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ABSTRACT

To celebrate the fortieth anniversary of the Winter Simulation
Conference, we have selected ten landmark papers from the
four decades of the conference. In this article, we review
these landmark papers and discuss their impact on the theory,
education, and practice of simulation.
24244-1306-0/07/$25.00 ©2007 IEEE
INTRODUCTION

This year we are celebrating the fortieth anniversary of
the Winter Simulation Conference (WSC). Since its early
years, WSC has maintained its reputation for being the pre-
mier international conference for disseminating advances in
the field of simulation, especially discrete-event simulation.
Every year, WSC gathers hundreds of simulation practition-
ers, researchers, and vendors from various disciplines and
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from the industrial, governmental, and academic sectors.
Over the forty years, the number of papers presented at the
conference grew considerably reaching approximately 320
papers in 2006.

To celebrate these forty productive years of WSC, we
organized a special panel to discuss some of the landmark pa-
pers published in the 1968–2006 proceedings. After months
of discussions, we selected ten papers among thousands.
The selection process was difficult. We solicited nomina-
tions from the simulation community, gathered information
from our colleagues, and also reviewed the WSC proceed-
ings and citation indices. Based on this, we selected the
following list of papers (in alphabetical order):

Boyle, P., M. Broadie, and P. Glasserman. 1995. Re-
cent advances in simulation for security pricing. In
Proceedings of the 1995 Winter Simulation Confer-
ence, C. Alexopoulos, K. Kang, W. R. Lilegdon, and
D. Goldsman, eds., 212–219

Glynn, P. W. 1986. Stochastic approximation for Monte
Carlo optimization. In Proceedings of the 1986 Winter
Simulation Conference, J. Wilson, J. Henriksen, and
S. Roberts, eds., 356–365.

Goldsman, D., B. L. Nelson, and B. Schmeiser. 1991.
Methods for selecting the best system. In Proceedings
of the 1991 Winter Simulation Conference, B. L. Nelson,
W. D. Kelton, and G. M. Clark, eds., 177-186.

L’Ecuyer, P. 1986. Efficient and portable 32-Bit random
variate generators. In Proceedings of the 1986 Winter
Simulation Conference, J. Wilson, J. Henriksen, and
S. Roberts, eds., 275–277.

Meketon, M. S., and B. W. Schmeiser. 1984. Overlapping
batch means: Something for nothing? In Proceedings
of the 1984 Winter Simulation Conference, S. Sheppard,
U. W. Pooch, and C. D. Pegden, eds., 227–230.

Reitman, J., D. Ingerman, J. Katzke, J. Shapiro, K. Simon,
and B. Smith. 1970. A complete interactive simula-
tion environment: GPSS/360-Norden. In Proceedings
of the Fourth Annual Conference on Applications of
Simulation, P. J. Kiviat, M. Araten, eds., 260–270.

Sargent, R. G. 1984. A tutorial on verification and validation
of simulation models. In Proceedings of the 1984 Winter
Simulation Conference, S. Sheppard, U. W. Pooch, and
C. D. Pegden, eds., 114–121.

Schriber, T. J., and D. T. Brunner. 1994. Inside simula-
tion software: how it works and why it matters. In
Proceedings of the 1994 Winter Simulation Confer-
ence, J. D. Tew, S. Manivannan, A. A. Sadowski, and
A. F. Seila, eds., 45–54

Shahabuddin, P., V. F. Nicola, P. Heidelberger, A. Goyal,
and P. W. Glynn. 1988. Variance reduction in mean
time to failure simulations. In Proceedings of the 1988
Winter Simulation Conference, M. Abrams, P. Haigh,
and J. Comfort, eds., 491–499.
3

Pritsker, A. A. B., D. L. Martin, J. S. Reust, M. A. Wagner,
O. P. Daily, A. M. Harper, E. B. Edwards, L. E. Bennett,
J. R. Wilson, M. E. Kuhl, J. P. Roberts, M. D. Allen, and
J. F. Burdick. 1995. Organ transplantation policy eval-
uation. In Proceedings of the 1995 Winter Simulation
Conference, C. Alexopoulos, K. Kang, W. R. Lilegdon,
and D. Goldsman, eds., 1314-1323.

We believe that there are many papers that could be
selected as landmark papers and our choices are somewhat
arbitrary from this large pool. During our selection process,
we paid particular attention to choosing a diverse set of
papers. WSC is a unique conference for bringing prac-
titioners, educators, researchers, and vendors together for
mutual benefit. It is not primarily a conference for scholarly
publication although that is certainly an important part of
the program. WSC is also not primarily a trade show, but
the vendors certainly play a very important role in the suc-
cess of the conference. Similarly, the reports of successful
practice serve not only as a base for lessons-learned, but
also as inspiration and motivation for the field in general.
Based on this, we selected landmark papers so that there is
at least one paper in each category: (i) vendor contributions,
(ii) successful practice, (iii) educational contributions, and
(iv) scholarly research contributions.

