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ABSTRACT

Statistical selection procedures can identify the best of a

finite set of alternatives, where “best” is defined in terms

of the unknown expected value of each alternative’s sim-

ulation output. One effective Bayesian approach allocates

samples sequentially to maximize an approximation to the

expected value of information (EVI) from those samples.

That existing approach uses both asymptotic and probabilis-

tic approximations. This paper presents new EVI sampling

allocations that avoid most of those approximations, but

that entail sequential myopic sampling from a single al-

ternative per stage of sampling. We compare the new and

old approaches empirically. In some scenarios (a small,

fixed total number of samples, few systems to be com-

pared), the new greedy myopic procedures are better than

the original asymptotic variants. In other scenarios (with

adaptive stopping rules, medium or large number of sys-

tems, high required probability of correct selection), the

original asymptotic allocations perform better.

1 OVERVIEW

Selection procedures are intended to select the best of a finite

set of alternatives, where best is determined with respect to

the largest mean, and the mean must be inferred via statistical

sampling (Bechhofer et al. 1995, Kim and Nelson 2006).

Selection procedures help to select the best of a finite

set of alternative actions whose effects are evaluated with

simulation. Selection procedures have attracted interest

in combination with tools like evolutionary algorithms

(Branke and Schmidt 2004, Schmidt et al. 2006), and dis-

crete optimization via simulation (Boesel et al. 2003).

Since inference about the unknown mean performance

of each system is estimated with stochastic simulation output,

it is not possible to guarantee that the best alternative is

selected with probability 1 in finite time. An ability to

minimize the expected penalty for incorrect selections with

a limited number of samples is desired. The expected
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penalty is typically measured by the probability of incorrect

selection (PICS), or the expected opportunity cost (EOC)

associated with potentially selecting a system that is not the

best. Several frequentist and Bayesian formulations have

been used to motivate and derive selection procedures.

Branke et al. (2007b) compare several of those formu-

lations for fully sequential sampling procedures. A fully

sequential procedure allocates one sample at a time to one

of the simulated alternatives, runs a replication of the sim-

ulation for that alternative, updates the statistics for that

system, and iterates until the selection procedure stops and

identifies a system to select. They indicate that specific

instances of two of those approaches, the expected value

of information approach (VIP) (Chick and Inoue 2001) and

the optimal computing budget allocation approach (OCBA)

(Chen 1996, He et al. 2007) perform quite well, when used

with particular adaptive stopping rules. The Online Com-

panion to Branke et al. (2007b) also provides a theoretical

explanation for why the VIP and OCBA approaches, when

used to minimize the EOC objective function for sampling,

perform similarly in numerical experiments.

The articles that derived the original VIP and

OCBA procedures (Chick and Inoue 2001, Chen 1996,

He et al. 2007) make use of asymptotic approximations

(in the number of samples), approximations to the distrib-

ution of the difference of two variables with t distributions

(e.g. Welch’s approximation for the so-called Behrens-Fisher

problem), and approximations to bound the probability of

certain events (such as Bonferroni’s or Slepian’s inequality).

This paper presents new small-sample al-

locations with the VIP approach (derived in

Branke, Chick, and Schmidt 2007a), and presents nu-

merical comparisons of the new small-sample procedures

with the original VIP approach. The derivation of the

new allocations avoids an asymptotic approximation, the

Behren’s-Fisher problem (no Welch approximation) and the

need to use Bonferroni’s or Slepian’s inequality. Because

those approximations are averted, one might expect the
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new small-sample VIP procedures to perform better than

their original large-sample counterparts.

We show empirically that this is the case only in certain

situations. As expected, the new small-sample allocations

work particularly well for a small total expected number of

samples, and also for the case of a fixed total number of

samples (as opposed to a flexible stopping rule) with few

systems to be compared. The original allocations function

better when used in combination with an adaptive stopping

rule, and for high values of the probability of correct selec-

tion. This sheds some insight as to when, and how much,

these various approximations degrade the performance of

the selection procedures. The fact that one approach seems

to do better than the other in specific types of situations

leaves open the potential to combine the approaches to

develop an even more effective procedure.

2 OLD AND NEW SELECTION PROCEDURES

We first describe the problem, assumptions and notation.

Section 2.2 describes measures of the evidence of correct

selection and stopping rules that influence the efficiency of

the procedures. Section 2.3 recalls the original VIP proce-

dures, in order to provide context for the new procedures

in Section 2.4. The new procedures are derived elsewhere

(Branke, Chick, and Schmidt 2007a).

