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ABSTRACT

We develop a sequential sampling procedure for solving
a class of stochastic programs. A sequence of feasible
solutions, with at least one optimal limit point, is given
as input to our procedure. Our procedure estimates the
optimality gap of a candidate solution from this sequence,
and if that point estimate is sufficiently small then we
stop. Otherwise, we repeat with the next candidate solution
from the sequence with a larger sample size. We provide
conditions under which this procedure: (i) terminates with
probability one and (ii) terminates with a solution which
has a small optimality gap with a prespecified probability.

1 INTRODUCTION

Stochastic programming provides a framework for deci-
sion making under uncertainty, which extends deterministic
mathematical programming to incorporate random variables
and probabilistic statements. A major challenge in the
analysis of stochastic programs of practical size is having
to compute a difficult high-dimensional expectation with ex-
pensive function evaluations. Monte Carlo sampling-based
methods can provide an attractive approximation. These
methods replace the probabilistic statements in the model
(e.g., expectation) with their sampling estimators (e.g., sam-
ple mean). They are usually justified asymptotically, by pro-
viding conditions under which the approximating solutions
solve the stochastic program as the sample size grows large.
However, practical implementations require a finite sample
size. A question of interest is then, what this sample size
should be to have a good approximate solution. One way
to approach this is to sequentially increase the sample size
until we reach a good solution. Such a procedure requires a
reliable means of stopping and rules to increase the sample
size. Moreover, some statement regarding the quality of the
associated solution needs to be made. These issues are the
focus of this paper.
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We assume a sequence of candidate solutions, with
at least one limit point that solves the original stochastic
program, is given as an input. Such a sequence can be
generated by solving a series of sampling problems with
an increasing sample size. (See Higle and Sen 1991b for
a computationally effective way to do so for a class of
two-stage stochastic linear programs.) That said, we allow
candidate solutions to be generated by any method. Given
a candidate solution, we assess its quality with increasing
sample size, measuring quality in terms of the candidate
solution’s optimality gap. At each iteration when assessing
the candidate solution’s quality, we have the option to:
(i) reuse previously-generated sample observations and add
additional, newly-generated samples, or (ii) generate an
entire new set of observations. Our ability to use a warm
start to more efficiently solve the next iteration’s stochastic
program favors the former choice. On the other hand, the
risk of persisting with a “bad” set of samples suggests we
should occasionally choose the latter option. We investigate
this tradeoff. We terminate the procedure when a stopping
criterion is satisfied, and we prove that asymptotically, this
procedure yields a high quality solution with a desired
probability.

In sequential sampling, the sample size is not fixed.
Rather, it depends on the observations collected so far,
and hence is a random variable. Two classic sequential
problems in estimation involve forming fixed-width (Chow
and Robbins 1965) and relative-width (Nadas 1969) con-
fidence intervals for the mean by sequentially increasing
the sample size. When simulating stochastic systems, the
simulation run length can take the place of the sample size.
For steady-state simulations, Law and Kelton (1982) and
Law, Kelton, and Koenig (1981) survey sequential methods
for constructing fixed-width and relative-width confidence
intervals for the mean performance measure of a stochastic
system. Glynn and Whitt (1992) provide conditions under
which asymptotic validity of sequential stopping rules for
simulations can be achieved. More recent work in the area
of simulation involves selecting from a number of alterna-
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tive system designs using sequential sampling; see Kim and
Nelson (2001, 2006).

M-estimators (Huber 1981) generalize maximum like-
lihood estimators, and sequential sampling procedures have
been developed for M-estimators (Hlávka 2000). These
procedures differ from ours in that they assume differen-
tiability and focus on estimation of an optimum solution.
We mainly focus on stochastic programs with recourse, and
our computational results are for two-stage stochastic linear
programs with recourse (SLP-2). In SLP-2, the objective
function is convex and typically also non-smooth. More-
over, we are indifferent to how close we are to the set
of optimum solutions as long as the candidate solution’s
objective function value is close to the optimum value, i.e.,
the optimality gap is small.

There has been considerable work in stochastic pro-
gramming on employing Monte Carlo methods. Ermoliev
(1988) surveys stochastic quasi-gradient methods and Pflug
(1988) surveys step-size and stopping rules. Dantzig and
Glynn (1990) and Infanger (1992) use importance sampling
to reduce estimation variance within a cutting-plane scheme,
and Higle and Sen (1996b) update sampling-based cuts to
ensure desirable asymptotics. For stochastic global opti-
mization, Norkin, Pflug, and Ruszczyński (1998) sample
within a branch-and-bound algorithm. Even though there
has been work on how to stop the procedures, and how
to assess the quality of the solutions resulting from these
sampling-based methods (Dantzig and Infanger 1995, Higle
and Sen 1991a, Higle and Sen 1996a), sequential issues that
arise have received little attention.

Instead of embedding sampling within an optimization
algorithm, another approach is to first sample a set of obser-
vations and then simply solve the resulting problem. There
is a significant literature on large sample size properties
of this approach; see, e.g., the survey of Shapiro (2003).
For convex, piecewise linear stochastic programs that have
a unique, sharp optimum, Shapiro, Kim, and Homem-de-
Mello (2002) provide insight as to the sample size needed to
find the optimal solution via large deviations theory. When
independent samples are drawn at a sequence of iterations,
Homem-de-Mello (2003) studies rates at which the sample
sizes must grow to ensure consistency of the objective func-
tion estimator, and he derives associated error statements in
the spirit of the law of the iterated logarithm. For stochastic
nonlinear programs, Polak and Royset (2007) propose a
procedure that approximately minimizes the computational
effort required to reduce an initial optimality gap by a pre-
specified fraction, in the context of so-called diagonalization
schemes.