In the following, we review the selected papers and
discuss their importance. We start by reviewing a landmark
paper with vendor contributions, which also happens to be
the earliest paper that we selected (Reitman et al. 1970).
We then review two famous tutorials that appeared multi-
ple times in the WSC proceedings and continued to draw a
large audience at the conference (Sargent 1984, and Schriber
and Brunner 1994). Following these tutorials, we discuss
Pritsker et al. (1995), which is an excellent example of a
WSC paper on practice of simulation with a high impact.
We continue our review with another landmark paper that
focuses on an important application area of simulation —
financial engineering (Boyle et al. 1995). In the second
half of our paper, we review five landmark papers with
scholarly research contributions at least one of which has
also substantial impacts on the education of simulation. The
first paper that we review in this category is Meketon and
Schmeiser (1984), which is a seminal work on simulation
output analysis. In the following section, we review a pa-
per on combined congruential generators that are widely
used for random number generation in simulation packages
(L’Ecuyer, 1986). The next paper that we recognize is Sha-
habuddin et al. (1988), which is one of the earlier papers
among a stream of papers on rare-event simulation in relia-
bility estimation and state-dependent importance sampling.
Finally, we review two papers that are recognized with their
impact on using simulation as an effective tool for decision
making and optimization (Goldsman et al. 1991 and Glynn
1986).
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REITMAN ET AL. (1970)
REVIEW BY J. O. HENRIKSEN

This landmark paper provides an excellent snapshot of the
state of discrete event simulation in 1970. It describes a
very early simulation environment that included animation,
visual data input and editing, and a degree of interactive
control of simulation execution. While describing problems
confronted by early users of simulation, it also anticipates
developments that would occur later in the 1970’s.

The authors explain at some length “two opposing
fronts” that were prominent in 1970. On the one hand,
a great deal of effort had to be put into development of
simulation technology, and on the other hand, effort had
to be put into promoting the application of simulation and
gaining acceptance by operations research professionals,
engineers, and management. One can easily appreciate that
the former dominated the latter. If technology does not
exist, one must first develop it before it can be applied.
The authors lament that “... the process has been too slow,
and has left too many discouragements in its path.” The
authors advocate a very proactive approach to widening the
acceptance of simulation:

“Simulation has a reputation for being one of the most
expensive Operations Research techniques. Even though the
cost reductions and increases in efficiency possible through
simulation studies can be great, they are often indirectly
achieved and not easily verifiable. Thus, confidence in
the technique follows [emphasis added] completion of a
successful project. However, approval for initial funding
that some amount of confidence must exist prior to [emphasis
added] the project. It is therefore necessary to show the
potential user a proposal which [sic] he can understand and
perceive its practicality.”

Although we have made great progress over the last 35
years, these are still word to live by.

Let us pause for a moment to compare the tools that
were available in 1970 with those of the present. Present
day CPUs are faster by a factor of roughly 3,000. Im-
provements in software technology, e.g., compiled code vs.
interpretive implementation, add another factor of 5, yield-
ing total speed improvements of a factor of 15,000. In
1970, the vast majority of computers did not have virtual
memory, and real memory capacities of more than several
megabytes were considered large. Graphical displays at-
tached to mainframes were very expensive. For example,
the IBM 2250 display unit rented for around $5,000 per
month. No wonder simulation was expensive. Today’s one
second run on a $1,000 laptop would have been a big deal
in 1970.

In this environment, the authors pioneered the use of
animation, and they developed visually-based utilities for
managing simulation data. The latter capabilities would
have been completely subsumed by modern spreadsheet
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software, but of course, that did not exist in 1970. When
technology does not exist, someone has to develop it. The
use of animation with simulation underwent a meteoric rise
with the advent of the personal computer. Indeed, many
would assume that animation began with the PC; however,
the authors made productive use of animation well before
the advent of the PC.

This paper provides present day simulationists with a
wonderful glimpse into the past. While the authors were
necessarily forced to wring maximal performance out of
incredibly modest (by present standards) resources, they
followed a game plan that addressed the big picture.

SARGENT (1984)
REVIEW BY D. H. WITHERS

We believe that landmark papers should appeal to a wide
audience and/or provide very significant contributions to a
particular area of simulation and modeling. The tutorial
series on verification and validation by Bob Sargent does
both. Every modeler can benefit from his guidance and
this series of papers constitutes a good working reference
for the subject. This paper is the first of a tutorial series
by Sargent and later Balci that summarize and codify the
important role of verification and validation of simulation
models. Sargent put rigor to what had previously been
an ad hoc, informal set of rules on a little-known subject.
Verification and validation had been the least understood and
most frequently overlooked phase of the modeling process.
The introduction to the paper positions these activities and
motivates the reader to pursue to the topic:

“Simulation models are often used to aid in decision
making and problem-solving. The users of these models are
rightly concerned with whether the models and information
derived from them can be used with confidence. Model
developers address this concern through model validation
and verification. Model validation is usually defined to
mean ‘substantiation that a computerized model within its
domain of applicability possesses a satisfactory range of
accuracy consistent with the intended application of the
model’ [Schlesinger, et al. (1979)] and is the definition used
here. Model verification is frequently defined as ensuring
that the computer program of the computerized model (i.e.,
the simulator) and its implementation is correct and will be
the definition used here.”