2.1 Setup, Assumptions and Notation

The best of k simulated systems is to be identified, where

‘best’ means the largest output mean. Let Xij be a random

variable whose realization xij is the output of the jth

simulation replication of system i, for i = 1, . . . , k and j =
1, 2, . . .. Let wi and σ2

i be the unknown mean and variance

of simulated system i, and let w[1] ≤ w[2] ≤ . . . ≤ w[k] be

the ordered means. In practice, the ordering [·] is unknown,

and the best system, system [k], is to be identified with

simulation. The procedures considered below are derived

from the assumption that simulation output is independent

and normally distributed, conditional on wi and σ2
i ,

{Xij : j = 1, 2, . . .}
iid
∼ Normal

(

wi, σ
2
i

)

, for i = 1, . . . , k.

Although the normality assumption is not always valid,

it is often possible to batch a number of outputs so that

normality is approximately satisfied. Vectors are written

as w = (w1, . . . , wk) and σσ2 = (σ2
1 , . . . , σ2

k). A problem

instance (configuration) is denoted by χ = (w, σσ2).
Let ni be the number of replications for system i run

so far. Let x̄i =
∑ni

j=1 xij/ni be the sample mean and

σ̂2
i =

∑ni

j=1(xij − x̄i)
2/(ni − 1) be the sample variance.

Let x̄(1) ≤ x̄(2) ≤ . . . ≤ x̄(k) be the ordering of the sample

means based on all replications seen so far. Equality occurs

with probability 0 in contexts of interest here. The quantities
290
ni, x̄i, σ̂
2
i and (i) are updated as more replications are

observed.

Each selection procedure generates estimates ŵi of wi,

for i = 1, . . . , k. For the procedures studied here, ŵi = x̄i,

and a correct selection occurs when the selected system,

system D, is the best system, [k]. Here, system D = (k) is

selected as best.

If Tν is a random variable with standard Student t distri-

bution with ν degrees of freedom, we denote the distribution

of µ + 1√
κ
Tν by St (µ, κ, ν) (Bernardo and Smith 1994).

If ν > 2 the variance is κ−1ν/(ν − 2). If κ = ∞ or 1/0,

then St (µ, κ, ν) is a point mass at µ. Denote the cumula-

tive distribution function (cdf) of the standard t distribution

(µ = 0, κ = 1) by Φν() and probability density function

(pdf) by φν(). The standardized EOC function is

Ψν [s]
def
=

∫ ∞

u=s

(u−s)φν(u)du =
ν + s2

ν − 1
φν(s)−sΦν(−s).

2.2 Evidence for Correct Selection

The measures of effectiveness and some stopping rules

for the procedures are defined in terms of loss functions.

The zero-one loss function, L0−1(D,w) = 11
{

wD 6= w[k]

}

,

where the indicator function 11 {·} equals 1 if its argument is

true (here, the best system is not correctly selected), and is

0 otherwise. The opportunity cost Loc(D,w) = w[k]−wD
is 0 if the best system is correctly selected, and is otherwise

the difference between the best and selected system.

There are several frequentist measures that describe a

procedure’s ability to identify the actual best system. The

frequentist probability of correct selection (PCSIZ) is the

probability that the mean of the system selected as best,

system D, equals the mean of the system with the highest

mean, system [k], conditional on the problem instance.

(The subscript IZ denotes indifference zone, a frequentist

approach to selection procedures.) The probability is defined

with respect to the simulation output Xij generated by the

procedure (the realizations xij determine D),

PCSIZ(χ)
def
= 1−E [L0−1(D,w) |χ] = Pr

(

wD = w[k] |χ
)

.

We denote the corresponding probability of incorrect

selection as PICSIZ(χ) = 1− PCSIZ(χ).
Another measure of selection quality is the frequentist

opportunity cost of a potentially incorrect selection,

EOCIZ(χ)
def
= E [Loc(D,w) |χ] = E

[

w[k] − wD |χ
]

.

At times, the configuration itself is sampled randomly

prior to the application of a selection procedure. We then
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average over the sampling distribution of the configurations,

EOCIZ = E[EOCIZ(χ)] or PCSIZ = E[PCSIZ(χ)].

