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This tutorial explains the basics of linear regression

metamodels—especially low-order polynomials—and the

corresponding statistical designs—namely, fractional fac-

torial designs of resolution III (Plackett-Burman designs),

IV (accounting for interactions), V (estimating individual

interactions), and Central Composite Designs (CCDs, for

second-order polynomial metamodels). This tutorial as-

sumes ‘white noise’, which means that the residuals of the

fitted linear regression metamodel are normally, indepen-

dently, and identically distributed with zero mean. This

metamodel requires validation. The tutorial gathers statis-

tical results that are scattered throughout the literature on

mathematical statistics, and presents these results in a form

that is understandable to simulation analysts.

1 INTRODUCTION

This tutorial is an introduction to the Design and Analysis

of Simulation Experiments (DASE). The goals of DASE

are verification and validation (V & V) of the simulation

model, its sensitivity (or what-if) analysis, optimization,

and risk (or robustness) analysis. These goals require that

the simulation analysts pay attention to the design of their

experiments; e.g., if the experimenters keep an input of the

simulation model constant, then they cannot estimate the

effect of that input on the output. In practice, however,

most analysts keep many inputs constant, and experiment

with a few factors only. This tutorial shows that there

are better ways to run simulation experiments with many

factors. Another example of poor practice is changing only

one input at a time (while keeping all other inputs fixed

at their so-called base values). This contribution proves

that such an approach does not enable the estimation of

interactions among inputs.

The design of the experiment is intimately related to its

analysis; indeed, it is a chicken-and-egg problem. Consider

the following example. Suppose the analysts assume that
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the input has a ‘linear’ effect on the output; i.e., they assume

a first-order polynomial approximation (which is justified

by the Taylor series argument in mathematics) or main

effects only (which is the statistical terminology). Then

it suffices to experiment with only two values per factor.

Moreover, the analysts may assume that there are (say) k > 1

factors and that these factors have main effects only. Then a

good design requires a relatively small experiment (of order

k). For example, changing only one factor at a time does

give unbiased estimators of the main effects. This tutorial,

however, shows that minimization of the variances of these

estimators requires a different design—with approximately

the same number of simulation runs as required by the

one-factor-at-a-time design.

A first-order polynomial approximation may be called

a metamodel (see Kleijnen 1975), because it is an approxi-

mation of the Input/Output (I/O) behavior of the underlying

simulation model. Metamodels are also called response sur-

faces, emulators, auxiliary models, repromodels, etc. There

are different types of metamodels, but polynomials of first

or second order (degree) have established a track record in

both random and deterministic simulations.

The term ‘response surface’ is used for local meta-

models in Response Surface Methodology (RSM). RSM

was introduced by Box and Wilson (1951) as an iterative

heuristic for optimizing real (physical) systems; also see the

many references in Del Castillo (2007), Kleijnen (2007),

and Myers and Montgomery (2002). This tutorial includes

RSM designs for the optimization of simulated systems.

DASE has strategic and tactical aspects. Traditionally,

researchers in Discrete-Event Dynamic Simulation (DEDS)

have focused on tactical issues, such as the runlength of

a steady-state simulation, the number of runs of a ter-

minating simulation, and Variance Reduction Techniques;

see Conway (1963) and Nelson (2004). In deterministic

simulation—where these tactical issues vanish— statisti-

cians have been attracted to strategic issues, namely which

scenarios to simulate and how to analyze the resulting data;

see Santner, Williams, and Notz (2003). This tutorial fo-
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cuses on strategic issues; it discusses only those tactical

issues that are closely related to strategic issues.

The statistical theory called Design Of Experiments
(DOE) was developed for real, non-simulated experiments

in agriculture in the 1920s, and in engineering, psychology,

etc. since the 1950s. In real experiments it is impractical

to investigate many factors; ten factors seems a maximum.

Moreover, in real-life experiments it is hard to experiment

with factors that have more than a few values; five values per

factor seems the limit. In simulated experiments, however,

these restrictions do not apply. So a change of mindset of

the simulation experimenter is necessary. A more detailed

discussion of simulation versus real experiments is presented

in Kleijnen et al. (2005).

In summary, DASE is needed to improve the efficiency

and effectiveness of simulation; i.e., DASE is crucial in the

overall process of simulation (also see Law 2007).

Before proceeding, it is necessary to define some sym-
bols and terms because DASE is a combination of mathe-

matical statistics and linear algebra that is applied to exper-

iments with deterministic and random simulation models;

these models are applied in many scientific fields—ranging

from sociology to astronomy.

In this contribution, Greek letters denote parameters,

which are model quantities that have values that cannot be

directly observed in the real world so these values must

be inferred from other real data; see Zeigler et al. (2000).

For example, the service rate μ in a single-server queueing

simulation is estimated from the (say) c observations on the

service time s.

Unlike a parameter, a variable can be directly observed

in the real world. For example, the input variable service

time s can be measured in a straightforward way. A variable

may be either an input or an output of a model. For example,

besides the input s, the queueing simulation may have the

output w, waiting time.

Both parameters and input variables may be changed in

a simulation experiment; i.e., they have at least two values
or levels in the experiment. Parameters and input variables

together are called factors, in DOE. For example, a simple

design in DOE is a 2k factorial experiment; i.e., there are

k factors, each with two levels; all their combinations are

simulated. These combinations are often called scenarios in

simulation and modeling. Scenarios are usually called design
points or runs by statisticians. This contribution reserves the

term ‘run’ for a simulation run, which starts the simulation

program in the initial conditions (e.g., the empty state in

a queueing simulation) and stops the simulation program

once a specific state has been reached (e.g., c customers

have been simulated).

Factors (inputs) and responses (outputs) may be either

qualitative or quantitative. In the queueing example, quan-

titative factors are the arrival and service rates; a qualitative

factor may be the priority rule—which may have (say) three
184
levels, namely First-In-First-Out (FIFO), Last-In-First-Out

(LIFO), or Shortest-ProcessingTime-first (SPT).