Morton (1998) develops stopping rules for a class of
algorithms that use asymptotically-normal optimality gap
estimates, formed as a difference of upper- and lower-bound
estimators. For minimization problems, upper-bound esti-
mators can be formed for a fixed, feasible solution, and
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asymptotic normality is easy to achieve. A natural lower-
bound estimator arises from optimizing a sample-mean ob-
jective function (Mak, Morton, and Wood 1999, Norkin,
Pflug, and Ruszczyński 1998). Unfortunately, this estimator
is not, in general, asymptotically normal, and so the ap-
proach of Morton (1998) does not apply. In this paper, we
overcome this difficulty, and allow use of the non-normal
optimized sample-mean estimator. We improve on Morton
(1998) in two other important ways: The confidence inter-
val we form on the optimality gap uses the (observable)
sample variance estimator instead of the (unknown) popu-
lation variance, and we develop sampling procedures under
weaker moment conditions. Importantly, our main results
do not require independent and identically distributed (i.i.d.)
sampling, and hence can be applied when using other sam-
pling schemes that are designed, e.g., to reduce variance.
Another attractive feature of our sequential approach is its
flexibility in how observations can be generated at each it-
eration. One option is to use a single stream of observations
in which at each iteration we simply augment the existing
set of observations with a few new additional samples. Al-
ternatively, the observations from the previous iteration can
be discarded and we can generate an entirely new set of
observations of increased size. Intermediate options also
exist, and are permitted by the theory we develop.

2 FRAMEWORK

We consider

z∗ = min
x∈X

E f (x, ξ̃ ), (SP)

where the expectation is taken with respect to random vector
ξ̃ . We assume X 6= /0, X is compact, E supx∈X | f (x, ξ̃ )| <
∞, and f (·, ξ̃ ) is lower semicontinuous (lsc) on X , with
probability one (w.p.1). This ensures E f (·, ξ̃ ) is lsc, and
hence (SP) has a finite optimal solution, which is achieved
on X .

Our procedure works as follows: At iteration k, we are
given x̂k ∈ X . We select a sample size, nk, and estimate x̂k’s
optimality gap. The procedure stops when the optimality
gap estimate falls below a certain level. Otherwise, we
continue with x̂k+1 ∈ X and nk+1 ≥ nk. Let X∗ be the set
of optimal solutions to (SP). We assume:

A1. The sequence of feasible candidate solutions {x̂k}
has at least one limit point in X∗, with probability
one (w.p.1).

Such a sequence can be found by solving a series of sampling
problems

z∗n = min
x∈X

1
n

n

∑
i=1

f (x, ξ̃ i), (SPn)
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with optimal solutions x∗n and with sample sizes n = mk,
such that mk → ∞ as k → ∞. Other ways to find {x̂k} are
also possible. We do assume that the method that generates
{x̂k} does not depend on the sampled observations used in
our evaluation procedures.

For any x ∈ X , let µx = E f (x, ξ̃ ) − z∗ and
σ2(x) = var[ f (x, ξ̃ )− f (x∗min, ξ̃ )], where x∗min ∈ argminy∈X∗

var[ f (x, ξ̃ )− f (y, ξ̃ )]. If (SP) has a unique optimum, i.e.,
X∗ = {x∗}, then, of course, x∗min = x∗.

Let ξ̃ 1, ξ̃ 2, . . . , ξ̃ n be a sample, which could be i.i.d.
as ξ̃ or could be drawn in another way, e.g., to reduce
variance. Suppose we have at hand Gn(x), that uses this
sample of size n to estimate µx, and similarly we have an
estimator s2

n(x)≥ 0 of σ2(x). We define

Dn(x) =
1
n

n

∑
i=1

[
f (x, ξ̃ i)− f (x∗min, ξ̃

i)
]
, (1)

where x∗min is defined as above for this x. The estimators
Dn(x), Gn(x) and s2

n(x) all use the same n observations and
we assume the following:

A2. Let {xk} be a feasible sequence (i.e., xk ∈ X) with x
as one if its limit points. Let sample size nk satisfy
nk → ∞ as k → ∞. Then, liminfk→∞ P(|Gnk(xk)−
µx|> δ ) = 0 for any δ > 0.

A3. Gn(x)≥ Dn(x), w.p.1 for all x ∈ X and n ≥ 1.
A4. liminfn→∞ s2

n(x)≥ σ2(x), w.p.1 for all x ∈ X .
A5.

√
n(Dn(x)−µx)⇒N(0,σ2(x)) as n→∞ for all x∈

X , where N(0,σ2(x)) is a normal random variable
with mean zero and variance σ2(x). Here, “⇒”
denotes convergence in distribution.

