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ABSTRACT

We consider the problem of estimating the time-average

variance constant for a stationary process. A previous

paper described an approach based on multiple integrations

of the simulation output path, and described the efficiency

improvement that can result compared with the method of

batch means (which is a special case of the method). In this

paper we describe versions of the method that have low bias

for moderate simulation run lengths. The method constructs

an estimator based on applying a quadratic function to the

simulation output. The particular quadratic form is chosen

to minimize variance subject to constraints on the order of

the bias. Estimators that are first-order and second-order

unbiased are described.

1 INTRODUCTION

We consider the steady-state simulation output analysis

problem for a stationary process. Suppose a simulation

produces output Yn = (Y1,Y2, . . . ,Yn). Our goal is to estimate

σ2 = lim
n→∞

n Var

(
n

∑
i=1

Yi/n

)
.

One approach is to apply a quadratic function to the output

vector Yn. In general, the cost of computing such an

estimator is proportional to the square of the simulation

run length n. An example of this approach is the batch

means estimator, though in the case of batch means the

complexity is linear in run length n due to the special form

of the quadratic function.

Our approach is as follows. Choose a nonnegative

parameter k that is small compared with the square root

of the simulation run length n. As the simulation runs,

maintain a vector W̃n ∈ R
k+1 after n simulated steps. At

any time n we can construct our variance estimator Vn from

W̃n in time O(k2) by applying a quadratic function to W̃n.
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This way the complexity is reduced to O(k2) = O(n) per

computation of the variance estimator.

A previous paper (Calvin 2007), introduced a class

of estimators that are based on multiple integrations of

the simulated path; the rth component of the vector W̃n

is the r-fold integrated path of the simulation output. In

that paper, the quadratic function was chosen so that the

limiting distribution of the estimators could be worked out

easily and we were mainly concerned with the efficiency

of the estimators, where the efficiency of an estimator is

defined as the reciprocal of the product of mean-squared

error and computation time. Numerical experiments showed

that with the particular choice of quadratic function used

there, the efficiency of the resulting estimator could be an

order of magnitude higher than the efficiency of the batch

means estimator. However, in experiments with short run

lengths it was found that the bias of the estimators was

quite large compared with the method of batch means. That

finding motivated the present paper, which focuses on bias

properties.

2 SETUP AND ASSUMPTIONS

Suppose that a simulation generates a real-valued sequence

Y1,Y2, . . .. We assume that (Yi) is a stationary process with

EYi = µ and that the series

σ2 = E(Y1 −µ)2 + ∑
n>1

E ((Y1 −µ)(Yn −µ))

converges absolutely with σ2 > 0. For the bias approxi-

mations, we will assume the absolute convergence of the

sums

λ j = ∑
n>1

n jE ((Y1 −µ)(Yn −µ))

for j ≤ 2.
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3 SIMULATION ALGORITHM

We now outline the proposed method for estimating the

parameter σ2 of the simulated process. Choose a parameter

k ≥ 0 (the integration count parameter). Run a simulation,

producing output {Y1,Y2, . . .}. Define W̃
j

0 = 0 for 0 ≤ j ≤ k

and for i > 0 set

W̃ 0
i =

i

∑
l=1

Yl

and for 1 ≤ j ≤ k set

W̃
j

i = j
i

∑
l=1

W̃
j−1

l .

The data maintained by the simulation method after n sim-

ulated steps is W̃n = (W̃ 0
n ,W̃ 1

n , . . . ,W̃ k
n ). (We will use bold

typeface for vectors and matrices.) The vector W̃n can be

updated in time O(k) at each simulation step.

Define

W 0
n (t) = n−1/2

⌈nt⌉

∑
i=1

Yi, 0 ≤ t ≤ 1,

and for r ≥ 1 and 0 ≤ t ≤ 1,

W r
n (t) =

∫ t

s=0
W r−1

n (s)ds = r

∫ t

s=0
W 0

n (s)(t − s)r−1ds.

Set Wn(t) =
(
W 0

n (t), . . . ,W k
n (t)

)
and W̃n(t) =(

W̃ 0
n (t), . . . ,W̃ k

n (t)
)

, 0 ≤ t ≤ 1.

Define the matrices A and Nn by

A(r,q) =

{
(−1)r−q

[
r
q

]
, q ≤ r,

0 q > r,

where the
[

r
j

]
are the Stirling numbers of the first kind

(Knuth 1997), and

Nn(r,q) =

{
nq+1/2, q = r,

0 q 6= r.

The following theorem provides the means to transform the

discrete iterated sums into the iterated integrals.

Theorem 1.