This tutorial is based on Chapters 1 and 2 of Kleijnen

(2007). That book adds many more mathematical and statis-

tical details, alternative designs, case studies, and exercises

to this article.

2 WHITE-BOX VERSUS BLACK-BOX
APPROACHES

This tutorial treats the simulation model as a black box—

not as a white box. To explain the difference, consider

the well-known M/M/1 queueing model. A popular perfor-

mance measure (response variable, output) of any queueing

simulation is

w = ∑c
i=1 wi

c
(1)

where w denotes the average waiting time, wi the waiting

time of customer i, and c the number of customers that

stops the simulation run. An alternative output may be the

estimated 90% quantile, w(�.90n+0.5�) where w(i) denotes the

order statistics and �.90n+0.5� means that 0.90n is rounded

to the next integer.

A white-box representation is used by Perturbation
Analysis (PA) and Score Function (SF) analysis (to estimate

the gradient for local sensitivity analysis and optimization).

PA and SF are discussed in (e.g.) Spall (2003). (The

estimation of the gradient will be further discussed in Section

4.)

DASE, however, uses a black-box approach, which is

also used by DOE for real-world experiments (see Myers

and Montgomery 2002) and by Design and Analysis of

Computer Experiments (DACE) for deterministic simula-

tion experiments (see Santner et al. 2003). A black-box

representation of any single-server simulation model with

output w (average waiting time) and inputs λ and μ (arrival

and service rates) and r0 (PRN seed)—and a fixed queue-

ing discipline (e.g., FIFO), a fixed waiting room capacity,

etc.—is

w = w(λ ,μ,r0) (2)

where w(.) denotes the mathematical function implicitly

defined by the computer program that implements the sim-

ulation model.

One possible metamodel of the black box model in (2)

is a first-order polynomial in the two input variables λ and

μ:

y = β0 +β1λ +β2μ + e (3)

where y is the metamodel predictor of the simulation output w
in (2); β0, β1,and β2 are the parameters of this metamodel—

which may be collected in the vector β = (β0,β1,β2)′; and e
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is the residual or noise—which includes both lack of fit of the

metamodel (this metamodel is a Taylor series approximation

cut off after the first-order effects) and intrinsic noise (caused

by the PRNs).

Besides (3), there are many alternative metamodels.

For example, a simpler metamodel is

y = β0 +β1x+ e (4)

where x is the traffic rate—in queueing theory usually de-

noted by ρ:

x = ρ =
λ
μ

. (5)

This combination of the two original factors λ and

μ into a single factor ρ (inspired by queueing theory)

illustrates the use of transformations. Another useful trans-

formation may be a logarithmic one: replacing y, λ , and μ
by log(y), log(λ ), and log(μ) in (3) makes the first-order

polynomial approximate relative changes; i.e., the regres-

sion parameters β become elasticity coefficients. These

transformations illustrate that simulation analysts should be

guided by knowledge of the real system and corresponding

analytical models.

3 LINEAR REGRESSION ANALYSIS: BASICS

It is convenient to use matrix representation for a linear
regression model with multiple inputs and a single output.

The univariate regression model may be applied to each

individual output of a given simulation model. The matrix

notation of the general linear regression model is

y = Xβ + e (6)

where y = (y1, . . . ,yn)′ is the n-dimensional vector with the

regression predictor (or dependent variable) y with n the

number of simulation runs (or observations); X = (xi j) is

the n× q matrix of explanatory (independent) regression

variables with xi j the value of explanatory variable j in

run i (i = 1, . . . ,n; j = 1, . . . ,q); β = (β1, . . . ,βq)′ is the

vector with q regression parameters—including the effect

of a possible dummy variable so β1 is the intercept in the

regression model; and e = (e1, . . . ,en)′ denotes the residuals

in the n runs.

To select specific values (say) β̂ = (β̂1, . . . , β̂q)′ for the

regression parameters, the Least Squares (LS)—also called

the Ordinary LS—criterion is often used; i.e., β̂ is selected

such that it minimizes the Sum of Squared Residuals, SSR:

min
β̂

SSR =
n

∑
i=1

(êi)
2 =

n

∑
i=1

(ŷi −wi)
2 = (ŷ−w)′(ŷ−w) (7)
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where êi = ŷi −wi is the estimated residual for input com-

bination i,

ŷi =
q

∑
j=1

xi jβ̂ j = x′iβ̂ , (8)

and wi denotes the simulation output of run i (e.g., the

average waiting time of that run; see (2)).

The solution of (7) gives the LS estimate β̂ of the

regression parameter vector β in the regression model (6):

β̂ = (X′X)−1X′w. (9)

Obviously, this LS estimate exists only if X is not collinear,

so the inverse (X′X)−1 does exist. The selection of a ‘good’

X in (6)—and hence in (9)—is discussed in the next sections.

The LS criterion is a mathematical (not a statistical)

criterion—also known as the L2 norm. However, adding

statistical assumptions about the simulation I/O data implies

that the LS estimator has interesting statistical properties.

Therefore this tutorial assumes white noise; i.e., the noise is

Normally, Independently, and Identically Distributed (NIID)

with zero mean. This definition deserves some comments:

(i) The simulation output w is indeed normally (or

Gaussian) distributed if this output is an average;

e.g., (1) defines the simulation output as the average

of c individual waiting times. These individual

times are (positively) autocorrelated, so the classic

Central Limit Theorem (CLT) does not apply. Yet it

can be proven that for large c (i.e., a long simulation

run) this average tends to be normally distributed.

(ii) The simulation outputs wi and wi′ with i �= i′ are

indeed independent if they use non-overlapping

PRN streams. So the use of Common Random

Numbers (CRNs) violates this assumption.

(iii) ‘Identically distributed’ implies a constant variance.