As an example of estimators that satisfy the above
assumptions, let ξ̃ 1, ξ̃ 2, . . . , ξ̃ n be i.i.d. as ξ̃ , let x∗n solve
(SPn) for this sample, let f̄n(x) = 1

n ∑
n
i=1 f (x, ξ̃ i) and form:

Gn(x)=
1
n

n

∑
i=1

(
f (x, ξ̃ i)− f (x∗n, ξ̃

i)
)

, (2a)

s2
n(x)=

1
n−1

n

∑
i=1

[
( f (x, ξ̃ i)− f (x∗n, ξ̃

i))− ( f̄n(x)− f̄n(x∗n))
]2
. (2b)

With this choice of estimators, Assumption A3 is im-
mediate since f̄n(x∗n) ≤ f̄n(x∗min), w.p.1. Dn(x) is simply
a sample mean of i.i.d.r.v.s, and hence A5 holds by the
standard central limit theorem (CLT), provided σ2(x) < ∞.
Sufficient conditions for A4 to hold under i.i.d. sampling
are given in Bayraksan and Morton (2006). Note that when
(SP) has multiple optimal solutions we cannot expect {x∗n}
to have a single limit point and hence we cannot expect
s2

n(x) to converge as n → ∞. However, A4 is a form of
consistency for s2

n(x) in the sense that it is bounded below
by σ2(x). A sufficient condition under which A2 holds is
that f̄n(x) converges uniformly to continuous limit E f (x, ξ̃ )
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on X , w.p.1, which holds under i.i.d. sampling and com-
pact X provided f (·, ξ̃ ) is continuous on X , w.p.1, and
E supx∈X | f (x, ξ̃ )|< ∞.

3 SEQUENTIAL SAMPLING PROCEDURE

At iteration k ≥ 1 of the sequential procedure, we select
nk observations to assess x̂k’s quality. We can choose to
generate ξ̃ 1, . . . , ξ̃ nk independently of those generated in
previous iterations. Or, we can augment the observations
from the previous iteration by generating nk−nk−1 additional
observations, ξ̃ nk−1+1, . . . , ξ̃ nk (assume n0 = 0). We form
Gnk(x̂k), and s2

nk
(x̂k), and if the stopping criterion is not

satisfied, we repeat with sample size, nk+1 ≥ nk and x̂k+1.
To simplify notation we suppress dependence on x̂k and nk,
and simply denote µk = µx̂k , σ2

k = σ2(x̂k), Dk = Dnk(x̂k),
Gk = Gnk(x̂k) and sk = snk(x̂k). We terminate at iteration

T = inf
k≥1

{Gk ≤ h′sk + ε
′}, (3)

i.e., the first time Gk’s width relative to sk falls below
h′ > 0 plus a small positive number ε ′, which ensures finite
stopping (see next section).

The stopping criterion (3) is with respect to h′sT + ε ′,
and the statement regarding the quality of the candidate
solution when we stop is with respect to a larger relative
term hsT + ε , where h > h′ and ε > ε ′. (Typically, we
choose the epsilon terms so they are small compared to h′.)
For the procedure we propose we will show

liminf
h↓h′

P(µT ≤ hsT + ε)≥ 1−α. (4)

So, x̂T ’s optimality gap is a fraction of the sample standard
deviation plus ε , with a desired probability provided h is
close enough to h′.

At iteration k, we choose the sample size according to

nk ≥
(

1
h−h′

)2 (
cp +2p ln2 k

)
, (5)

where cp = max{2ln
(
∑

∞
k=1 k−p lnk/

√
2πα

)
,1}. Here, p > 0

is a parameter we can choose, which affects the number
of samples we generate. In the next section, we show if
the sample size satisfies (5) then (4) holds under a finite
moment generating function assumption. We also show the
procedure stops in a finite number of steps. We summarize
our procedure below.

Sequential Sampling Procedure:

Input: Values for h > h′ > 0, ε > ε ′ > 0, 0 < α < 1, and
p > 0. Method that generates {x̂k} with at least one limit
point in X∗. Resampling frequency kf , a positive integer.
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Output: Candidate solution, x̂T , and a (1−α)-level confi-
dence interval on its optimality gap, µT .

0. (Initialization) Set k = 1, calculate nk as given in (5),
and sample observations ξ̃ 1, ξ̃ 2, . . . , ξ̃ nk .
1. Use ξ̃ 1, ξ̃ 2, . . . , ξ̃ nk to form Gk and s2

k .
2. If {Gk ≤ h′sk + ε ′}, then set T = k, and go to 4.
3. Set k = k+1 and calculate nk according to (5). If kf divides
k then sample observations ξ̃ 1, ξ̃ 2, . . . , ξ̃ nk , independently
of samples generated in previous iterations. Else, sample
nk − nk−1 observations ξ̃ nk−1+1, ξ̃ nk−1+2, . . . , ξ̃ nk from the
distribution of ξ̃ . Go to 1.
4. Output candidate solution x̂T and a one-sided confidence
interval on µT ,

[0, hsT + ε] . (6)

If kf = 1 then at every iteration we sample nk new
observations. At the other extreme, if kf is sufficiently large
then we continually augment the existing set of observations
throughout execution of the procedure.

4 ASYMPTOTIC VALIDITY & FINITE STOPPING

In this section, we first present a result that shows (4)
holds under a finite moment generating function assumption.
Then, we prove and discuss finite stopping of the algorithm.
In the next section we relax the moment generating function
assumption, replacing it with a finite rth moment assumption.
We state our results without proof and refer to Bayraksan
and Morton (2007) for the proofs.