When the mean performance of each system is unknown,

a different set of measures is required to describe the evidence

for correct selection. Bayesian procedures assume that

parameters whose values are unknown are random variables

(such as the unknown means W), and use the posterior

distributions of the unknown parameters to measure the

quality of a selection. Given the data E seen so far, two

measures of selection quality are

PCSBayes
def
= 1− E [L0−1(D,W) | E ]

= Pr

(

WD ≥ max
i6=D

Wi | E

)

EOCBayes
def
= E [Loc(D,W) | E ]

= E

[

max
i=1,2,...,k

Wi −WD | E

]

,

the expectation taken over D (a function of the random Xij)

and the posterior distribution of W given E .

Approximations in the form of bounds on the above

losses are useful to derive sampling allocations and to de-

fine stopping rules. Slepian’s inequality and the Bonferroni

inequality (e.g., Kim and Nelson 2006) imply that the pos-

terior evidence that system (k) is best satisfies

PCSBayes ≥
∏

j:(j) 6=(k)

Pr
(

W(k) > W(j) | E
)

≈
∏

j:(j) 6=(k)

Φν(j)(k)
(d∗jk)

def
= PCSSlep

PCSBayes ≥ 1−
∑

j:j 6=(k)

Pr
(

Wj > W(k) | E
)

≈ 1−
∑

j:j 6=(k)

Φν(j)(k)
(−d∗jk)

def
= PCSBonf

where d∗jk is the normalized distance for systems (j) and

(k), and ν(j)(k) comes from Welch’s approximation for the

difference W(k)−W(j) of two shifted and scaled t random

variables (Law and Kelton 2000, p. 559),

d∗jk = d(j)(k)λ
1/2
jk , with

d(j)(k) = x̄(k) − x̄(j),

λ−1
jk =

σ̂2
(j)

n(j)
+

σ̂2
(k)

n(k)
, and

ν(j)(k) =
[σ̂2

(j)/n(j) + σ̂2
(k)/n(k)]

2

[σ̂2
(j)

/n(j)]2

(n(j)−1) +
[σ̂2

(k)
/n(k)]2

(n(k)−1)

.
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The Bayesian analogs to approximate the probability of

correct selection and for the expected opportunity cost of

a potentially incorrect selection are

PCSSlep =
∏

j:(j) 6=(k)

Φν(j)(k)
(λ

1/2
jk (d(j)(k)))

EOCBayes ≤
∑

j:(j) 6=(k)

∫ ∞

w=0

w f(j)(k)(w) dw

≈
∑

j:(j) 6=(k)

λ
−1/2
jk Ψν(j)(k)

[

d∗jk

] def
= EOCBonf,

where f(j)(k)(·) is the posterior pdf for the difference

W(j)−W(k) given E . That difference has approximately a

St

(

−d(j)(k), λjk, ν(j)(k)

)

distribution.

The values of EOCBonf and PCSSlep are used in the

stopping rules of the sampling procedures below.

1. Sequential (S): Repeat sampling while
∑k

i=1 ni <
B for some specified total budget B.

2. Probability of correct selection (PCSSlep): Repeat

while PCSSlep < 1− α∗ for a specified probability

target 1− α∗.

3. Expected opportunity cost (EOCBonf): Repeat while

EOCBonf > β∗, for a specified EOC target β∗.

2.3 Value of Information Procedure (VIP)

VIPs allocate samples to each alternative in order to max-

imize the EVI of those samples. Some balance the cost of

sampling with the EVI, and some maximize EVI subject

to a sampling budget constraint (Chick and Inoue 2001).

Procedures 0-1(S) and LL(S) are sequential variations of

those procedures that are designed to iteratively improve

PCSBonf and EOCBonf, respectively. Those procedures allo-

cate τ replications per stage until a total of B replications

are run. We recall those procedures in order to serve as a

basis for comparison with the new procedures in Section 2.4.

Procedure 0-1.

1. Specify a first-stage sample size n0 > 2, and a total

number of samples τ > 0 to allocate per subsequent

stage. Specify stopping rule parameters.

2. Run independent replications Xi1, . . . ,Xin0
, and

initialize the number of replications ni ← n0 run

so far for each system, i = 1, . . . , k.

3. Determine the sample statistics x̄i and σ̂2
i , and the

order statistics, so that x̄(1) ≤ . . . ≤ x̄(k).

4. WHILE stopping rule not satisfied DO another

stage:

(a) Initialize the set of systems considered for

additional replications, S ← {1, . . . , k}.
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(b) For each (i) in S\{(k)}: If (k) ∈ S then set

λ−1
ik ← σ̂2

(i)/n(i) + σ̂2
(k)/n(k), and set ν(i)(k)

with Welch’s approximation. If (k) /∈ S then

set λik ← n(i)/σ̂
2
(i) and ν(i)(k) ← n(i) − 1.