Each of the papers in this series includes a practical
reference to validation techniques and a guide to verification
procedures. Readers (or attendees at a conference presen-
tation) can take the information contained in one of these
tutorials and proceed with a high level of competency to
investigate and certify the applicability and utility of their
model.

The positive impact of these papers is demonstrated by
the number of citations in applications publications, see,
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e.g., Nayani (1998). Generally, application presentations
have referred to the most recent version of the tutorial
series. This seems to show continuing interest in these
landmark papers. For many simulation practitioners, this
tutorial series has been their introduction and their only
reference to verification and validation. The presentation
sessions at the conferences were always well attended and
generated much positive feedback from the attendees.

We are pleased to recognize these tutorials as landmarks
in the history of the Winter Simulation Conference.

SCHRIBER AND BRUNNER (1994)
REVIEW BY J. O. HENRIKSEN

This sequence of papers (1994–2006) has become a fixture
of the Winter Simulation Conference, and rightfully so. It
has to be one of the most aptly titled works of all time.

Simulation practitioners must master a wide variety
of skills to perform their work. Even slight lapses of
attention to detail in any of a multiplicity of areas can lead
to inaccuracies or outright errors. One of the examples
I’m fond of using when teaching simulation arises in the
granddaddy of all simulation models, the one-line, single-
server queueing system. If we use exponentially-distributed
service times, what is the maximum service time that we’ll
see? The algorithm used in my company’s software yields
a maximum value of roughly 23 times the mean. If we’re
running Tom Schriber’s barbershop model, where the mean
time for a haircut is 15 minutes, this means that a single
haircut could take nearly six hours. Of course, the maximal
time occurs with probability 231, so this value is “extremely
unlikely.” How do we know if such a value occurs? If we
don’t look for it, we may never know.

The authors provide standard nomenclature for describ-
ing how discrete-event simulation software works. They do
so in product-neutral fashion, allowing them to describe a
multiplicity of simulation software tools in unbiased fash-
ion. Each year, they select several software tools, and they
compare basic operations and describe carefully selected
interesting sample problems. For example, assume that a
consumer of services in a model relinquishes a server and
immediately attempts to reacquire the same server. If there
are other would-be consumers in a queue for the server,
which consumer acquires the server? Is it the consumer
who just relinquished the server? If you need to have one
kind of behavior, and your simulation software by default
provides another, you’ll have to work around the problem
to achieve the desired results.

The answers to such questions vary to a surprising extent
across the software tools described. This sequence of papers
has contributed to the Winter Simulation Conference in three
ways:
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• For the beginning practitioner, it provides an
overview of how things work.

• For a practitioner who is familiar with one or two
simulation tools, it provides the invaluable insight
that there may be other ways of doing what they
take for granted.

• For everyone, it raises a giant red flag. Sometimes
things may not work the way we expect them to.
Details of how software architecture and imple-
mentation can profoundly affect the correctness
of a simulation. We may have a perfectly valid
model, but if our implementation of the model
fails to properly execute the rules embodied in the
model, incorrect results will be obtained.

Exhaustively cataloguing the differences among sim-
ulation software tools, even if confined only to the most
popular tools, is an impossible task. However, the authors
have done the next best thing by heightening the aware-
ness of the simulation community that differences do exist,
and no matter which tool is used, there’s no substitute for
knowing what you’re doing.

PRITSKER ET AL. (1995)
REVIEW BY D. H. WITHERS

This paper is recognized as one of the landmark applications
in the history of the Winter Simulation Conference for its
very significant value (lives are saved) and the publicity the
work received in the popular press and within U.S. gov-
ernment policy-making and legislative organizations. From
a press release in Richmond, Virginia by UNOS (United
Network for Organ Sharing) 2/7/1997:

“A unique computer simulation has been used for the
first time to help establish national health care policy for
organ allocation. This policy development is considered a
breakthrough in addressing a major public health crisis in this
country: the critical shortage of transplantable organs. The
demand for organs continues to grow faster than the number
of organ donors available. As a result, some people will
die waiting because an organ was not available. The new,
computer-based policy will increase access to transplantation
and save lives ...”

The first result of the model described in this paper
was a significant contribution to a modification of the na-
tional liver allocation policy. The model predicted that 100
fewer deaths annually will occur among patients who are
transplanted. Previously, policy-making had relied largely
on intuition, experience and judgment of those involved.
Computer modeling offered a more scientific approach to
policy-making, providing additional advantages of preci-
sion, quantification and probabilistic reasoning. The policy
resulting from this analysis was debated by members of the
transplantation community; primarily in UNOS committees.
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In 1997, the UNOS Board of Directors adopted a new liver
policy that rejected the sickest-patient-first approach while
creating new status definitions for patients.