4.1 Finite Moment Generating Function

Assume for some γ0 > 0

sup
n≥1

sup
x∈X

E
[

eγ

(
Dn(x)−µx
σ(x)/

√
n

)]
< ∞, for |γ| ≤ γ0, (7)

where Dn(x) is defined in (1). When ξ̃ 1, ξ̃ 2, . . . , ξ̃ n are
i.i.d., a sufficient condition to ensure (7) is that the moment
generating function (MGF) of the scaled random variables
[( f (x, ξ̃ )− f (x∗min, ξ̃ ))−µx]/σ(x) exists, i.e.,

sup
x∈X

E

[
e

γ

(
( f (x,ξ̃ )− f (x∗min,ξ̃ ))−µx)

σ(x)

)]
< ∞ for |γ| ≤ γ0. (8)

Below we state and prove the validity of the sequential
sampling procedure under hypothesis (7). Our result, given
in (4), is asymptotic, as h ↓ h′, i.e., as the sample sizes
grow. Theorem 1’s proof rests on: (i) Fatou’s Lemma,
which provides inequalities when “lim inf” and an integral
(or an infinite sum) are exchanged and (ii) a bound on the
tail of a normal random variable.
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Theorem 1 Assume A3, A4 and A5 are satisfied and
(7) holds for γ0 > 0. Let M2 = supx∈X σ2(x), ε > ε ′ > 0,
p > 0 and 0 < α < 1. Consider the sequential sampling
procedure where the sample size is increased according to
(5). If the procedure stops at iteration T according to (3)
then,

liminf
h↓h′

P(µT ≤ hsT + ε)≥ 1−α. (9)

Theorem 1 shows that for values of h close enough to
h′, or, when the sample sizes nk are large enough, we have
the optimality gap of the solution when we stop within
[0, hsT + ε] with at least the desired probability of 1−
α . We now turn our attention to finite stopping. As the
following theorem indicates, the sequential procedure stops
with probability one in a finite number of iterations.

Theorem 2 Assume A1 and A2 are satisfied. Let
ε ′ > 0 and h > h′ > 0 be fixed. Then, for the sequential
sampling procedure where the sample size is increased
according to (5), and the procedure stops at iteration T
according to (3), we have P(T < ∞) = 1.

4.2 Weaker Moment Conditions

In this section, we prove a variant of Theorem 1 that assumes
finite moments up to order r. Specifically, we relax the MGF
assumption of the previous section to

sup
x∈X

E
[

f (x, ξ̃ )
]r

< ∞, (10)

for some even integer r ≥ 2. Note that (10) implies
supx∈X ,y∈X∗ E[ f (x, ξ̃ )− f (y, ξ̃ )]r < ∞. We also simplify the
analysis by only considering i.i.d. sampling. Under these
assumptions, we select the sample size at each iteration k
according to

nk ≥
(

1
h−h′

)2(
cp,q +2pk2q/r

)
, (11)

where q > 1, p > 0 and where cp,q =
max{2ln

(
∑

∞
k=1 exp(−pk2q/r)/

√
2πα

)
,1}. The growth in

the sample size is of order O(k2q/r) and we must choose
q > 1. So, if condition (10) holds for r = 2 we can choose
q just larger than unity so we essentially have the sample
size growing at a linear rate, and if condition (10) holds
for r = 4 we can obtain a rate that essentially grows with
k1/2. In other words, a less restrictive assumption on the
existence of moments implies a faster rate of growth for
the sample sizes.

Under the moment generating function hypothesis, the
sample size formula (5) contained a parameter, p > 0, which
was at our disposal. Now, under the moment hypothesis
(10), if we elect the slowest possible rate of growth of nk
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by choosing q just larger than unity then we can again view
the sample size formula as being parameterized by a scalar
term, p. We discuss how to choose these parameters in the
next section.

We now state the validity and finite stopping of our
procedure under the finite rth moment assumption given in
(10). Key to this proof is a lemma that establishes a bound
on the central moments of a sample mean, which we state
first.

Lemma 3 Let X1,X2, . . . ,Xn be i.i.d. random vari-
ables with mean µ and X̄n = 1

n ∑
n
i=1 X i. If E|X1−µ| r < ∞

for some integer r ≥ 1 then

E (X̄n−µ)r ≤ E|X1−µ|r
( r

n

)r/2
.

Theorem 4 Assume A1-A4 are satisfied, (10) holds
with r ≥ 2 even, and that ξ̃ 1, ξ̃ 2,. . . are i.i.d. as ξ̃ . Let
ε > ε ′ > 0, p > 0, q > 1 and 0 < α < 1. Then, for the
sequential sampling procedure where the sample size is
increased according to (11), and the procedure stops at
iteration T according to (3),

P(T < ∞) = 1 and liminf
h↓h′

P(µT ≤ hsT + ε)≥ 1−α.

Under i.i.d. sampling, Theorem 4 differs from Theo-
rem 1 in that the MGF assumption of (8) is replaced by the
moment condition (10). Under this weaker assumption, the
sample sizes are chosen according to (11) instead of (5),
which require a larger number of sampled observations.

So far, we have characterized desirable theoretical prop-
erties of our sequential procedure. In the next section, we
discuss issues that arise when implementing the procedure.
In particular, we discuss how to choose p when using the
sample size formula (5) and how to choose q and p when us-
ing (11). Then, we apply the procedure to two test problems
that are two-stage stochastic linear programs with recourse
to examine its performance.