Wn(1) = (ANn)
−1

W̃n(1).
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In order to center the output, define

W
0
n(s) = W 0

n (s)− sW 0
n (1), 0 ≤ s ≤ 1,

and for r ≥ 1 and 0 ≤ t ≤ 1,

W
r
n(t) = r

∫ t

s=0
W

0
n(s)(t − s)r−1ds.

Set Wn(t) =
(

W
0
n(t), . . . ,W

k
n(t)
)

, 0 ≤ t ≤ 1. Define

R =




1 0 · · · 0

1/2 0 · · · 0

1/3 0 · · · 0

· · · · · ·
· · · · · ·
· · · · · ·

1/(k +1) 0 · · · 0




.

Then

Wn(1) = (I−R)(ANn)
−1

W̃n(1).

Our output analysis method is based on the following limit

theorem.

Theorem 2. As n → ∞,

(
W

1
n(1), . . . ,W

k
n(1)

)
D
→ σN (0,C) , (1)

where C = (Ci j) is the matrix defined by

Ci j =
i j

(i+1)( j +1)(i+ j +1)
, 1 ≤ i, j ≤ k.

The proof of Theorem 2 follows from Theorem 1 in

Calvin (2007), with a different covariance matrix due to a

slightly different definition of the W r
n .

4 BIAS AND VARIANCE

To prepare for the construction of low bias estimators, we

will need an approximation to the expectation of products

of the {W
r
n}. The following theorem approximates the

expectation to order n−2.

Theorem 3. For 1 ≤ α,β ≤ k,

E
(

W
α
n W

β
n

)
=

αβσ2

(α +1)(β +1)(α +β +1)

+
D

α,β
1

n
+

D
α,β
2

n2
+o
(
n−2
)

(2)



Calvin

as n → ∞, where

D
α,β
1 =

(αβ −1)σ2

2(α +1)(β +1)
−

(αβ +1)λ1

(α +1)(β +1)
, (3)

and

D
α,β
2 =

σ2

12

(
α +β −

α

β +1
I(α>1)−

β

α +1
I(β>1)

)

+λ1

(
I(α=1) +

1
2
αI(α>1)

β +1
+

I(β=1) +
1
2
β I(β>1)

α +1
−

α +β

2

)

+
λ2

2

(
α(α −1)+β (β −1)

(α +β −1)
−

αI(α>1)

β +1
−

β I(β>1)

α +1

)
.

We now consider estimators of the form Vn = W
T

n BWn

for a symmetric positive semidefinite matrix B of order k.

We will consider different matrices B, chosen to optimize

different objectives. In general, we will choose B to mini-

mize the asymptotic variance of Vn, subject to constraints

on the bias. We next give the bias expansion in terms of

the matrix B.

Theorem 4. Suppose that the matrix B is chosen so that

k

∑
i=0

k

∑
j=0

i j

(i+1)( j +1)(i+ j +1)
Bi j = 1. (4)

If in addition we choose B such that

k

∑
i=1

k

∑
j=1

i j +1

(i+1)( j +1)
Bi j = 0, (5)

then

EW
T

n BWn = σ2

(
1+

β1

n

)
+o
(
n−1
)
,

where

β1 =
1

2

k

∑
i=1

k

∑
j=1

i j−1

(i+1)( j +1)
Bi j.

If, in addition to (4) and (5), the following constraints

hold:

k

∑
i=1

k

∑
j=1

(
I(i=1) +

1
2
iI(i>1)

j +1

+
I( j=1) +

1
2

jI( j>1)

i+1
−

i+ j

2

)
Bi j = 0 (6)

and

k

∑
i=1

k

∑
j=1

(
i(i−1)+ j( j−1)

(i+ j−1)
−

iI(i>1)

j +1
−

jI( j>1)

i+1

)
Bi j = 0,

(7)

then

EW
T

n BWn = σ2

(
1+

β1

n
+

β2

n2

)
+o
(
n−2
)
,

where

β2 =
1

12

k

∑
i=1

k

∑
j=1

(
i+ j−

i

j +1
I(i>1)−

j

i+1
I( j>1)

)
Bi j.

Suppose that the matrix B satisfies (4) and (5), and

define

V 1
n =

W
T

n BW

1+β1/n
. (8)

Then from Theorem 4,

E
(
V 1

n −σ2
)

= o
(
n−1
)
,

so V 1
n is a first-order unbiased estimator.