In practice, however, the simulation outputs do

not have the same variance; i.e., the variances

are heterogeneous or heteroscedastic instead of

homogeneous. For example, for the M/M/1 the

variances increase as the traffic rate increases. This

practical problem is further discussed in Kleijnen

(2006, 2007).

This tutorial assumes that the simulation outputs w are

indeed normally and independently distributed with the same

variance (say) σ2
w. Obviously, the simulation outputs may

have different means. Furthermore, the linear regression

model may be a valid metamodel for the variation in these

means; i.e., the regression residuals may have zero means:

E(e) = 0. By definition, a metamodel has perfect fit if and

only if all its estimated residuals are zero: ∀i : êi = 0. This

also deserves some comments:
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(i) The metamodel is biased if E(e) �= 0.

(ii) A perfectly fitting metamodel indicates that n (num-

ber of runs) is too small. (Also see the discussion

of the special case R2 = 1 in Section 11.1).

If the residuals are white noise, then LS gives the Best
Linear Unbiased Estimator (BLUE). The LS estimator is

indeed a linear transformation of the random simulation

response w:

β̂ = Lw (10)

where L is not random since L = (X′X)−1X′ in (9). The

linear estimator (10) has the following two properties:

E(β̂ ) = L[E(w)] (11)

and

cov(β̂ ) = L[cov(w)]L′. (12)

It is easy to prove that (11) implies that the LS estimator β̂

is unbiased. And the property in (12) implies that—in case

of white noise—β̂ has the following covariance matrix:

cov(β̂ ) = (X′X)−1σ2
w. (13)

Furthermore, it can be proven that among all linear unbiased

estimators, β̂ is best; i.e., β̂ has the minimum variance.

Obviously, the variances of the individual regression esti-

mators β̂ jare given by the main diagonal elements of (13);

their covariances are given by the off-diagonal elements of

this (symmetric) matrix.

The linear estimator β̂ has another interesting property

if the simulation outputs w are normally distributed: β̂ is

then also normally distributed:

β̂ ∼ N[β ,(X′X)−1σ2
w]. (14)

Consequently, the individual estimated regression parame-

ters β̂ j may be tested through the t statistic with n− q
degrees of freedom:

tn−q =
β̂ j −β j

s(β̂ j)
with j = 1, . . . ,q (15)

where s(β̂ j) is the square root of the jth element on the

main diagonal of (13) where σ2
w is estimated through the

Mean Squared Residuals (MSR):

MSR =
SSR
n−q

=
(ŷ−w)′(ŷ−w)

n−q
(16)
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where SSR was given in (7). This MSR assumes that de-
grees of freedom are left over after fitting the regression

(meta)model: n > q. (An alternative estimator of the sim-

ulation output’s variance uses replicates; see (21)). The

t statistic in (15) may be used to test whether a specific

regression parameter is zero:

H0 : β j = 0. (17)

Besides testing a single parameter, the analysts may

hypothesize that several parameters have specific values;

e.g., the effects of both the arrival rate and the service rate

are zero: β1 = 0 and β2 = 0 in (3). More generally,

H0 : β j′ = . . . = βq = 0 (18)

where the q parameters are arranged such that the last

q− j′ +1 parameters are hypothesized to be zero. To test

this composite hypothesis, the following F statistic can be

used:

1. Compute the SSR without the null-hypothesis; this

is called the SSR of the full regression model:

SSR f ull .

2. Compute the SSR under the null-hypothesis,

called the SSR of the reduced regression model:

SSRreduced .

3. Compute

Fq− j′+1;n−q =
SSRreduced −SSR f ull

SSR f ull
. (19)

The composite null-hypothesis is rejected if this

statistic exceeds Fq− j′+1;n−q;1−α , which denotes the

1−α quantile of the Fq− j′+1;n−q distribution.

The preceding linear regression formulas apply to I/O

data obtained through either passive observation of a real

system or active experimentation with either a real system

or a simulation model of a real system. The following for-

mulas, however, apply only if the data are obtained through

controlled experimentation; i.e., at least one combination

of the explanatory variables xi = (xi1, . . . ,xiq)′ in (6) is ob-

served more than once. A replicate means that a given

combination of the explanatory variables xi is observed

(say) mi > 1 times. The classic assumption is that these

replicates are IID. This assumption is satisfied in simula-

tion if the replicates use non-overlapping PRN streams. If

the output is the response of a non-terminating simulation,

then IID implies that the subrun outputs have negligible

autocorrelation. If the subruns are actually renewal cycles,

then the IID assumption is satisfied by definition. See Law

(2007).
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Replication implies that at least one input combination

xi is repeated in the matrix of explanatory variables, X.

Hence, the number of rows of X increases from n to (say)

N =
n

∑
i=1

mi. (20)

It is possible to keep the number of rows limited to the

n different combinations. The output of the ithcombination

then becomes the output averaged over the mi replicates

(also see (22)). If the number of replicates is a constant

(mi = m), then the LS estimate may be computed from these

averages. Otherwise, these averages should be weighted by

the number of replicates; see (24) and also Kleijnen (1987,

p. 195).

If input combination xi is replicated mi > 1 times, then

the classic unbiased variance estimator is

̂var(wi) = ̂σ2(wi) = s2
i (w) =

∑mi
r=1(wir −wi)2

mi −1
(i = 1, . . .n)

(21)

with

wi =
∑mi

r=1 wir

mi
. (22)

Because of the common variance assumption implied by the

white noise assumption, the n variance estimators in (21)

may be pooled using their degrees of freedom as weights:

̂var(w) = σ̂ 2
w = s2(w) = ∑n

i=1(mi −1)s2
i

∑n
i=1(mi −1)

. (23)

If and only if the regression model is valid, there are

two unbiased variance estimators:

(i) The MSR (defined in (16) for non-replicated combi-

nations), which is now defined in (24) for the current

situation with replicated combinations. MSR uses

the fitted regression model. If the regression model

is not valid, then obviously MSR overestimates the

true variance.