The regulation was published in the Federal Register as
OPTN (Organ Procurement and Transplantation Network):
Final Rule [1]. Congressional hearings were held to discuss
and analyze the Final Rule in June 1998 before a Joint
Hearing of the House Committee and Senate Labor and
Human Resources Committee (Pritsker 1998).

The study reported in this paper was an excellent ex-
ample of the application of best practices for simulation and
up-to-date modeling technologies. The animation showing
livers flying across the country is hard to forget!

The liver transplant modeling was followed by similar
work on cadaveric kidneys in 2000 and Johns Hopkins
University researchers have continued to use simulation to
influence transplant policies for kidneys with reports as
recent as 2006 (Science Daily 2006; original reference by
Montgomery et al. 2006).

Based upon the value of the model in saving lives and
the positive public relations resulting from this work, we
are pleased to include this paper in the list of landmarks
for the Winter Simulation Conference.

BOYLE, BROADIE, AND GLASSERMAN (1995)
REVIEW BY D. GOLDSMAN

Financial engineering problems have come to the fore in
recent years, garnering a great deal of attention in the
operations research and management science literature in
general, as well as the simulation literature in particular.
One of the basic goals of the area is that of calculating fair
values for various financial instruments such as options and
other derivatives. For certain simple cases, one can come up
with exact values, but this ability to calculate exact prices
breaks down very quickly if we consider anything but the
easiest cases. Even a straightforward instrument such as an
American call option presents a problem — it is not possible
to obtain closed-form value expressions for an instrument
that allows the holder multiple opportunities to exercise.
Luckily, such problems are amenable to analysis via clever
simulation methods.

Among the contributions of the outstanding landmark
paper of Boyle, Broadie, and Glasserman (1995, BB&G
from here on) were that (1) it provided a terrific, clear
introduction of security pricing via simulation methods to
many researchers in the simulation and general operations
research communities; (2) it presented a state-of-the-art
tutorial for applicable methods to attack pricing problems;
and (3) it set the stage for a great deal of future research in
the area — in fact, there has been a boom of outstanding
work in the field over the last decade, thanks in good part
to this paper.
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BB&G begin with an introduction to arbitrage-free
markets, citing the famous Black-Scholes model as a typical
model for pricing securities,

dSt = µSt dt +σSt dWt ,

where St is the underlying stock (or other asset) price at
time t, σ is the volatility, and W is a standard Brownian
motion process (see Black and Scholes 1973 and Black
1976). Under the arbitrage-free assumption (essentially a
fair and efficient market assumption, where one cannot make
money “for free”), one takes µ = r, the risk-free interest
rate currently available. Suppose we own a European style
option to buy one share of the underlying stock at time T
at price K; then of course the option will pay us (ST −K)+

at time T , where (x)+ ≡max(0,x). It can easily be shown
that the arbitrage-free expected present value of our option
is

C ≡ E[e−rT (ST −K)+],

which can be evaluated in closed-form via the Black-Scholes
equation (also see Hull 2006).

BB&G then go on to show how one would compute the
expectation using simulation, providing wonderful motiva-
tion for attacking more-difficult problems. For example,
what happens if the volatility is unknown? What if we
have multiple option exercise opportunities, as given by
American style options?

Since computationally intensive simulation becomes
one of the weapons of choice for evaluating these more-
complicated scenarios, BB&G recognize the need for effi-
cient implementation of any simulations; and so they present
a very nice tutorial on variance reduction techniques that are
appropriate for use with such financial analysis problems.

Although the majority of the discussion in the paper
concerns the use of Monte Carlo simulation for pricing
securities, BB&G are also interested in the evaluation of
price sensitivities — which almost always cannot be given
by exact methods and therefore need to be computed. Such
“derivatives of a derivative security’s price” with respect to
various model parameters are usually referred to as “Greeks”
since their monikers are given by Greek letters, the most
important of these being delta, the derivative of the price
of a contingent claim with respect to the current price of
an underlying asset. For instance, the delta of a stock
option is the option price’s derivative with respect to the
current stock price. BB&G give an insightful discussion on
the evaluation of such price sensitivity matters, after which
they conclude the paper with some research topics of future
interest. Indeed, these topics have yielded fruitful research
in the ensuing years (see Glasserman 2004).

What makes this landmark paper especially important
is that it introduced an entirely new field to many simulation
researchers, while generously offering interesting problems
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to study — thus jump-starting an exciting and rich body
of work.

MEKETON AND SCHMEISER (1984)
REVIEW BY D. GOLDSMAN

Meketon and Schmeiser (1984, M&S from here on) was
one of the breakthrough papers in the area of simulation
output analysis, and to this day continues to garner citations
in articles from archival journals.