(c) Tentatively allocate a total of τ replications to

systems (i) ∈ S (set τ(j) ← 0 for (j) /∈ S):

τ(i) ←
(τ +

∑

j∈S nj)(σ̂
2
(i)γ(i))

1
2

∑

j∈S(σ̂2
j γj)

1
2

− n(i),

where

γ(i) ←

{

λikd∗ikφν(i)(k)
(d∗ik) for (i) 6= (k)

∑

(j)∈S\{(k)} γ(j) for (i) = (k).

(d) If any τi < 0 then fix the nonnegativity con-

straint violation: remove (i) from S for each

(i) such that τ(i) ≤ 0, and go to Step 4b.

Otherwise, round the τi so that
∑k

i=1 τi = τ
and go to Step 4e.

(e) Run τi additional replications for system i,
for i = 1, . . . , k. Update sample statistics

ni ← ni + τi; x̄i; σ̂2
i , and the order statistics,

so x̄(1) ≤ . . . ≤ x̄(k).

5. Select the system with the best estimated mean,

D = (k).

The formulas in Steps 4b-4c are derived from optimality

conditions to improve a Bonferroni-like bound on the EVI for

asymptotically large τ (Chick and Inoue 2001). Depending

on the stopping rule used, the resulting procedures are named

0-1(S), 0-1(PCSSlep), 0-1(EOCBonf).
Procedure LL is a variant of 0-1 where sampling allo-

cations seek to minimize EOCBonf.

Procedure LL. Same as Procedure 0-1, except set γ(i) in

Step 4c to

γ(i) ←

{

λ
1/2
ik

ν(i)(k)+(d∗

ik)2

ν(i)(k)−1 φν(i)(k)
(d∗ik) for (i) 6= (k)

∑

(j)∈S\{(k)} γ(j) for (i) = (k).

2.4 New Small-Sample Procedures

Procedures 0-1 andLL allocate additional replications using

an EVI approximation based on asymptotically large number

of replications (τ ) per stage. A performance improvement

in the procedures might be obtained by better approximating

EVI when there are a small number of replications per stage

that are all run for one system.

The derivation of ProcedureLL1, a small-sample proce-

dure that is derived in (Branke, Chick, and Schmidt 2007a)
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and that is introduced below, avoids the asymptotic approx-

imation in the derivation of LL, as well as the Bonferroni

and Welch approximations. The reasons it can do so are

that:

• the predictive distribution of the sample mean to

be computed for the single system which receives

replications is known (and is a t distribution),

• only one system is sampled, therefore the Behrens-

Fisher problem is avoided (no Welch approximation

for the difference of t random variables),

• the system that would be selected as best after a

single stage of simulation is either going to be

the current best, or the current second best system

(so only one comparison need be made, so the

Bonferroni inequality is not needed),

• the EVI can be computed exactly, given the above

assumptions, without resort to asymptotic approx-

imations.

The procedure’s name is distinguished from its large-sample

counterpart by the subscript 1 (one system gets all replica-

tions in a given stage). In spite of the ability to compute the

EVI precisely for a given single stage, the application of the

resulting allocation sequentially leads to a greedy myopic

policy. This new approach therefore may be suboptimal

when applied sequentially.

The new procedures use the following variables, which

are determined by the predictive distributions of the sample

means of the different alternatives, given that additional

samples will be, but have not yet been taken.

d∗{jk} = λ
1/2
{jk}d(j)(k) (1)

λ−1
{jk} =

(

τ(k)σ̂
2
(k)

n(k)(n(k) + τ(k))
+

τ(j)σ̂
2
(j)

n(j)(n(j) + τ(j))

)

Procedure LL1. Same as Procedure 0-1, except replace

Steps 4a-4d by:

(a) For each i ∈ {1, 2, . . . , k}, see if allocating to (i)
is best:

(i) Tentatively set τ(i) ← τ and τℓ ← 0 for all

ℓ 6= (i); set λ−1
{jk}, d∗{jk} with Equation (1)

for all j.

(ii) Compute EVILL,(i) as







λ
−1/2
{ik} Ψn(i)−1

[

d∗{ik}

]

if (i) 6= (k)

λ
−1/2
{k−1,k}Ψn(k)−1

[

d∗{k−1,k}

]

if (i) = (k).