(ii) The pooled variance estimator in (23), which uses

replicates. This estimator does not use the fitted

regression model; it is unbiased assuming the sim-

ulation outputs for a replicated combination are

IID (not necessarily NIID; however, the F statistic

does assume normality).

These two estimators may be compared through the

following so-called lack-of-fit F-statistic (see Myers and

Montgomery 2000, p. 52):

Fn−q;N−n = ∑n
i=1 mi(wi − ŷi)2/(n−q)

∑n
i=1 ∑mi

r=1(wir −wi)2/(N −n)
. (24)
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The numerator uses the MSR computed from the average
simulation output per combination; at least one combina-

tion is replicated (the center of the simulation area is often

replicated, when applying classic DOE to simulation). Ob-

viously, the regression model is rejected if this statistic is

significantly high. (An alternative validation test will be

presented in Section 11.2).

4 LINEAR REGRESSION ANALYSIS:
FIRST-ORDER POLYNOMIALS

To estimate the parameters of whatever black-box meta-

model, the analysts must experiment with the simulation

model; i.e., they must change the inputs of the simulation

program, run the program, and analyze the resulting I/O

data. This section assumes that a first-order polynomial is

a valid metamodel.

The simplest metamodel is a first-order polynomial
with a single factor; see (4). To fit such a straight line, it

obviously suffices to have only two I/O observations. It is

easy to prove that the white noise assumption implies that

selecting those two values as far apart as possible gives

the ‘best’ estimator of the parameters in (4). The validity

of the fitted polynomial, however, becomes questionable as

the experimental area gets bigger. Zeigler et al. (2000) call

this area the experimental frame; it might also be called

the domain of admissible scenarios—given the goals of the

simulation study (various goals are discussed in Kleijnen

and Sargent 2000 and Law 2007).

A first-order polynomial with multiple factors (namely,

k > 1) may be represented as follows (denoting the dummy

factor by x0 = 1 and its effect by β0):

E(y) = β0 +β1x1 + . . .+βkxk. (25)

So the general linear regression model (6) now has q (number

of regression parameters) equal to k+1. An example is the

first-order polynomial for the two factors λ and μ in (3).

In practice, such a first-order polynomial may be very

useful when trying to estimate the optimal values for the

inputs of a simulation model. For example, the analysts may

wish to find the input values that maximize the profit of the

simulated company. There are many methods for estimating

the optimal input combination. Some of these methods

use the gradient, which is the vector with the first-order

derivatives: ∇(w) = (∂w/x1, . . . ,∂w/∂xk). To estimate

the gradient, many mathematical publications change one

factor at a time—using two or three values per factor (see

Spall 2003). From the statistical theory on DOE, however,

it follows that it is more efficient to estimate the gradient

through a (full or fractional) factorial design with two levels

per factor and to fit a first-order polynomial to the resulting

I/O data; see Angün et al. (2002) and Section 5.
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It is convenient and traditional in DOE to use stan-
dardized factor values. If each factor has only two levels in

the whole experiment, then these levels may be denoted by

-1 and +1. This implies the following linear transformation

with z j denoting the quantitative factor j measured on the

original scale, l j its lower value in the experiment, u j its

upper value, j = 1, . . . ,k; and i = 1, . . .n:

xi j =
zi j − z j

(u j − l j)/2
(26)

where z j denotes the average value of factor j in a balanced
experiment, which means that each factor has the lower value

in half of the n runs; the denominator (u j − l j) is known as

the range of factor j. If the original variable z has either a

nominal or an ordinal scale and it has only two levels, then

the coding remains simple: arbitrarily associate one level

with −1 and the other level with +1.

In practice, simulation analysts also consider inputs with

nominal scales with more than two levels. For example, the

sea has three types of bottom (namely clay, sand, or rocks)

in a simulation study on the sonar search for mines. The

analysts erroneously coded these three surface types as −1,

0, and +1. The correct coding may be done through multiple
binary variables—each coded as 0 and +1—instead of a

single variable that is coded as −1 and +1; see Kleijnen

(2007).

Standardization such that each factor (either quantitative

or qualitative) varies between −1 and +1 is useful when

comparing the effects of multiple factors. For example, two

quantitative factors may have different ranges (assuming the

same scale) and the marginal effect of factor 2 may be higher

than the marginal effect of factor 1; nevertheless, if the range

of factor 1 is much bigger, then ‘the’ effect of this factor

is larger. To rank the factor effects, the absolute values of

the estimated effects β̂ j should be sorted.

A factor may be significant when tested through the t
statistic defined in (15), but may be unimportant—especially

when compared with other factors in the experiment.

A 2k design results in an orthogonal matrix of explana-

tory variables for the first-order polynomial (25); i.e.,

X′X = nI. (27)

This property follows directly from the way a 2k design

is constructed. This property simplifies the LS estimator,

because substituting (27) into (9) gives

β̂ = (nI)−1X′w = X′w/n =
(

∑n
i=1 xi jwi

n

)
. (28)

In this equation, half of the xi j is −1 and the other half is

+1, so β̂ j is simply the difference between two averages
188
that vary with j:

β̂ j=
∑n

i=1 xi jwi/(n/2)
2

=
w1 j −w2 j

2
(29)

where w1 jis the average output when factor j is +1; and

w2 j is the average output when factor j is −1.

Furthermore, (27) simplifies the covariance matrix (13)

to

cov(β̂ ) = (nI)−1σ2
w = I

σ2
w

n
. (30)

So all estimators have the same variance σ2
w/n, and they

are independent. Box (1952) proves that the variances of

β̂ j are minimal if X is orthogonal.

Altogether, 2k designs have many attractive properties.

Unfortunately, the number of combinations grows exponen-

tially with the number of factors: n = 2k. At the same time,

the number of effects is only q = k+1, so these designs be-

come inefficient for high values of k. The solution is designs

that require only a fraction of these 2k combinations.