One of the most challenging (and ongoing) problems
in our field is that of analyzing the output process from
a complicated stochastic simulation. The problem is that
typical simulation output — such as a series of consecutive
queue waiting times — never conforms to the standard as-
sumptions of independent and identically distributed (i.i.d.)
normal random variables. In fact, processes such as waiting
time output are more likely to be positively autocorrelated,
skewed to the right, and nonstationary. Even in the ideal
case of steady-state output analysis, the task is difficult
enough to render classical statistical analysis useless.

The most common goal in simulation output analysis is
probably to provide information about the unknown mean
µ of the underlying steady-state output process {Yi : i =
1,2, . . . ,n}. The sample mean Ȳn ≡∑

n
i=1 Yi/n is the obvious

point estimator for µ , but we would be well-advised to
provide a measure of the sample mean’s precision — as a
precursor to, for instance, confidence intervals for µ .

Over the years, researchers have come up with a num-
ber of techniques to analyze the output from steady-state
discrete-event simulations. For example, the following well-
known methods of steady-state simulation output analysis
are discussed in popular textbooks such as Bratley, Fox,
and Schrage (1987) and Law (2007): nonoverlapping batch
means (NBM); overlapping batch means (OBM); spectral
analysis; regenerative analysis; autoregressive modeling;
and standardized time series (STS). These techniques can
all be adapted to estimate the sampling error of the sample
mean from a steady-state simulation, or almost equivalently,
the so-called variance parameter, σ2 ≡ limn→∞ nVar(Ȳn);
and then one can form confidence intervals for the unknown
mean µ .

A common strategy used by some of the above method-
ologies, e.g., NBM, OBM, and STS, requires batching the
observations. The concept of batching is simple—instead of
considering the entire simulation-generated time series {Yi}
all at once, we break up this data set into smaller batches
or subseries that are composed of consecutive observations
(where the batches may be disjoint or overlapping, de-
pending on the analysis method); and then we perform the
relevant analysis on each batch separately. For instance, in
the NBM method we split the observations into adjacent
disjoint (nonoverlapping) batches; then we assume that the
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resulting sample (batch) means computed from each batch
are approximately i.i.d. normal; and finally we apply “stan-
dard” or “naive” variance estimation techniques to the batch
means.

In the OBM method introduced in M&S’s remarkable
1984 paper, we form overlapping batches, with the full
realization that the associated overlapping batch means are
not independent (though they are identically distributed and
asymptotically normal):

OBM 1: Ȳ O
1,m ≡ (Y1 +Y2 + · · ·+Ym)/m

OBM 2: Ȳ O
2,m ≡ (Y2 +Y3 + · · ·+Ym+1)/m

...
OBM n−m+1: Ȳ O

n−m+1,m ≡ (Yn−m+1 + · · ·+Yn)/m,

where m is the batch size. Then we compute the OBM esti-
mator of σ2 based on the sample variance of the overlapping
batch means,

V (b,m) ≡ c(b,m)
n−m+1

∑
i=1

(Ȳ O
i,m− Ȳn)2,

where b ≡ n/m and c(b,m) is an appropriate scaling fac-
tor designed to make the estimator V (b,m) asymptotically
unbiased for σ2.

M&S recognized that this seemingly problematic tech-
nique exploits key results from the theory of spectral analysis
to yield an estimator of the variance parameter σ2 that is
provably superior to the NBM variance estimator, at least
asymptotically for many types of serially correlated simu-
lation output processes.

What do we mean by a superior estimator of the variance
parameter σ2? We most often care about the bias and
variance of an estimator for σ2, as well as the resulting
mean squared error (MSE), that is, the estimator’s variance
plus the square of the estimator’s bias. Batching typically
increases bias but decreases variance so that its net effect
on MSE requires careful analysis. What is nice about the
OBM estimator is that asymptotically it has the same bias
as, but smaller variance than, the NBM estimator when the
sample size n → ∞. Thus, OBM gives better performance
than NBM based on the same simulation-generated time
series {Yi : i = 1,2, . . . ,n} of length n, provided that n is
sufficiently large.

Besides introducing the OBM methodology in this sem-
inal article, M&S also provided major contributions to the
literature by

• Motivating how the estimator works;
• Showing that the estimator is asymptotically un-

biased for σ2 as b and m become large;
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• Arguing that the estimator has an asymptotic vari-
ance that is only two-thirds that of NBM (hence,
the title “Something for Nothing”);

• Noting and addressing computational efficiency
issues (one of the first such insights in the literature);

• Noting and addressing storage space issues;
• Establishing a link between OBM and spectral

theory-based estimators, in particular, Bartlett’s es-
timator (see also Welch 1987);

• Setting the stage for a great deal of future research
in the area.