5 CHOOSING PARAMETERS FOR nk

At iteration k, we set nk according to (5) under the MGF
assumption and according to (11) under the rth moment
assumption. Then, using this many samples, we solve a
sampling problem (SPnk ) to estimate the optimality gap of
the current candidate solution and its associated variance.
Suppose the procedure terminates in T iterations. Then,
we solve T sampling problems, (SPn1 ), (SPn2 ), . . . ,(SPnT ).
Therefore, the computational effort exerted for the evaluation
of the candidate solutions is approximately proportional
to ∑

T
k=1 nk. (For some decomposition methods, empirical

studies suggest the effort to solve a stochastic program grows
linearly in the number of scenarios, see e.g., Ruszczyński
and Świetanowski 1997 and Verweij, Ahmed, Kleywegt,
Nemhauser, and Shapiro 2003). In other words, the effort is
proportional to SM(p) and SW (p,q), which are the following
425
two respective expressions

T max

{
2ln

(
∑

∞
k=1 k−p lnk
√

2πα

)
,1

}
+2p

T

∑
k=1

ln2 k (12a)

T max

{
2ln

(
∑

∞
k=1 exp(−pk2q/r)

√
2πα

)
,1

}
+2p

T

∑
k=1

k2q/r. (12b)

Assume, for the moment, that T is known. The parameter
p > 0 for SM(p) and the parameters p > 0 and q > 1 for
SW (p,q) are at our disposal. To reduce the computational
effort, we would like to choose them to minimize SM(p)
and SW (p,q). The following result helps to do so.

Theorem 5 Let SM(p) and SW (p,q) be defined in
(12). SM(·) is convex on {p : p > 0} and SW (·,q) is convex
on {p : p > 0} for fixed q > 1. Furthermore, SM(p) and
SW (p,q) are both bounded below by

2T ln
(

T√
2πα

)
. (13)

When employing the sample size formula (5), the asso-
ciated function SM(p) is convex, and associated minimizers
p∗ for various values of T are shown in the second and
third columns of Table 1. When we use sample size formula
(11) we seek to select p and q to solve minp>0,q>1 SW (p,q).
By Theorem 5, SW (·,q) is convex and so we can minimize
this function for a fixed value of q. The fourth and fifth
columns of Table 1 show the results of doing so for q = 1.5.
We know by the lower-bounding values shown in the final
column of the table that these are suboptimal by no more
than 2.5-5.5%.

The results of Table 1 can guide selection of p given
rough estimates for T . Of course, the assumption that T is
known is unrealistic. While we could view T as a random
variable and attempt to minimize SM or SW in expectation,
we will not do so. When the procedure terminates at a
different iteration than that of the assumed T , the differences
in sample sizes are quite modest. For instance, taking
h−h′ = 0.5 and α = 0.10, and using p1 = 1.91×10−1 (for
T = 50), we have nT ≥ 33, 56, and 65 samples when T =
1, 50 and 100 respectively under the MGF assumption of
(7). Similarly, we have nT ≥ 37, 55, and 63 when we
instead use p2 = 1.53×10−1 (for T = 100). For the weaker
moment condition with r = 2 and q = 1.5, nT ≥ 39, 52,
and 77 when T = 1, 50 and 100 respectively when we use
p1 = 4.67×10−3 and nT ≥ 45, 50, and 58 samples when
we instead use p2 = 1.66×10−3. Slightly smaller values of
SW (p,q) (and nT ) can be obtained with even larger values
of q but the results are more sensitive to having assumed
the “wrong” value of T .
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Table 1: Choices of p that minimize SM(p) and SW (p,q) for a
given number of iterations, T . In SW (p,q), we fix q = 1.5 and
r = 2. LB = 2T ln(T/(

√
2πα)) denotes the lower bound given

in Theorem 5. The values for SM and SW (and LB) are reported
are for α = 0.10, but the same p∗ values are optimal, e.g., for
α = 0.05.

T p∗ SM(p∗) p∗ SW (p∗,1.5) LB
10 4.07×10−1 82 5.05×10−2 78 74
50 1.91×10−1 591 4.67×10−3 552 530

100 1.53×10−1 1,334 1.66×10−3 1,243 1,198
500 1.04×10−1 8,421 1.49×10−4 7,822 7,598

1,000 9.08×10−2 18,333 5.27×10−5 17,031 16,583

6 APPLICATION TO SLP-2

We apply the sequential sampling procedure to two-stage
stochastic linear programs with recourse (SLP-2s). We
present computational results on two test problems from
the literature, PGP2 and APL1P. PGP2 is an electric power
generation model with 3 stochastic parameters and 576
scenarios (Higle and Sen 1996b). APL1P, another power
generation model, has 5 independent stochastic parameters
and 1280 scenarios (Infanger 1992). These small problems
can be solved exactly, and so it is unnecessary to use
simulation to solve them. Our purpose for considering
them here is that they allow us to assess the performance
of our sequential sampling procedures, e.g., we can test
whether confidence intervals cover the optimality gap they
are designed to estimate. In addition, we use these as
test problems since we know they pose challenges for the
optimality gap estimators we use.

