%

⎤Φ − ⎥⎦
  (6) 

2.3.2 Normalization of the Performance Measures 

For the third issue, to handle the multi-objective nature of 
the OC, we use the sum of the OC incurred in all objec-
tives of design i as its OC. One problem here is that differ-
ent objectives may not be on the same scale and therefore 
incomparable. For example, in real life problems, objec-
tives may be very different with one representing invest-
ment in millions of dollars, while the other representing 
customer service level with values within 0 and 1. This 
renders the summation of the OC to be meaningless. To 
overcome this difficulty, we can do some preprocessing on 
the simulation output already obtained: normalize the 
simulation output of each performance measure so that 
they are all within interval [0, 1]. Given that ikμ  and 2

ikσ  
are the sample mean and variance of the kth objective of 
design i ( )1,2,...,i = n , then the normalized sample mean 
5

 
and variance of the kth objective of design i denoted as '

ikμ  
and 2 '

ikσ  can be calculated as:  
 

 1,2,...,'

1,2,...,1,2,...,

min

max min
ik iki n

ik
ik iki ni n

μ μ
μ

μ μ
=

==

−
=

−
 (7) 

 

 
( )

2
2 '

2

1,2,...,1,2,...,

.
max min

ik
ik

ik iki ni n

σ
σ

μ μ
==

=
−

 (8) 

2.4 A Sequential Solution Procedure and the 
Asymptotic Allocation Rules 

In solving the MORS problem, we are trying to get the true 
Pareto set by minimizing expected OC associated with 
both pS%  and c

pS% . To this end, we can keep on allocating 
more replications to certain designs until some termination 
conditions are met. Two examples of the termination con-
ditions can be: (a) both [ ]

pS
E OC %  and [ ] C

pS
E OC %  are within 

a preset limit *ε ; (b) a total computing budget  is 
exhausted. We will focus on the latter one in the numerical 
analysis of this study. 

maxN

The general idea is to perform  (relatively small so 
that it would be generally less than ) replications for 
each design (i = 1,2,…,n) initially. Then the simulation 
budget can be allocated in a sequential manner as follows. 
At each step, given the current observed Pareto set (con-
structed based on the most recent sample mean informa-
tion) and a new  (incremented by an additional num-
ber of replications) to be allocated, we allocate them 
among the designs according to allocation rules as stated in 
Rule 1 and Rule 2 depending on which expected OC 
(

0N

iN

maxN

[ ]
pS

E OC %  and [ ] C
pS

E OC % ) is larger. Next, we update the 

expected OC according to new sample mean and variance 
information. If the termination condition is not met, a new 
observed Pareto set is constructed and the allocation rules 
are applied again to do the allocation for a newly incre-
mented Nmax. The procedure is iterated until the adopted 
termination condition is satisfied. 

To derive the allocation rules, the problem being con-
sidered is formulated as an optimization problem with an 
objective of minimizing the two types of expected OC and 
a constraint on total computing budget available to be allo-
cated among the designs. Under the condition that total 
computing budget is infinite, we apply the Lagrange Re-
laxation method, and derive some asymptotic allocation 
rules. The rules are now stated as follows.  
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Rule 1: As , the upper bound of expected OC 

for  can be asymptotically minimized when 
maxN →∞

c
pS%

For a design , c
pl S∈ %

 

c
pp

l
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l d
d Sl S

β
α

β β
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=
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d
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β
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+
= =
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given that  is any fixed design in ; m c
pS%

 
2

2
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i
d

i
d d

dkd
d i

m i ik

σα
β β

α σ∈Ω

= = ∑ , 

where iα  is the fraction of  to be allocated to design 
i; 

maxN

jik jk ikδ μ μ= − ; 
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with ( )2,~~
jikjikjik N σδμ , where ( )f x  and ( )xΦ  are 

PDF and CDF of standard normal distribution. Here '
iα  is 

the fraction of  allocated to design i at the immediate 

previous iteration. ; 
maxN

{design | , }c
d pi i S j dΩ = ∈ =%

i

'
ii j

'
iρ α α=  initially and after getting iα  and 

ij
α , it is de-

termined iteratively until it converges. 
 
Rule 2: As , the upper bound of expected OC 
for  can be asymptotically minimized when  

maxN →∞

pS%

For a design , A
pl S∈

 

A B c
p p p

l
l

l u
l S u S d S

β
α

dβ β β
∈ ∈ ∈

=
+ +∑ ∑ ∑

%

. 