With the last point in mind, it turns out that M&S
spawned a great deal of work in the area. Welch (1987)
relates OBM to certain spectral estimators and looks into
the effects of partial overlapping. Goldsman and Meke-
ton (1986), Song (1988), and Song and Schmeiser (1993)
derive bias and variance properties of OBM estimators,
among others. Song and Schmeiser (1993) also give addi-
tional insight by plotting the coefficients of the estimators’
quadratic-form representations; included in the presentation
are the OBM estimators as well as overlapped versions of
certain STS estimators. Further early work on the subject
is undertaken by Pedrosa and Schmeiser (1993, 1994), who
establish covariance properties between OBM estimators
and subsequently propose a batch-size determination algo-
rithm. In a terrific series of papers, Damerdji (1991, 1994,
1995) establishes consistency results (both in the strong and
mean-square senses) for a variety of variance estimators,
including OBM and an overlapping version of a certain STS
estimator. In the spirit of Welch (1987), Damerdji also es-
tablishes a formal linkage between the spectral method and
simulation analysis methods based on overlapping batches.
And even to this day, direct descendants of M&S continue
to appear in the literature, e.g., Alexopoulos et al. (2006,
2007).

L’ECUYER (1986)
REVIEW BY B. L. NELSON

Random numbers play a central role in the validity of
stochastic computer simulation experiments because they
provide the underlying source of randomness that insures that
realizations (outputs) of the simulation are consistent with
the stochastic process that the modeler intended to construct.
This permits simulations to be appropriately analyzed as
statistical experiments over a well-defined space of possible
outcomes. Neither expert modeling of the physics of the
real system nor statistically sound experiment design and
analysis can compensate for defective random numbers.

Simulation experiments run in modern simulation en-
vironments invariably employ deterministic pseudorandom-
number generators rather than obtaining numbers that are
in any sense truly random, and this facilitates code debug-
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ging, model portability and sharper comparison of system
designs via simulation. Pseudorandom-number generators
produce sequences of values in the interval [0,1] that, for a
good generator, appear to be independent samples from the
uniform distribution on that interval. They are then trans-
formed into the service times, product demands, machine
failures, etc. specified in the model.

The critical importance of pseudorandom-number gen-
eration is why L’Ecuyer (1986, L86 from here on) is a
landmark WSC paper. L86 was the first published paper on
pseudorandom-number generation by the prolific researcher
Pierre L’Ecuyer, and it provided the foundation for a family
of pseudorandom-number generators and a deep theory of
such generation that followed. The impact of this work
is hard to avoid: The pseudorandom-number generators in
the simulation packages Arena R©, AutomodTM, Simul8 R©,
Witness R© and probably others; in the statistical analy-
sis package SAS R©; in numerous video/gambling/lottery
games; and advocated by numerous textbooks (including
such staples as Law 2007, and Banks et al. 2005) trace their
origins to this landmark paper.

Prior to L86, the most popular pseudorandom-number
generation scheme was the multiplicative linear congruential
generator (MLCG), which takes the form

si = asi−1 mod m (1)
Ui = si/m

where the modulus m, the multiplier a < m and the initial
seed 0 < s0 < m are nonnegative integers, while Ui is the ith
pseudorandom number returned by the generator. Essential
properties for any pseudorandom number generator are long
period and apparent uniformity and independence of the
generated values. Because the maximal period of such
a generator (number of distinct values generated before
the sequence repeats) is m− 1, long period necessarily
means large modulus m. Unfortunately, this leads to serious
implementation problems on a digital computer if m is too
large. Other desirable properties include portability and the
facility to easily jump ahead in the generated sequence so as
to imitate the existence of independent streams of random
numbers. MLCGs are ideal for jump ahead, but large m is
a barrier to portability.

In L86, L’Ecuyer observed that it is possible to obtain
long periods—much longer than could practically be ob-
tained via increasing the modulus m in (1)—by combining
good MLCGs with much smaller modulus. To facilitate this
he undertook a search for pairs (a,m) yielding MLCGs that
exhibit good performance as measured by the spectral test
(a test for uniformity) when m is prime, less than 231−1,
and a <

√
m, features that facilitate stable implementation.
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L86 provided a general recipe for combining generators,
and also a specific combination of two generators:

s1,i = 40692s1,i−1 mod 2147483399
s2,i = 40014s2,i−1 mod 2147483563

si = (s1,i + s2,i−2) mod 2147483562
Ui = si/2147483563.

Combinations of this sort retain the facility to jump quickly
ahead in the sequence, yet the period of this combined
generator is approximately 2.3×1018.

A sequence of papers, refined generators and theory
for construction and testing of generators followed L86,
including the popular implementation in L’Ecuyer et al.
(2002). This generator, which combines three MLCGs,
has period 2191, which is about 3× 1057. To gain some
understanding of just how large this period is, notice that
if one could generate 2 billion pseudorandom numbers per
second—the entire period of a typical MLCG—it would take
approximately 4.6×1040 years to exhaust the period of this
generator, a time longer than the age of the universe which
is a mere 2× 1010 years. An overview of the follow-on
work and references can be found in L’Ecuyer (2006).