(b) Set τ(i) ← τ for the system that maximizes

EVILL,(i), and τℓ ← 0 for the others.
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The derivation of Procedure 0-11, an-

other small-sample procedure that is derived in

(Branke, Chick, and Schmidt 2007a), similarly avoids

one of the two asymptotic approximations in the derivation

of 0-1, as well as the Bonferroni and Welch approximations.

Procedure 0-11. Same as Procedure LL1, except the EVI

is approximated with respect to the expected 0-1 loss,

EVI0−1,(i) =

{

Φn(i)−1(−d∗{ik}) if (i) 6= (k)

Φn(k)−1(−d∗{k−1,k}) if (i) = (k).

3 EMPIRICAL RESULTS

A detailed comparison of different selection procedures,

including KN++ (Goldsman et al. 2002), OCBA varia-

tions, and the original VIP procedures, can be found in

Branke et al. (2007b). One main result of that paper was

that OCBALL and LL behave rather similar, and are among

the best procedures over a large variety of different test

cases.

In this follow-up study, we compare the small-sample

and asymptotic VIP procedures. The test setup is similar

to the one used in Branke et al. (2007b), which assessed

different problem configurations, like monotone decreas-

ing means, slippage configurations, and random problem

instances. Many different parameter settings have been

tested. We report here on only a typical subset of these runs

due to space limitations, and focus on the main qualitative

conclusions.

We report here on the efficiency of the procedures,

which is defined in terms of the average number of samples

needed to reach a given frequentist probability of correct

selection (or expected opportunity cost, depending on the

objective). All results reported are averages of 100,000

applications of the selection procedure. The initial number

of evaluations for each system has been set to n0 = 6, as

this yielded good results in Branke et al. (2007b).

3.1 Monotone Decreasing Means

In a monotone decreasing means (MDM) configuration the

means are equally spaced with distance δ. The independent

outputs have a Normal

(

wi, σ
2
)

distribution,

Xij ∼ Normal

(

−(i− 1)δ, σ2
)

.

Figure 1 compares the asymptotic VIP procedures LL
and 0-1 to the small-sample counterparts LL1 and 0-11, to-

gether with a very efficient adaptive stopping rule, EOCBonf.

The small-sample procedures slightly outperform the orig-

inal versions if only a few samples are taken (which corre-
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Figure 1: PCSIZ efficiency for the original and new allo-

cations with the EOCBonf stopping rule, and a small mean

number of additional samples (MDM, k = 10, δ = 0.5).

sponds to relatively high levels of empirical PICSIZ). This

is the scenario that the small-sample procedures have been

designed for, and the removal of the Bonferroni and Welch

approximations seems to actually pay off.

The situation changes completely with more demand-

ing levels of PICSIZ, as shown in Figure 2. In that case, the

asymptotic procedures outperform the small-sample pro-

cedures by a wide margin, and the difference grows with

increasing E[N ]. Still, note that the small-sample proce-

dures are much better than the naı̈ve Equal allocation.

Figure 3 shows the output for the same configuration,

but with a fixed sampling budget (S stopping rule) as

opposed to an adaptive stopping rule. All allocations become

less efficient with the fixed sampling budget, as expected

(compare Figures 2 and 3). The asymptotic allocations

suffer more than the small-sample variants. In particular,

0-1(S) is the worst procedure for this experiment. The two

small-sample procedures perform similar and somewhere

between LL(S) and 0-1(S), even for large E[N ] (which

corresponds to low levels of PICSIZ).

The influence of the stopping rule is even more apparent

in Figure 4, which compares three different stopping rules

for LL and LL1. For the LL stopping rule, EOCBonf is

clearly the most efficient, followed by PCSSlep and S. The

influence is rather large: For example, to reach a PCSIZ of

0.005, LL requires approximately 115, 125, or 172 samples,

depending on stopping rule—the S stopping rule is much

worse than the other two. For LL1, the ranking is the same

for higher acceptable PICSIZ, but the influence is smaller.

For the above example of a PCSIZ of 0.005, the required

numbers of samples are approximately 162, 190, and 195

for the three stopping rules. For very low values of PICSIZ,

the stopping rule with a fixed budget becomes even better
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Equal (S)

Figure 2: PCSIZ efficiency for the original and new allo-

cations with the EOCBonf stopping rule, and a large mean

number of additional samples (MDM, k = 10, δ = 0.5).

than the PCSSlep stopping rule (rightmost two lines); the

corresponding efficiency line shows less curvature.