For a design , B
pu S∈

 

A B c
p p p

u
u

l u
l S u S d S

β
α

dβ β β
∈ ∈ ∈

=
+ +∑ ∑ ∑

%

. 
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For a design , c

pd S∈ %

 

A B c
p p p

d
d

l u
l S u S d S

β
α

dβ β β
∈ ∈ ∈

=
+ +∑ ∑ ∑

%

 

with 

 
( )

( )
2 2 2

2 2 2

l l l
j l j l jl l l

m m
j m j m jm m

llk j k lj kl
l

m mmk j k mj k

σ σ ρ δα
β

α σ σ ρ δ

+
= =

+ m
m

, 

given  is any fixed design in ; m A
pS

*

2
2

2

i
u

i
u u

uku
u i

m i ik

σα
β β

α σ∈Θ

= = ∑ and 
*

2
2

2

i
d

i
d d

dkd
d i

m i ik

σα
β β

α σ∈Θ

= = ∑ , 

where, in addition to notations given in Rule 1,  

{ }
( ) ( )

1,...,
arg max mini ijk ijk ijk ijkk Hj S

j i

j f Zσ δ
∈∈

≠

Z⎡ ⎤≡ + Φ −⎣ ⎦ ,

( ){1,..., }
arg min 0

i i

i
j ij kk H

k P μ
∈

≡ ≥ ,

 {design | , },d pi i S j dΘ ≡ ∈ =%
i

2 2

2 2 2 2design min
l i

l jl l

ll l i ilj l j l ll l

lj k ilkA
p p

il j i llk j k ik lk

S l S
δ δ⎧ ⎫

⎪ ⎪⎪

σ α σ α σ α σ α∈Θ

⎪≡ ∈ <⎨ ⎬
+ +⎪ ⎪

⎪ ⎪⎩ ⎭

with iα  being approximated by '
iα  ; S S ; 

. 

\B A
p p PS= %

* { }A
d d PSΘ ≡ Θ ∩

The sequential procedure applying the above alloca-
tion rules, known as the MOCBA_OC algorithm,  is out-
lined as follows.  

 
MOCBA_OC algorithm 
Step 0: Perform  replications for each design. Set itera-

tion index v: = 0. . 
0N

1 2 ...v v v
nN N N N= = = = 0

Step 1: Construct the observed Pareto set pS%  as stated in 
Section 2.2, and calculate expected OC ( [ ]

pSE OC %  

and [ ] c
pSE OC % ) according to equations (4) and (6). 

Step 2: If the termination condition is met, go to Step 6. 
Otherwise, increase the total computing budget by 
a certain amount Δ ; if [ ] [ ]c

p pS SE OC E OC≤% % , go 

to Step 4. 
Step 3: Calculate the new allocation 1 1

1 2, ,...,v v v
nN N N 1+ + +  

according to the allocation rules stated in Rule 1. 
Go to Step 5.  

Step 4: Calculate the new allocation 1 1
1 2, ,...,v v v

nN N N 1+ + +  
according to allocation rules stated in Rule 2. 
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Step 5: Perform additional min(δ , ) 
replications for design

1max(0, )v v
i iN N+ −

( )1,2,...,i i n= . Set 
1ν ν= +  and go to Step 1. 

Step 6:  Output designs in the observed Pareto set ( pS% ). 

3 NUMERICAL ANALYSIS 

In this section, we examine the performance of the pro-
posed MOCBA_OC solution framework. Here the per-
formance is evaluated in terms of estimated true opportu-
nity cost —

pSOC and c
pSOC  (OC incurred to both the 

Pareto and non-Pareto set averaged over total independent 
experiments conducted), estimated true Type II and I errors 
(percentage of experiments that misclassify designs into 
the Pareto and non-Pareto sets), and the estimated true 
probability of correct selection — PCS (percentage of ex-
periments that can identify the true Pareto set). The pro-
posed MOCBA_OC algorithm is compared with the uni-
form computing budget allocation (UCBA) algorithm. In 
the following computational experiment, we set the pa-
rameters as follows: = 5, Δ =10 and 0N δ =5. 

For the convenience of comparison, we use the same 
test problem presented in Lee et al. (2006) except that we 
multiply 10 to the mean and standard deviation of the third 
performance measure. The purpose of the multiplication is 
to make the third objective apparently in different scale 
from the other two objectives, so that we can study 
whether difference in objectives will affect the perform-
ance of the algorithm and whether normalization is an apt 
tool to handle the multi-objective nature of the OC. For 
this test problem, there are 25 design alternatives, each is 
evaluated in terms of three objectives. We assume that the 
true performance measures of the designs are known, 
therefore we know the non-dominated set of designs is 1, 
2, 4, 5, and 9. When the performance measures are un-
known, we assume that they can be evaluated through 
simulation whose output follows normal distribution with 
given means and standard deviations. The means are as-
sumed to be the same as the true performance measures 
and the standard deviation is 8 for each performance meas-
ure of the designs. 