SHAHABUDDIN ET AL. (1988)
REVIEW BY B. L. NELSON

Shahabuddin et al. (1988, SNHGG88 from here on) ad-
dresses statistical efficiency in estimating the mean time to
failure (MTTF) of a highly-reliable system. The description
of the problem context and approach that follows are based
on Nelson (2004).

Consider using simulation to estimate the probability
that a very unlikely event occurs, for instance having prob-
ability on the order of 10−9 of occurring. An excessive
number of simulated trials would be required to observe
even a small number of these events, and conducting so
many trials is impossible if each trial requires even a mod-
erate amount of simulation effort. But if the simulation
model could be changed so that the rare event occurs much
more often, say exactly 1,000,000 times more often, then
the event would be observed more frequently, giving a much
better estimator of the probability that it occurs. Of course,
the estimator would be wrong, but since we know that it is
1,000,000 times wrong we can correct for the bias. This is
essentially the idea behind the variance reduction technique
of importance sampling (IS). Unfortunately, if the probabil-
ity dynamics of the system are changed crudely to increase
the frequency of the rare event, then the result can be a
significant variance increase.

SNHGG88 considered systems of many components
that are subject to random failure, but can also be repaired.
When enough components in certain combinations fail, then
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the entire system fails. Let {Yt , t ≥ 0} be a stochastic process
with state space E representing the status of the components
at time t, where state 0 indicates any starting state (e.g., all
components functional) and there is a subset of states F ⊂ E
that corresponds to system failure. SNHGG88 considered
systems for which Yt is a continuous-time Markov chain
with generator Q. IS for such problems is conceptually
simple: change the failure rates (and perhaps the repair
rates) to make a system’s failure much more likely (e.g.,
replace the generator Q by a different generator Q′ that
has larger component failure rates and smaller component
repair rates). The idea is very powerful, but the reality is
that finding a Q′ that guarantees a variance reduction in a
dynamic, stochastic simulation is not easy, and in fact the
authors discovered that a proven IS technique for estimating
steady-state system availability failed to work for estimating
MTTF, motivating this paper.

Let αB represent the first passage time of the system
from state 0 to some subset of states B. Then SNHGG88
observed that

E[αF ] =
E[min(α0,αF)]
Pr{αF < α0}

(2)

where E[αF ] is the MTTF. They demonstrated empirically
that substantial variance reductions (4 orders of magnitude in
the confidence interval width relative to straightforward sim-
ulation) could be obtained by applying different IS changes
to estimate the numerator and denominator of (2) sepa-
rately: In fact, straightforward simulation could be used to
estimate the numerator, while an intuitively appealing IS
strategy could be applied to estimate the denominator.

This landmark paper was one of the earliest in a long
line of highly influential publications on rare-event simu-
lation by various subsets of the authors. A summary with
references can be found in Juneja and Shahabuddin (2006).
In fact, a number of WSC papers could have been picked
as the “landmark” paper on this topic, including Goyal,
Heidelberger and Shahabuddin (1987) from the previous
year.

The work in this paper also motivated Shahabuddin
(1994), which won the Nicholson Prize from the Insti-
tute for Operations Research and the Management Sciences
(INFORMS) as the best student paper in 1990, and the
INFORMS College on Simulation Publication Award in
1996. Versions of these and later ideas were implemented
in IBM’s SAVE availability modeling package, providing a
substantial practical impact on system design applications.

GOLDSMAN, NELSON, AND SCHMEISER (1991)
REVIEW BY P. L’ECUYER

Simulation is often presented as a way to estimate an un-
known number (or vector of numbers) expressed as the
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mathematical expectation of a random variable that we know
how to simulate, or the ratio of two such expectations, or
something similar. These expectations are estimated by
generating several copies of the random variable and taking
the average; this is the Monte Carlo method. But the ulti-
mate goal of most simulation projects is decision making.
We may want to choose the “best” of a few systems or
configurations, or we may want to optimize some discrete
or continuous parameters of the system, or even try to opti-
mize some complex decision policies to control the system,
where each decision may depend on the entire state of the
system. These problems are quite difficult in general, but
they are extremely important from the practical viewpoint.

Goldsman, Nelson, and Schmeiser (1991) consider the
first type of situation, where one wishes to select the best
system among a few alternatives, or at least a system whose
performance is close enough to the best, assuming that
the performance is defined by a mathematical expectation
that can only be estimated by simulation. The easiest
approach one could think of in this context is to simulate
each alternative a large number of times, large enough to
estimate the performance with negligible statistical error,
and then select the winner. But this brute force approach
is often much too inefficient. Better methods save work by
simulating each system just enough to make a good decision
with high enough confidence. The actual definitions of good
decision and high confidence may depend on the method
and on the user.