6.1 Gap and Variance Estimators

We use four methods to form the gap and variance esti-
mators. These are the single replication procedure (SRP),
the averaged two-replication procedure (A2RP), and their
δ -optimal versions (δ -optimal SRP, and δ -optimal A2RP),
which we now detail. For the SRP estimators, step 1 of
the procedure of §3 computes gap and variance estimators
according to equations (2), i.e., step 1 becomes:
1.a. Solve (SPnk ) using i.i.d. ξ̃ 1, ξ̃ 2, . . . , ξ̃ nk . Obtain x∗nk

,

1.b. Form Gk = 1
nk

∑
nk
i=1

(
f (x̂k, ξ̃

i)− f (x∗nk
, ξ̃ i)

)
, and s2

k =

1
nk−1 ∑

nk
i=1

[
( f (x̂k, ξ̃

i)− f (x∗nk
, ξ̃ i))− ( f̄nk(x̂k)− f̄nk(x

∗
nk

))
]2

.

The implementation under A2RP involves small
changes. We select nk even and divide the observations
into two random partitions and calculate Gi

k and s2 i
k as

above (steps 1.a and 1.b) for each sample containing nk/2
observations, i = 1,2. We then pool these gap and variance
estimators to obtain Gk = 1

2 (G1
k +G2

k) and s2
k = 1

2 (s2 1
k +s2 2

k ).
For the sequential procedure that uses A2RP, we use these
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pooled estimators for the stopping criterion in step 3 of the
procedure. The gap and variance estimators formed by SRP
and A2RP under i.i.d. sampling satisfy assumptions A2-A5
of §2 (Bayraksan and Morton 2006).

We also use δ -optimal versions of these methods in
which we solve the sampling problem(s) in step 1.a subop-
timally, i.e., to within 100 ·δ% of optimal. Our motivation
for doing so is two-fold. First, it is unnecessary (and com-
putationally wasteful) to numerically optimize a sample
mean orders of magnitude more precisely than the confi-
dence interval width output by our procedure. Second, we
found in Bayraksan and Morton (2006) that numerically
precise optimization of the (SPn) used in assessing solution
quality can degrade coverage properties, even in the non-
sequential setting due to an x∗n coinciding with the candidate
solution. This property also motivated development of the
A2RP estimators described above. When implementing the
δ -optimal procedures, we set the suboptimality level to
δ = 10−3, which was found to yield good coverage results
in the non-sequential setting (Bayraksan and Morton 2006).

6.2 Generating Candidate Solutions

The method that generates candidate solutions is an input
to our procedure, and any method suffices provided its
sequence has at least one limit point in X∗. We generate
{x̂k} by solving a separate sampling problem (SPmk) with
increasing sample sizes, as described below.
i. Set mk = m1. Sample i.i.d. observations (independent of
those used in evaluation procedures) ξ̃ 1, ξ̃ 2, . . . , ξ̃ mk ,
ii. Solve (SPmk ) to obtain x∗mk

,

iii. Set x̂k = x∗mk
. Sample mk+1 −mk i.i.d. observations

ξ̃ mk+1, ξ̃ mk+2, . . . , ξ̃ mk+1 . Set k = k +1 and go to ii.
In step i, we use a separate stream of i.i.d. observations

from the distribution of ξ̃ , independent from those gener-
ated in steps 0 and 2 of the sequential procedure. In our
experiments, we set mk = 2nk, i.e., we are willing to spend
more computational effort to find high-quality candidate
solutions and use fewer sample sizes to evaluate them. All
limit points of this sequence of candidate solutions is in the
set of optimal solutions, X∗, under mild conditions satisfied
by our test problems. So, assumption A1 is satisfied.

6.3 Parameters Used

Both of the test problems satisfy assumptions stated in §2
(X 6= /0 and is compact, f (·, ξ̃ ) is continuous on X , w.p.1.,
etc.) Moreover, the random vector ξ̃ of these test problems
each has finite discrete distributions with independent com-
ponents. Therefore, the MGF assumption (7) is satisfied for
all γ0 and hence we use the sample size formula (5). We set
α = 0.10 and design the procedure for T = 50, i.e., we set
p = 1.91×10−1 (see §5). Table 2 lists the values of h′ and
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Table 2: Parameters and the corresponding initial sample sizes
used in the tests. Other parameters are the same for both test
problems: α = 0.10, ε = 2× 10−7, ε ′ = 1× 10−7, and p =
1.91×10−1.

PGP2 APL1P
h′ 0.025 0.015
h 0.312 0.217

n1 100 200

Table 3: Effect of resampling frequency, kf . Results are from
applying the sequential procedure with SRP to PGP2. We report
total solution time (in seconds), total time spent in assessing
solution quality (in seconds), total number of sampling problems,
(SPn)s, solved for assessing solution quality, and an average time
spent per sampling problem for assessing solution quality. We also
report average value of T , the iteration the sequential procedure
stopped along with a 90% confidence interval half-width for ET .

Sol Assess (SPn)s Assess Time/
kf Time Time Solved (SPn) T

100 307.97 102.91 2152 0.05 54.14 ± 16.44
75 279.56 93.51 1950 0.05 41.46 ± 12.78
50 243.99 82.28 1728 0.05 30.50 ± 8.96
25 196.42 67.08 1339 0.05 16.27 ± 2.71
12 162.62 61.27 1007 0.06 11.07 ± 1.72
6 151.95 66.55 808 0.08 8.65 ± 1.40
3 133.70 64.40 606 0.11 6.13 ± 0.79
1 135.10 77.35 417 0.19 4.19 ± 0.59

h used for the two test problems PGP2 and APL1P. With the
given parameters, the sequential procedure uses n1 ≥ 100
for PGP2 and n1 ≥ 200 for APL1P. When implementing
the procedure, we set ε = 2×10−7 and ε ′ = 1×10−7.