Figure 5 shows the influence of the number of sys-

tems, k, on the relative performance of LL(EOCBonf) and

LL1(EOCBonf). For larger k (e.g., k = 20 in the figure), the

gap between LL(EOCBonf) and LL1(EOCBonf) is larger for

a given low desired PICSIZ (e.g., LL1(EOCBonf) requires

approximately 60% more samples than LL(EOCBonf) to

reach a PICSIZ of 0.003). The relative performance of

the small-sample procedure improves with decreasing k,

until it is actually slightly better for k = 2 (in this case,

to reach a PICSIZ of 0.003, it requires approximately 5%

fewer samples on average than the asymptotic counterpart).

This is achieved in combination with the EOCBonf stopping

rule, which is generally less favorable for the small-sample

procedures as shown above.

3.2 Slippage Configuration

In a slippage configuration (SC) the means of all systems

except the best are tied for second best. We use the parameter

δ to describe the configurations of the independent outputs

with Normal

(

wi, σ
2
)

distribution,

X1j ∼ Normal

(

0, σ2
)

Xij ∼ Normal

(

−δ, σ2
)

for i = 2, . . . , k

The above MDM example with k = 2 is actually also

a SC. More SC results with k = 5 are shown in Figure 6.

Again, in combination with the EOCBonf stopping rule, LL
is more efficient than LL1, while in combination with the

S stopping rule, the opposite is true.
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Figure 3: PCSIZ efficiency for the original and new small-

sample VIPs with S stopping rule (MDM, k = 10, δ = 0.5).

3.3 Random Problem Instances

Random problem instances (RPI) are more realistic in the

sense that problems faced in practice typically are not the SC

or MDM configuration. The RPI experiment here samples

configurations χ from normal-inverse gamma family. If

S ∼ InvGamma (α, β), then E[S] = β/(α− 1) and S−1 ∼
Gamma (α, β) with E[S−1] = αβ−1 and Var[S−1] = αβ−2.

A random χ is generated by sampling the σ2
i independently,

then sampling the Wi conditionally independent, given σ2
i ,

p(σ2
i ) ∼ InvGamma (α, β)

p(Wi |σ
2
i ) ∼ Normal

(

µ0, σ
2
i /η
)

.

Increasing η makes the means more similar. We set β =
α− 1 > 0 to standardize the mean of the variances to be 1.

Increasing α reduces the variability in the variances. The

noninformative prior distributions used for standard VIP

and OCBA derivations correspond to η → 0.

A typical result for the RPI problem instances is shown

in Figure 7. It is consistent with the previous observations—

the asymptotic variants are better in combination with the

EOCBonf stopping rule, while the small-sample procedures

are at least competitive in combination with the S stopping

rule or for a small number of additional samples.

4 DISCUSSION AND CONCLUSION

The choice of the selection procedure and its parameters

can have a tremendous effect on the effort spent to select

the best system, and the probabilistic evidence for making

a correct selection.

The new small-sample VIP procedures avoid the Bon-

ferroni and Welch approximations in their derivation, along
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Figure 4: Comparison of different stopping rules for LL
and LL1 (MDM, k = 10, δ = 0.5).

with an asymptotic approximation. That provides a poten-

tial net benefit relative to previous VIP derivations, which

assumed a large-sample asymptotic and other approxima-

tions. The small-sample procedures suffer, however, from

a myopic allocation that presumes that a selection will be

made after one allocation. Repeatedly applying that allo-

cation greedily, in order to obtain a sequential procedure,

results in a sub-optimality. Naturally, this sub-optimality is

more significant if the number of samples allocated before

selection is large (i.e., if low numbers of PICSIZ are sought).

Overall, the empirical results that are presented above

show that the small-sample procedures are particularly com-

petitive if either the number of additional samples allocated

is small, a fixed budget is used as stopping rule (as op-

posed to a flexible stopping rule such as EOCBonf), or the

number of systems is small. The PCS-based procedures

0-1 and 0-11 were almost always inferior the EOC-based

allocations. Here, the small-sample variant 0-11 yielded a

greater improvement relative to 0-1, as compared with the

relative difference in performance between LL and LL1.

One explanation for the still satisfactory performance of

the asymptotic procedures may be that the approximations

for the original VIP allocations are not significant, given

that the allocations are rounded to integers in order to run an

integer number of replications at each stage. The asymptotic

allocations are designed to sample for long run behavior,

and therefore perform well when more stringent levels of

evidence are required.

Because there appear to be specific scenarios where the

small-sample EVI procedures can be more effective than the

original procedures, there may be a potential to adaptively

combine the two allocation techniques in order to obtain

an even more efficient selection procedure.
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