In their paper, Goldsman, Nelson, and Schmeiser (1991)
discuss three different methods for deciding which system is
best. Each of the three authors explains and argues for one
of these methods: Schmeiser is a proponent of interactive
analysis (IA), Goldsman is for ranking and selection (RS)
procedures, and Nelson defends multiple comparison (MC)
procedures. The authors have agreed on a small example
in which one must choose between four configurations of
an airline reservation system. The performance measure
(to be maximized) is the expected time to failure (ETTF).
Important characteristics of this example are that simulation
runs are not cheap (about 30 seconds of CPU time, on
the computers used at that time), and that the standard
Monte Carlo estimator has substantial relative error and is
highly non-normal. The use of common random numbers
across systems is also disallowed. As a consequence, one
has to spend a significant amount of CPU time to obtain
good confidence that the system with the empirical best
performance is truly the best, or close enough to the best.
Each author applied his favorite method to the selected
example, and summarized in the paper a log of all the steps
he made for this experiment (including pilot runs, and so
on). These details give the reader a clear understanding of
how each method works in a concrete situation. This makes
the paper a wonderful tutorial on the main issues involved
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in selecting the best system, and on the comparisons and
relationships between the proposed methods.

In the IA method, the analyst first makes some simula-
tion runs to get a rough idea on the means and variances for
the different configurations, and on how much time it takes
to simulate the system, and then uses his judgment and com-
mon sense to determine (heuristically and informally) what
to do next. The proponent of IA stays away from a rigorous
statistical analysis, arguing that this is not necessary. This
appears sensible for the small example considered in the
paper, and the method has the advantage of being simple
and flexible, but its performance in general may depend
too much on the good judgment of the analyst. The other
two procedures provide more specific guidance. Also, IA
does not provide a well-defined measure of confidence in
the retained selection.

In RS procedures, the analyst specifies an indifference
gap δ > 0 and a probability P∗, and the procedure returns,
with probability at least P∗ under some appropriate assump-
tions, a system whose performance measure is no more than
δ away from the best. In general, the assumptions involve
independence, normality, equality of variances, and the like.
Various RS procedures have been designed that operate un-
der different sets of assumptions. They usually have two
stages: a set of pilot runs to estimate the required sample
size for each system, and the production runs to collect
these sample sizes and make the final decision. In practice,
the RS procedures tend to be conservative, in the sense that
the probability of correct decision is often larger than P∗.

The MC procedures compute simultaneous confidence
intervals on the differences between the performance of each
system and that of the best minus δ . When none of the
interval contains zero except for the current best system, the
procedure stops. The version adopted in the paper assumed
equal variance, and this was achieved (approximately) via
batching of observations.

The paper lists the required assumptions for each method
and made insightful comparison between the methods, while
giving the advantages and disadvantages of each. The
detailed report of the process followed with each method
makes the paper a nice tutorial on how to apply these methods
in practice. This paper played a key role in teaching the
simulation community about the methods for selecting the
best system, and their philosophy. It contributed to raising
interest in these methods and to motivate further work on
this important problem, as can be appreciated, e.g., from
Kim and Nelson (2006).

GLYNN (1986)
REVIEW BY P. L’ECUYER

Glynn (1986) addresses a different class of optimization
problems, where one wishes to optimize a continuous deci-
sion parameter θ of a regenerative stochastic process, over
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a bounded interval, assuming that the performance measure
α(θ) is a steady-state average that can be written as a ratio
of two expectations. The derivative α ′(θ) is written as
a ratio whose numerator g(θ) (say) is a function of four
expectations, and the optimization is achieved by finding
a root of this numerator. Two optimization algorithms are
proposed. Both are stochastic approximation procedures,
moving by small steps toward the optimum: At each step
they estimate g(θ) and make a small move in the opposite
direction. They differ essentially by the way they estimate
g(θ). The first procedure uses finite differences; it applies
to a rather general class of stochastic processes. The sec-
ond procedure assumes that the process is an irreducible
Markov chain whose behavior depends on θ in a smooth
way. It uses a cleverly-designed unbiased estimator based
on a likelihood ratio method, and using pairs of indepen-
dent simulation runs. Almost sure convergence is proved
for the two algorithms. The bounded interval is mapped to
the entire real line by a nonlinear transformation and the
algorithms actually work with the transformed parameter
on the real line.

This innovative paper was the first to provide a rigorous
mathematical analysis and a convergence proof for this type
of optimization algorithm for regenerative systems. Later
experiments have shown that the proposed algorithms, as
they stand, can be very noisy in practice, due to the nonlin-
ear transformation of the parameter and the high variance
of the likelihood ratio gradient estimator, especially when
the regenerative cycles are long. But the main contribution
of this paper was to motivate and show the way to further
research in which a whole bunch of improved algorithms
were designed, rigorously analyzed, and compared empiri-
cally on various types of examples. Hundreds of research
articles and several Ph.D. theses came out of this effort.
The follow-up work includes the analysis of optimization
algorithms based on infinitesimal perturbation analysis and
on finite differences with common random numbers, for
example. And the further results include not only conver-
gence proofs, but also convergence rates and central limit
theorems for those algorithms, in a variety of contexts.
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