5 DESIGNS FOR FIRST-ORDER POLYNOMIALS:
RESOLUTION-III

The term resolution describes the degree of confounding (or

aliasing) among estimated main effects, two-factor interac-

tions, three-factor interactions, etc. (these effects are further

discussed below). The lower the resolution is (denoted by

the Roman numerals III, IV, V, etc.), the more aliasing there

is.

A design of Resolution-III (R-III) gives unbiased estima-

tors of the parameters of a first-order polynomial, assuming

that a first-order polynomial is indeed a valid metamodel of

the underlying (simulation) experiment; see Box and Hunter

(1961a). These designs are also known as Plackett-Burman
designs. These designs have as a subclass fractional factor-
ial two-level or 2

k−p
III designs. Obviously, the latter subclass

has its number of combinations equal to a power of two;

Plackett-Burman designs have their number of combinations

equal to a multiple of four (e.g., n = 12).

Let’s consider a simple example with k = 3 factors. A

23 design would require n = 8 combinations. The number

of parameters is only q = k+1 = 4. A 23−1 design requires

only n = 4 combinations. Because this design has R-III,

it is denoted as a 23−1
III design. The three columns denoted

by 1, 2, and 3 = 1.2 in Table 1 together give one of the

two possible 23−1 designs; the heading ‘Combi.’ stands for

‘factor combination’, and ‘3 = 1.2’ for ’xi3 = xi1xi2 with

i = 1, . . .n’. Hence, the first element (i = 1) in the column

3 = 1.2 is x13 = x11x12 = (−1)(−1) = +1 so the entry is a

plus (+). It is easy to verify that Table 1 gives an orthogonal

X. The design is also balanced. The DOE literature calls

‘3 = 1.2’ a design generator (also see the next section).
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Table 1: Two fractional-factorial two-level designs for three

factors

Combi. 1 2 3 = 1.2 3 = −1.2
1 − − + −
2 + − − +
3 − + − +
4 + + + −

An alternative 23−1 design is formed by the three

columns denoted by 1, 2, and 3 = −1.2; obviously,

‘3 = −1.2’ stands for xi3 =−xi1xi2. This design belongs to

the same family as the design with generator 3 = 1.2. The

choice between these two designs is arbitrary.

Another simple example of a 2k−p design is a design

with n = 23 = 8 combinations. The number of factors

follows from 2k−p = 8 or k− p = 3 with positive integers k
and p, and (n =)2k−p > k(= q−1). The solution is k = 7

and p = 4. This gives the analogue of Table 1, now with

the generators 4 = 1.2, 5 = 1.3, 6 = 2.3, and 7 = 1.2.3.

This design belongs to a family formed by substituting

a minus sign for the (implicit) plus sign in one or more

generators; e.g., substituting 4 =−1.2 for 4 = 1.2 gives one

other member of the family. All the 128 family members

together form the unique full-factorial two-level 27 design.

Table 1 gives two saturated designs for three factors;

i.e., the number of combinations equals the number of

parameters to be estimated: n = q in (6). Hence, no degrees

of freedom are left in the MSR in (16), so the lack-of-

fit F-test in (24) cannot be applied. This problem can be

solved easily: select one or more combinations from another

member of the family, and also simulate this combination;

the easiest selection is random.

Intermediate k values such as 4 ≤ k ≤ 6 can be handled

easily: for k = 4 delete three columns (e.g., the last three

columns) of the 27−4 design; for k = 5 delete two columns;

for k = 6 delete one column. Obviously, the resulting designs

are not saturated anymore.

The next example has n = 2k−p = 16. So a saturated

design for a first-order polynomial implies k = 15. Hence

k− p = 4 implies p = 15−4 = 11. The construction of this

215−11 design remains quite simple; see Kleijnen (2007).

Also see Sanchez and Sanchez (2005) for a different pro-

cedure (based on Walsh functions).

Plackett-Burman designs in the narrow sense have their

number of combinations equal to a multiple of four, but not

a power of two. Actually, Plackett and Burman published

such designs for 12 ≤ n ≤ 96; also see Kleijnen (1975,

pp. 332-333) and Myers and Montgomery (2002, p. 170).

Plackett-Burman designs are again balanced and orthogonal.
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6 REGRESSION ANALYSIS:
FACTOR INTERACTIONS

Interaction means that the effect of one factor depends on

the levels of one or more other factors. If the I/O function is

continuous, then ∂E(w)/∂dx j = f (x j′) with j �= j′. Interac-

tion implies that the response curves with E (w|x j,x j′ = c)
versus x j are not parallel for different c values. If the inter-

action between two factors is positive, the factors are called

complementary; if this interaction is negative, the factors

are substitutes for each other. Augmenting the first-order

polynomial in (25) with two-factor (also called two-way or

pairwise) interactions yields

E(y) = β0 +
k

∑
j=1

β jx j +
k−1

∑
j=1

k

∑
j′= j+1

β j; j′x jx j′ . (31)

The total number of interactions is k(k−1)/2, so the total

number of parameters is q = 1+k(k+1)/2. The formulation

of X for the metamodel (31) follows straightforwardly from

D (design matrix):

X =(xi j)= (1,di1, . . . ,dik,di1di2, . . . ,di;k−1dik) (i = 1, . . . ,n) .
(32)

A first-order polynomial may not give a valid metamodel,

whereas augmenting this polynomial with two-factor inter-

actions may give an adequate approximation. An example

is the Flexible Manufacturing System (FMS) case study in

Kleijnen and Standridge (1988).

The ANOVA (ANalysis Of VArinance) literature uses

higher-order interactions, e.g., three-factor interactions.

However, high-order interactions are hard to interpret, and

are often unimportant in practice. This tutorial therefore

assumes that interactions among three or more factors are

unimportant. Of course, this assumption should be checked;

see ‘lack of fit’ and ‘validation’ in this contribution.