6.4 Computational Results

We use the regularized decomposition algorithm of
Ruszczyński (1986). Specifically, we modified the im-
plementation of Ruszczyński and Świetanowski (1997) to
warm-start the algorithm when additional samples are added
to the current problem. This helps us to quickly find a so-
lution when we augment a problem with a few additional
samples. However, as mentioned before, our method also
allows for creating an entirely new set of samples. Augment-
ing is computationally attractive but we may get trapped,
for an extended number of iterations, in a bad sample path.
We first examine the trade-off between augmentation and
resampling by changing the resampling frequency, kf . We
only examine the resampling frequency issue in the context
of assessing solution quality, i.e., we always augment the
sampling problem (SPmk ) used for generating the candidate
solutions.
4

Table 3 reports results of our tests when varying kf from
100 down to 1 using the SRP estimators on PGP2. Each
row of the table reports averages of the following, over 100
independent runs of the procedure: the total solution time,
which includes both the time for generating the sequence of
candidate solutions and the time for assessing their quality;
the time spent assessing solution quality; the number of
(SPn)s solved in assessing solution quality; the time spent
for assessing solution quality per sampling problem (SPn);
and, the average number of iterations of the sequential
procedure (along with a 90% confidence interval halfwidth).
Even though we report the total solution times, we focus on
the computational effort for assessing solution quality since
our approach allows for generating the sequence of candidate
solutions in other ways. As kf decreases, T and the total
solution time both tend to decrease. However, the time spent
in assessing solution quality first decreases, then, starts to
increase. When we look at the time spent per sampling
problem, the computational advantage of augmentation is in
effect until kf = 25, and as kf further decreases, resampling
increases the solution time per sampling problem. We did
the same analysis for APL1P and found similar results for
kf = 12. For the rest of our computational experiments, we
set kf = 25 for PGP2 and kf = 12 for APL1P.

We now turn to coverage properties of our sequen-
tial procedure, and examine these using the four differ-
ent estimators described above. In Bayraksan and Morton
(2006), we recommended the δ -optimal version of A2RP
as a computationally-attractive alternative to the multiple-
replication procedure of Mak, Morton, and Wood (1999).
Both of those papers used non-sequential procedures and
a single candidate solution, x̂. Tables 4 and 5 summarize
results for PGP2 and APL1P, respectively. The results are
again based on 100 independent runs of the sequential pro-
cedures. We use the same stream of random numbers to feed
each of the four estimation procedures. Also, since A2RP
and its δ -optimal version use sample sizes that are even,
we round up the sample sizes for SRP and its δ -optimal
version so they are even, too. The tables report the number
of iterations (T ), the confidence interval width (CI), and the
fraction of the 100 confidence intervals that contained the
true optimality gap (p̂). For each one of these values, we
report the average of the 100 runs, along with their 90%
confidence interval half-widths.

Tables 4 and 5 indicate that the A2RP method, on
average, takes more iterations to terminate (T is larger),
and the δ -optimal versions yield larger CIs and have more
conservative coverage probabilities (p̂ is not below 0.90).
The sequential procedure appears to work well for APL1P.
The CI widths are within 0.5% of optimality for all methods
and coverage probabilities are around or higher than 0.90.
The results for PGP2 are more variable among the four
methods. The variance of some of the frequently-obtained
solutions is quite large for PGP2 and this results in larger
27
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Table 4: Results for PGP2 (kf = 25; z∗ =447.324 for PGP2).

Method T CI p̂
SRP 16.27 ± 2.71 10.49 ± 2.73 0.79 ± 0.07

δ -Opt SRP 14.97 ± 2.20 39.50 ± 17.37 0.96 ± 0.03
A2RP 107.28 ± 14.48 5.88 ± 2.13 0.76 ± 0.07

δ -Opt A2RP 103.29 ± 13.79 6.90 ± 2.02 0.98 ± 0.02

Table 5: Results for APL1P (kf = 12; z∗ =24,642.32 for APL1P).

Method T CI p̂
SRP 15.40 ± 2.89 52.77 ± 8.54 0.88 ± 0.05

δ -Opt SRP 15.72 ± 2.90 54.98 ± 9.54 0.89 ± 0.05
A2RP 56.18 ± 13.05 66.10 ± 5.82 0.99 ± 0.02

δ -Opt A2RP 59.89 ± 13.30 73.24 ± 9.68 0.99 ± 0.02

CIs. A2RP and its δ -optimal version decrease the variance
but the sequential procedure runs for a longer amount of
time. For PGP2, the CIs obtained with δ -optimal A2RP, on
average, are within 1.6% of optimality with high coverage
probabilities. Overall, we view the results as consistent
with our findings in the non-sequential setting, i.e., we
view δ -optimal version of A2RP as preferable for these
two test problems: Its coverage results are conservative, i.e.,
the procedure does not exhibit the risk of undercoverage
that can arise from estimators rooted in the SRP and the
numerically-precise A2RP.

7 CONCLUSIONS

In this paper, we develop a sequential sampling procedure
to solve stochastic programs. We assume that a sequence
of candidate solutions with at least one limit point that
solves (SP) is given as an input to the procedure. Then,
the sequential sampling procedure assesses the quality of
these candidate solutions with increasing sample size and
terminates according to a stopping criterion. The stopping
criterion depends on the optimality gap estimate of the cur-
rent solution and its associated variance. If the stopping
criterion is satisfied, then the procedure outputs a confidence
interval on the optimality gap of the current candidate so-
lution. If not, the sample size is increased. The sequential
procedure we develop allows for augmentation of additional
observations to the ones that were previously generated, or,
generation of an entirely new set of observations. Warm-
starting techniques favor the first method and prevention of
being trapped in a bad sample path favors the latter.