To study on average how the algorithms perform as 
computing budget increases, we conduct 2000 independent 
experiments each with total computing budget  set as: 
200, 400, …, 2000. Results are shown in Table 1 and Fig-
ures 1 to 4. 

maxN
 

51
Compariosn of Estimated True Type I & II errors

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

200 400 600 800 1000 1200 1400 1600 1800 2000
Replication Number

E
st

im
at

ed
 T

ru
e 

E
rro

r

MOCBA-OC1 UCBA1
MOCBA-OC2 UCBA2

 
Figure 1: Estimated true errors of the procedures. 

 
Figure 1 illustrates the estimated true Type I and II er-

rors (labeled as “1” and “2” respectively in the legend) for 
the two algorithms. It is very clear that MOCBA_OC per-
forms much better than UCBA for both types of errors. 
Moreover, it produces a more balanced minimization of the 
two types of errors: the difference between Type II error 
and Type I error is much smaller than that of the UCBA). 
Now we compare their capabilities of identifying the final 
Pareto set. Figure 2 displays how PCS differs between the 
two procedures as computing budget changes. 
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Figure 2: Comparison of  PCS among the algorithms. 

 
We can observe from Figure 2 that, MOCBA-OC per-

forms substantially better than UCBA. The PCS produced 
by MOCBA-OC is generally about 40% better than that 
given by UCBA. Now we study when compared with 
UCBA, how MOCBA-OC speed up the simulation process 
in terms of the savings in computing budget. Table 1 lists 
out the results when the required PCS is set as: 99%, 95%, 
…, and 80%.  
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Table 1: Speedup of MOCBA-OC over UCBA  in terms of 
simulation replications. 

MOCBA-OC PCS UCBA Rep. No. Ratio 
99% 6860 1400 4.9 
95% 4500 930 4.84 
90% 3650 750 4.87 
85% 2800 650 4.31 
80% 2400 590 4.07 

 
The results in Table 1 indicate that UCBA takes about 

4 to 5 times of the computing budget that MOCBA-OC 
takes. The worse performance of UCBA highlights the 
point that we should allocate computing budget among the 
designs according to their performance rather than uni-
formly. Figure 3 depicts how MOCBA-OC and UCBA al-
locate the simulation budget when Nmax = 1600. When 
compared with UCBA, MOCBA-OC exhibits different pat-
terns in terms of distribution of the replications among the 
designs  only the following designs are allocated more 
replications: (a) those designs should be in the Pareto set, 
and (b) those designs whose performances are very close to 
designs in (a). As MOCBA-OC has directed most of its ef-
forts in singling out those non-dominated designs from 
those designs with close performances, this explains why it 
can outperform UCBA and result in great speedup of the 
simulation process. 
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Figure 3: Distribution of the computing budget among the 
designs. 
 

We now present how expected OC changes for 
MOCBA_OC and UCBA as total computing budget  
increases from 200 to 2000. Results are shown in Figure 4. 

maxN
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Figure 4: Comparison of expected OC. 

 
Here the expected OC (“1” and “2” correspond to the 

observed non-Pareto and Pareto set respectively) is calcu-
lated based on normalized performance measures as shown 
in (7). Again MOCBA-OC achieves much lower expected 
OC than UCBA for both observed Pareto and non-Pareto 
set. Though UCBA can achieve relatively lower OC of the 
non-Pareto set, it results in very high OC for the Pareto set. 
MOCBA-OC alleviates this problem by allocating in a dif-
ferent way (Figure 3). However, especially when  is 
low, the two types of OC still deviate highly from each 
other. This implies that there is still room to improve the 
performance of the MOCBA-OC by balancing the minimi-
zation of OC associated with the Pareto and non-Pareto set. 

maxN

4 CONCLUSIONS 

In this study, we present a solution framework for solving 
the multi-objective ranking and selection (MORS) problem 
based on minimization of opportunity cost (OC). A se-
quential solution procedure is proposed to iteratively iden-
tify the Pareto set by allocating the simulation replications 
among the designs according to some asymptotic alloca-
tion rules. Numerical analysis shows that, the proposed 
framework employing OC as the measure of selection 
quality works substantially better than Uniform Computing 
Budget Allocation (UCBA) in terms of both probability of 
correct selection and expected OC. In future research, we 
need to do more numerical analysis to study the perform-
ance of MOCBA_OC. For example, we can compare it 
with the procedure proposed in Lee et al. (2006) (a frame-
work employs Type I & II errors to evaluate the quality of 
the Pareto set) to see how different measures of selection 
quality affect the quality of the final Pareto set and the dis-
tribution of the simulation replications among the designs. 
We may also study how correlation among the objectives 
would affect the allocation rules and therefore the perform-
ance of the solution framework. 
0
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