7 DESIGNS ALLOWING TWO-FACTOR
INTERACTIONS: RESOLUTION-IV

A design of Resolution-IV (R-IV) gives unbiased estimators

of the parameters of a first-order polynomial, even if two-

factor interactions are non-zero. Box and Wilson (1951)

prove the foldover theorem, which may be reformulated

as follows: If a R-III design (say) DIII is augmented with

its ‘mirror’ design −DIII , then the resulting design is a

R-IV design. So the price for augmenting a R-III to a

R-IV design is that n (number of combinations simulated)

doubles. The foldover gives unbiased estimators of the first-

order (or main) effects, but does not always enable unbiased

estimation of the individual two-factor interactions.

Consider the following example with k = 7 factors.

Combining a 27−4
III design with its mirrored design gives a
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design with n = 16 combinations, namely, a 27−3
IV design.

So X corresponding with the regression model (31) has

n = 16 rows and q = 1+7(7+1)/2 = 29 columns, so this

X is collinear. Hence, LS estimation of the 29 individual

regression parameters is impossible. It is possible, however,

to compute the LS estimator of the intercept and the seven

first-order effects. For example, it is easy to verify that the

column for the interaction between the factors 6 and 7 is

orthogonal to the columns for the first-order effects of the

factors 6 and 7; also see (36). Obviously, the 27−3
IV design

remains balanced.

Useful manipulations with the generators (such as 3 =
1.2 in the 23−1

III design of Table 1) are explained in Kleijnen

(2007).These manipulations show how estimated effects

are confounded or aliased; e.g., it is easy to prove that

the generator 3 = 1.2 implies E(β̂1) = β1 + β2;3, E(β̂2) =
β2 + β1;3, and (of course) E(β̂3) = β3 + β1;2; i.e., only if

β2;3 = 0, the estimator β̂1is unbiased, etc. But R-III designs

indeed assume that all interactions are zero!

It can be shown that adding the mirror design to a R-III

design for k factors gives a R-IV design for k +1 factors.

For example, k = 11 requires a Plackett-Burman design with

nIII = 12 combinations, so a R-IV design with nIV = 24

combinations enables the estimation of k = 12 main effects

unbiased by two-factor interactions.

The R-IV designs discussed so far imply that the number

of combinations increases with jumps of eight, because the

underlying R-III designs have a number of combinations

that jump with four. Webb (1968) derived R-IV designs

with number of combinations that increase in smaller jumps:

nIV = 2k where k does not need to be a multiple of four. He

also used the foldover theorem. Kleijnen (1975, pp.344–

348) gives details.

This section is concluded with a general discussion

of confounding. Suppose that a valid linear regression

metamodel is

E(w) = E(y) = X1β1 +X2β2. (33)

An example is an X1 corresponding with the intercept and

the main effects collected in β1, and an X2 corresponding

with the two-factor interactions β2. Suppose that the analysts

use the simple metamodel without these interactions. Then

they estimate the first-order polynomial coefficients through

β̂1 = (X′
1X1)−1X′

1w. (34)

So (34) gives

E(β̂1) = (X′
1X1)−1X′

1E(w). (35)
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Table 2: Generators for fractional-factorial two-level designs

of resolution V and higher (VI, VII)

k n generators

5 25−1
V = 16 5 = 1.2.3.4

6 26−1
V I = 32 6 = 1.2.3.4.5

7 27−1
V II = 64 7 = 1.2.3.4.5.6

8 28−2
V = 64 7 = 1.2.3.4; 8 = 1.2.5.6

9 29−2
V I = 128 9 = 1.4.5.7.8; 10 = 2.4.6.7.8

10 210−3
V = 128 8 = 1.2.3.7; 9 = 2.3.4.5; 10 = 1.3.4.6

11 211−4
V = 128 see k = 10; add 11 = 1.2.3.4.5.6.7

Substitution of (33) into (35) gives

E(β̂1)= β 1 +(X′
1X1)−1X′

1X2β2. (36)

This gives an unbiased estimator of β1 if either β2 = 0 or

X′
1X2 = 0. Indeed, R-III designs assume that β2 = 0 where

β2 consists of the two-factor interactions; R-IV designs

ensure that X′
1X2 = 0 (interaction columns orthogonal to

main effects and intercept columns).

8 DESIGNS FOR TWO-FACTOR INTERACTIONS:
RESOLUTION-V

Designs of resolution-V (R-V) enable LS estimation of the

parameters of a first-order polynomial plus its two-factor

interactions. For example, a 28−2
V design (so n = 64) enables

LS estimation of the q = 37 regression parameters. This

design has two generators. To avoid aliasing among the

relevant effects (interactions, main effects, and intercept),

these generators should multiply more than two factors; e.g.,

it is easy to derive that a good choice is 7 = 1.2.3.4 and

8 = 1.2.5.6 (implying confounding of two-factor interactions

with interactions among three or more factors—the latter

high-order interactions are assumed zero).

In general, the first-order polynomial augmented with all

the two-factor interactions implies that q (number of regres-

sion parameters) becomes 1+(k2 +k)/2, so the number of

parameters becomes order k2 and many more combinations

need to be simulated compared with a first-order polynomial.

Box and Hunter (1961b) give a table with generators for

2k−p designs of R-V and higher; their table is reproduced

in Table 2.

Sanchez and Sanchez (2005) give a computer procedure

for constructing R-V designs for k ≤ 120; e.g., a 2120−105
V

design. Unfortunately, such 2k−p designs—except for the

25−1
V design in Table 2—require relatively many combina-

tions to estimate the regression parameters. For example,

the 29−2
V I design in Table 2 requires 128 combinations, to

estimate q = 1 + 9(9 + 1)/2 = 46 parameters, so its ‘ef-

ficiency’ is only 46/128 = 0.36; and the 2120−105
V design
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Table 3: Generators for Rechtschaffner’s R-V designs

Effect type Generator

Intercept (−1, . . . ,−1) for all k factors

Main effect (−1,+1, . . . ,+1) for all k factors

Two-factor Interaction (1,1,−1, . . . ,−1) for k > 3 factors

Table 4: Rechtschaffner’s design for four factors

Combi. Generator 1 2 3 4
1 (−1, . . . ,−1) −1 −1 −1 −1

2 (−1,+1, . . . ,+1) −1 +1 +1 +1

3 +1 −1 +1 +1

4 +1 +1 −1 +1

5 +1 +1 +1 −1

6 (+1,+1,−1, . . . ,−1) +1 +1 −1 −1

7 +1 −1 +1 −1

8 +1 −1 −1 +1

9 −1 +1 +1 −1

10 −1 +1 −1 +1

11 −1 −1 +1 +1

requires n = 32,768 whereas q = 7,261 so its efficiency is

only 0.22. There are R-V designs that require fewer runs;

see Sanchez and Sanchez (2005, pp. 372-373).