We provide rules to stop and to increase the sample
sizes and a statement regarding the quality of the solution
obtained when the procedure terminates. We show that this
procedure asymptotically finds a high-quality solution with
a desired probability, under certain assumptions. We also
show that the procedure terminates in a finite number of
428
steps with probability 1. Then, we discuss several issues
that arise in its implementation, such as determining what
parameters to use. Our aim in choosing the parameters is
to minimize the computational effort exerted while running
the procedure. Finally, we apply the sequential sampling
procedure to two two-stage stochastic linear programs with
recourse from the literature. We test four different methods
to assess a candidate solution’s quality that were previously
developed. These are SRP, A2RP, and their δ -optimal
versions. Our preliminary computational results indicate
that the sequential sampling procedure with δ -optimal A2RP
yields good coverage results with reasonable CI widths.

An area of future research is to develop more efficient se-
quential sampling procedures while maintaining the desired
asymptotic properties. For instance, adaptive sequential
methods can be designed where the sampling method takes
into account the information obtained about the problem so
far. Carefully designed adaptive methods can be more effi-
cient while maintaining the desired asymptotic properties.
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Świetanowski for access to their regularized decomposi-
tion code. This research was partially supported by the
National Science Foundation under Grant DMI-0217927.

REFERENCES

Bayraksan, G., and D. P. Morton. 2006. Assessing solution
quality in stochastic programs. Mathematical Program-
ming 108:495–514.

Bayraksan, G., and D. P. Morton. 2007. A sequential
sampling procedure for stochastic programming. Tech-
nical Report, University of Arizona, Available at
<www.sie.arizona.edu/faculty/guzinb>.

Chow, Y. S., and H. Robbins. 1965. On the asymptotic theory
of fixed-width sequential confidence intervals for the
mean. Annals of Mathematical Statistics 36:457–462.

Dantzig, G. B., and P. W. Glynn. 1990. Parallel processors
for planning under uncertainty. Annals of Operations
Research 22:1–21.

Dantzig, G. B., and G. Infanger. 1995, November. A proba-
bilistic lower bound for two-stage stochastic programs.
Technical Report SOL 95-6, Department of Operations
Research, Stanford University.

Ermoliev, Y. 1988. Stochastic quasigradient methods. In
Numerical Techniques for Stochastic Optimization, ed.
Y. Ermoliev and R. Wets, 141–185. Springer-Verlag,
Berlin.

Glynn, P. W., and W. Whitt. 1992. The asymptotic validity
of sequential stopping rules for stochastic simulations.
The Annals of Applied Probability 2:180–198.

http://www.sie.arizona.edu/faculty/guzinb


and Morton
Bayraksan

Higle, J. L., and S. Sen. 1991a. Statistical verification of
optimality conditions for stochastic programs with re-
course. Annals of Operations Research 30:215–240.

Higle, J. L., and S. Sen. 1991b. Stochastic decomposi-
tion: An algorithm for two-stage linear programs with
recourse. Mathematics of Operations Research 16:650–
669.

Higle, J. L., and S. Sen. 1996a. Duality and statistical
tests of optimality for two stage stochastic programs.
Mathematical Programming 75:257–275.

Higle, J. L., and S. Sen. 1996b. Stochastic decomposition:
A statistical method for large scale stochastic linear
programming. Kluwer Academic Publishers, Dordrecht.

Hlávka, Z. 2000. Robust sequential methods. Ph. D. thesis,
Charles University, Prague.

Homem-de-Mello, T. 2003. Variable-sample methods for
stochastic optimization. ACM Transactions on Modeling
and Computer Simulation 13:108–133.

Huber, P. 1981. Robust statistics. Wiley, New York.
Infanger, G. 1992. Monte Carlo (importance) sampling

within a benders decomposition algorithm for stochastic
linear programs. Annals of Operations Research 39:69–
95.

Kim, S. H., and B. L. Nelson. 2001. A fully sequential
procedure for indifference-zone selection in simulation.
ACM TOMACS 11:251–273.

Kim, S. H., and B. L. Nelson. 2006. On the asymptotic
validity of fully sequential selection procedures for
steady-state simulation. Operations Research 54:475–
488.

Law, A. M., and W. D. Kelton. 1982. Confidence intervals
for steady-state simulations ii: a survey of sequential
procedures. Management Science 28:550–562.

Law, A. M., W. D. Kelton, and L. W. Koenig. 1981. Relative
width sequential confidence intervals for the mean.
Communications in Statistics B10:29–39.

Mak, W. K., D. P. Morton, and R. K. Wood. 1999. Monte
Carlo bounding techniques for determining solution
quality in stochastic programs. Operations Research
Letters 24:47–56.

Morton, D. P. 1998. Stopping rules for a class of sampling-
based stochastic programming algorithms. Operations
Research 46:710–718.

Nadas, A. 1969. An extension of a theorem of chow and
robbins on sequential confidence intervals for the mean.
Annals of Mathematical Statistics 40 (2): 667–671.

Norkin, V. I., G. Pflug, and A. Ruszczyński. 1998. A branch
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