In general, there could be many choices of B that satisfy

(4) and (5), thus giving rise to many first-order unbiased

estimators. Among these we want to identify one with

minimal variance. Let us approximate the variance of the

estimator using the limiting distribution given in Theorem

2; that is,

Var
(

W
T

n BWn

)
≈ tr (CBCB),

which is a convex function of B (here tr denotes the trace

of a matrix). Thus we are led to a convex optimization

problem: We want to choose B to minimize

tr (CBCB)

subject to the constraints (4) and (5). The first-order opti-

mality conditions are a set of k2 +2 linear equations. Thus

we can find the matrix B that minimizes the asymptotic

variance subject to the bias constraints by solving a system

of k2 + 2 linear equations. We let V 1
n denote the estima-

tor defined by (8) with B chosen to solve the constrained

optimization problem.

The construction of a second-order unbiased estimator

is analogous to the construction we gave for the first-order

unbiased estimator. In this case we add the constraints (6)

and (7). If B satisfies these additional constraints and we
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define

V 2
n =

W
T

n BW

1+β1/n+β2/n2
,

then Theorem 4 implies that

E
(
V 2

n −σ2
)

= o
(
n−2
)

;

that is, V 2
n is a second-order unbiased estimator. Choosing

B to minimize the asymptotic variance now requires solving

a system of k2 +4 linear equations.

One can also choose B to satisfy only (4) and minimize

the asymptotic variance. We denote this estimator by V 0
n .

5 OVERLAPPING BATCHES

Given a simulation output of length n, Y1,Y2, . . . ,Yn, and

a “batch size” b, 0 < b < n, we can construct estima-

tors based on the simulation output Yj+1,Yj+2, . . . ,Yj+b for

0≤ j ≤ n−b and then average the estimators. This approach

has been used in the construction of several variance con-

stant estimators; see Meketon and Schmeiser (1984) and

Alexopoulos et al. (2006).

For 0 < b < n and 0 ≤ j ≤ n−b consider the estimator

for the jth “batch” of the form

Vj,n = W̃
T
j, j+bBW̃ j, j+b,

where W̃ j, j+b =
(

W̃ 0
j, j+b, . . . ,W̃

k
j, j+b

)
,

W̃ 0
j, j+b =

j+b

∑
i= j+1

Yi,

and for r ≥ 1,

W̃ r
j, j+b = r

n

∑
i= j+1

W̃ r−1
m,i .

The following Lemma shows how to obtain the vectors

W̃ j, j+b from the vectors W̃0, j+b = W̃ j+b produced by the

basic simulation algorithm described in Section 3

Lemma 1.

W̃ j, j+b = W̃ j+b −DW̃ j, (9)

where

D(r,q) =

{(
r

r−q

)
br−q, q ≤ r,

0, q > r
306
and ar is the rising factorial function defined by

ar = (a)(a+1)(a+2) · · ·(a+ r−1)

and a0 = 1; see Knuth (1997).

Now

W j, j+b = (I−R)(ANb)
−1

W̃ j, j+b

is the analog of the vector Wn on which we based the

estimators in Section 3, but defined for the jth batch of size

b. Then

Vj,n =
(

W̃ j+b −DW̃ j

)T

Bb

(
W̃ j+b −DW̃ j

)
,

where

Bb =
(
(I−R)N−1

b A
−1
)T

B
(
(I−R)N−1

b A
−1
)
.

Our overlapped estimator is then

V ov
n =

1

n−b+1

n−b

∑
j=0

Vj,n.

By choosing B as described in Section 4 we can obtain

first- or second-order unbiased estimators. We need to

replace n with b, so for example the first-order unbiased

estimator has bias o(b−1) as b → ∞.

6 NUMERICAL EXPERIMENTS

The numerical results are for a first-order autoregressive

process defined by

Yi = ϕYi−1 + εi, i ≥ 1,

with the εi ∼ N(0,1) independent and Y0 ∼ N(0,1). We set

the parameter ϕ = 0.9, which results in σ2 = 19.

In all cases we constructed the overlapping estimators

based on a batch size of b = n/20. Figures 1, 2, and 3 show

the results of experiments for run lengths of 2,000, 6,000,

and 10,000, respectively. The curves for each of the mth

order unbiased estimators start at the upper left for k = 2

and as k increases the bias generally increases while the

variance decreases.

For each run length, the figures show the sample bias

and sample variance of the standard overlapping batch means

estimator (Alexopoulos et al. 2006), and the first and second

order unbiased estimators. The choice of k ranged from

2 to 4. Each experiment consisted of 105 independent

replications.
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Figure 1: Sample bias and variance for AR(1) simulations,

varying k, n = 2,000.
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Figure 2: Sample bias and variance for AR(1) simulations,

varying k, n = 6,000.

As the run length n increases, the bias of the 2nd order

unbiased estimator becomes very small compared to that of

the batch means estimator.

Experiments with the consistent estimator V 0
n resulted,

as expected, in large bias and low variance, and were omitted

from the figures.
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