Actually, if a simulation run takes much computer time,

then saturated designs are attractive. Rechtschaffner (1967)

gives simple saturated non-orthogonal fractions of two-level

(and three-level) designs; see Table 3 (and also Kleijnen

1975, p. 352). Their construction is simple: the generators
are permuted in the different factor combinations; see the

design for k = 4 factors in Table 4 and for k = 5 factors in

Kleijnen (1975, p. 352). An application of these designs

is presented by Kleijnen and Pala (1999), involving k = 6

factors and Rechtschaffner’s design with only n = q = 22

combinations.

9 REGRESSION ANALYSIS:
SECOND-ORDER POLYNOMIALS

The classic Taylor-series argument implies that—as the

experimental area gets bigger or the I/O function gets more

complicated—a better metamodel may be a second-order
polynomial. An example is the M/M/1 simulation: a valid

metamodel for the I/O behavior in an area with relatively

high traffic rate x may be

E(y) = β0 +β1x+β2x2. (37)

Obviously, estimation of the three parameters in (37) re-

quires at least the simulation of three input values. Indeed,

practitioners often use a one-factor-at-a-time design with
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three values per factor. DOE also provides designs with

three values per factor; e.g., 3k designs. However, more pop-

ular in simulation are Central Composite Designs (CCDs),

which have five values per factor (see Section 10 below).

The formula for the general second-order polynomial

in k factors is

E(y) = β0 +
k

∑
j=1

β jx j +
k

∑
j=1

k

∑
j′≥ j

β j; j′x jx j′ . (38)

So this metamodel adds k purely quadratic effects β j; j to

(31). In practice, second-order polynomials are applied ei-

ther locally or globally. Local fitting may be used when

searching for the optimum input combination; see Angün

et al. (2002). Global fitting (for 0 < x < 1 in the queue-

ing simulation) using second-order polynomials has been

applied, but Kriging provides better metamodels; see Van

Beers and Kleijnen (2003).

10 CCD FOR SECOND-DEGREE POLYNOMIALS

A CCD augments a R-V design such that the purely quadratic

effects can also be estimated. More specifically, a CCD

adds the central point and 2k axial points that form a

star design, where—in the standardized factors—the central

point is (0, . . .0)′, and the ‘positive’ axial point for factor

j is the point with x j = +c and all other k−1 factors fixed

at the center and the ‘negative’ axial point for factor j is

the point with x j = −c and x j′ = 0 (so the axial points are

a one-at-a-time design).

Selecting c = k1/2 results in a rotatable design; i.e., this

design gives a constant variance for the predicted output

at a fixed distance from the origin so the contour functions

are circles.

A CCD does not give an orthogonal X; hence, the

estimated parameters of the second-degree polynomial are

correlated.

Furthermore, nCCD = nV +1+2k where nCCD denotes

the total number of combinations in a CCD; e.g., k = 2

implies nCCD = 22 + 1 + 2×2 = 9. For k = 120, Sanchez

and Sanchez (2005) give nCCD = 33,009. Often only the

central point is replicated, to estimate the common variance

and to compute the lack-of-fit F-statistic defined in (24).

CCDs are further discussed in Myers and Montgomery

(2002) and NIST (2006).

Obviously, CCDs are rather inefficient. Therefore,

Kleijnen and Pala (1999) simulate only half of the star

design. Classic R-V designs are very inefficient, whereas

Rechtschaffner’s designs are saturated. Finally, Kleijnen

(1987, pp. 314-316) discusses three other types of satu-

rated designs for second-order polynomials (due to Koshall,

Scheffé, and Notz respectively), but there seem to be no

simulation applications of these designs.
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11 VALIDATION

Section 3 included the lack-of-fit F-test, which assumes

white noise. This section drops this assumption, and presents

the following statistics: R2 and R2
ad justed , Pearson’s and

Spearman’s correlation coefficients, and cross-validation.

These statistics may be computed for both deterministic and

random simulation, and for other metamodels than linear

regression models; e.g., Kriging and neural networks.

11.1 R2 and ρ

R2 may be defined as follows:

R2 = ∑n
i=1(ŷi −w)2

∑n
i=1(wi −w)2

= 1− ∑n
i=1(ŷi −wi)2

∑n
i=1(wi −w)2

(39)

where ŷi denotes the metamodel predictor defined in (8),

widenotes the simulation response of combination i averaged

over its mi ≥ 1 replicates defined in (22), and w = ∑n
i=1wi/n

denotes the overall average simulation response. The right-

most equality implies that R2 = 1 if ŷi = wi for all i-values.

R2 measures how much of the variation in the simulation

response is explained by the regression model; see the

denominator, which is the numerator of the classic variance

estimator computed over the n combinations—analogous to

(21).

In (39), R2 is not defined as a function of wir (individual

outputs per combination), because the metamodel is valid

if it adequately predicts the expected output of the simu-

lation model. Defining R2 as a function of the individual

outputs would decrease the value of R2 because of the large

variability of the simulation output per combination.

If n = q (no degrees of freedom left; saturated design),

then R2 = 1. Obviously, this high value is misleading.

Therefore R2 adjusted for the number of explanatory vari-

ables is defined as

R2
ad justed = 1− n−1

n−q
(1−R2). (40)

Hence, if q = 1, then R2
ad justed = R2.

Lower critical values for either R2 or R2
ad justed are

unknown, because these statistics do not have known distri-

butions. Analysts therefore use subjective lower thresholds.

Kleijnen and Deflandre 2006) demonstrate how the dis-

tributions of these two statistics can be obtained through

bootstrapping; the classic textbook on bootstrapping is Efron

and Tibshirani (1993).

R2 is also called the multiple correlation coefficient.
However, R2 should be distinguished from Pearson’s corre-
lation coefficient—usually denoted by ρ . This ρ measures

the strength of the linear relationship between two random
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variables (say) x and w. Like R, this ρ ranges between −1

and +1. A value of +1 implies that the two variables are

related perfectly by an increasing linear relationship (with

positive slope). This ρ is estimated through

̂ρ(x,w) = ρ̂ = ∑n
i=1

(xi − x)(wi −w)√
∑n

i=1
(xi − x)2

√
∑n

i=1
(wi −w)2

. (41)

If ρ = 0, then x and w are linearly independent (zero

correlation does not imply independence for non-normally

distributed variables!). To test H0 : ρ = 0, the classic t
distribution can be used:

tn−2 =
ρ̂√

1− ρ̂2

√
n−2. (42)

It may happen that the two variables x and w are

related, but not through the linear relationship E (w|x) =
β0 +β1x. An alternative relationship may be (say) E (w|x) =
β0xβ1 . Such an increasing monotonic relationship may be

quantified through Spearman’s rank correlation coefficient
(say) η . This coefficient is Pearson’s coefficient computed—

not from the original pairs (xi,wi)—but from the ranked

pairs (r(xi),r(wi)); see Conover (1999).

More details on the use of ρ and η for identifying

important factors in simulation (not for quantifying the

adequacy of a metamodel) are given by Kleijnen and Helton

(1999).

11.2 Cross-Validation

Cross-validation is applied not only in linear regression

analysis, but also in nonlinear regression, Kriging, neural

networks, etc. Assume that Xi has only n rows (not N =
∑n

i=1mi rows); i.e., assume that the number of replicates is

constant, possibly one: mi = m ≥ 1. The LS estimate may

then replace wir (individual simulation output) by wi(average

simulation output). The procedure runs as follows.

(i) Delete I/O combination i from the complete set

of n combinations, to obtain the remaining I/O

data set (X−i,w−i). Assume that this step results

in a noncollinear matrix X−i. To satisfy this as-

sumption, the original matrix X must satisfy the

condition n > q. Counter-examples are saturated

designs; a simple solution is to simulate one more

combination, e.g., the center point if the original

design is not a CCD.

(ii) Recompute the LS estimator from the remaining

I/O data: β̂−i = (X′−iX−i)
−1X′−iw−i.

(iii) Use this recomputed estimator to compute the re-

gression prediction for the combination deleted in



Kleijnen
step (i):

ŷ−i = x′iβ̂−i. (43)

(iv) Repeat the preceding three steps, until all n com-

binations have been processed. This results in n
predictions ŷ−i (i = 1, . . . ,n).

(v) Use a scatter plot with the n pairs (wi, ŷ−i) to judge

whether the metamodel is valid.

Case studies using this cross-validation procedure are

presented in Van Groenendaal (1998) and Vonk Noordegraaf

(2002).

The following alternative for the subjective judgment

in step 5 is proposed in Kleijnen (1983): Compute

t(i)m−1 =
wi − ŷ−i√

̂var(wi)+ ̂var(ŷ−i)
(i = 1, . . . ,n) (44)

where ̂var(wi) = ̂var(wi)/m (and ̂var(wi) was given in (21))

and ̂var(ŷi) follows from (43) and the analogue of (12):

̂var(ŷ−i) = x′i
̂

cov(β̂−i)xi (45)

where

̂

cov(β̂−i) = ̂var(wi)(X′
−iX−i)

−1. (46)

Note that wi and ŷ−i are independent because the latter does

not use the former.

Since (44) gives n values, the regression metamodel is

rejected if

max
i

t(i)m−1 > tm−1;1−[α/(2n)] (47)

where the right-hand side follows from Bonferroni’s in-
equality, which implies that the classic type-I error rate

(namely, α/2) is replaced by the same value divided by the

number of tests (namely, n).

There is a shortcut for the n computations above. Mod-

ern software uses the so-called hat matrix

H = (hii′) = X(X′X)−1X′ with i, i′ = 1, . . . . ,n. (48)

It can be proven that the numerator of (44) can be written

as

wi − ŷ−i =
wi − ŷi

1−hii

and (44) itself can be written as

tmi−1 =
wi − ŷi√

̂var(wi)
√

1−hii

(i = 1, . . . ,n) (49)
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so the cross-validation computations can be based solely on

the original I/O data, (X,w), which give ŷi and hii.

Cross-validation not only affects the regression predic-

tions (ŷ−i), but also the estimated regression parameters β̂−i.

So the analysts may be interested not only in the predictive

performance of the metamodel, but also in its explanatory
performance; an example is given in the FMS case study

mentioned above.

The regression literature proposes several so-called di-
agnostic statistics that are related to (49); e.g., PRESS,

DEFITS, DFBETAS, and Cook’s D; see Kleijnen and Van

Groenendaal (1992, p. 157).

12 CONCLUSIONS AND FURTHER RESEARCH

This tutorial explained the basics of linear regression

models—especially low-order polynomials—and the corre-

sponding statistical designs—namely, designs of resolution

III, IV, and V, and CCDs. The tutorial assumed white

noise, meaning that the residuals of the fitted linear regres-

sion models are NIID with zero mean. The white noise

assumption is dropped in Kleijnen (2006, 2007), explaining

the consequences.

Note that the Internet gives DOE software; see, e.g.,

http://www.scientific-computing.com.
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