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ABSTRACT

Computational modeling of biological systems is becom-

ing increasingly common as scientists attempt to under-

stand biological phenomena in their full complexity. Here

we distinguish between two types of biological models —

mathematical and computational— according to their dif-

ferent representations of biological phenomena and their

diverse potential. We call the approach of constructing

computational models of biological systems Executable Bi-

ology, as it focuses on the design of executable computer

algorithms that mimic biological phenomena. We give an

overview of the main modeling efforts in this direction,

and discuss some of the new challenges that executable

biology poses for computer science and biology. We argue

that for executable biology to reach its full potential as a

mainstream biological technique, formal and algorithmic ap-

proaches must be integrated into biological research, driving

biology towards a more precise engineering discipline.

1 INTRODUCTION

Over the last decade, it has become apparent that biological

research has reached a point where the accumulated data

exceeds the human capacity to analyze it. This vast amount

of information generated by DNA microarrays, genome se-

quencers, and other large-scale technologies, requires com-

puter power to store, search, and integrate into a coherent

whole. Systems biology, a new science combining biology,

chemistry, physics, mathematics, electrical engineering, and

computer science (to name a few), aims to integrate the data

concerning individual genes and proteins into a complete

picture; and to investigate the behavior and relationships of

various elements in a particular biological system in order

to understand how the system functions.

At the core of systems biology lies the construction

of models describing biological systems. Over the years,

biologists have been using diagrammatic models in order

to summarize a mechanistic understanding of a set of ob-
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servations. Despite the many benefits gained from using

these models, as well as their useful simplicity, advances in

systems biology have prompted biologists to harness com-

puters in order to build and analyze ever larger models.

The long-term vision is that large-scale models would rev-

olutionize biological comprehension and eventually lead to

drug discovery and the design of new therapies.

We distinguish between two types of such models. The

first type includes models that use computer power in order

to analyze mathematical relationships between quantities.

The second is a new type of model, which resembles a

computer program, thus creating a new field that we call

executable biology. We explain the differences between

these two types of models, explore some recent executable

biological models, and suggest, from the executable biology

point of view, some main challenges for computer science

and biology in order for executable biology to realize its

full potential.

2 MATHEMATICAL VERSUS COMPUTATIONAL

MODELS

With the advent of ever more powerful and less expensive

computers, computational modeling has become central to

all science and engineering disciplines. The models fall

into two categories.

• In the first category, computers are used to simulate

mathematical models, and solve them for certain

unknowns. A classical example involves models

based on differential equations, which are useful to

capture many situations in the natural sciences and

in engineering. These models were often developed

before computation became feasible on a grand

scale, but they are now profiting immensely from

our increasing computational abilities.

• The second kind of model —still less known— is

more directly computational, rather than mathemat-

ical, in that it presents a recipe —an algorithm—

for an abstract execution engine to mimic a de-



Fisher and Henzinger
sign or a natural phenomenon. Such models are

ideally suited to capture complicated causal chains

of events. They have been used recently to model

biochemical processes (Priami et al. 2001, Regev

et al. 2001, Errampalli et al. 2004, Cardelli 2005)

and the behavior and development of certain parts

of biological systems (Kam et al. 2001, Kam et al.

2003, Efroni et al. 2003, Fisher et al. 2005, Fisher

et al. 2006a, Sadot et al. 2006).

Let us now draw a clearer distinction between mathe-

matical and computational models. The two kinds of models

differ in the languages in which they are specified: mathe-

matical models are specified in mathematics (typically by

equations); computational models are specified by com-

puter programs (by code, often very high-level code written

in a modeling language). Consequently, mathematical and

computational models yield different kinds of insights.

Mathematical models can be simulated, and possibly

solved. The basic entity of a mathematical model is the

transfer function, which relates different numerical quan-

tities to each other. A transfer function may be specified,

for example, by a differential equation that relates an in-

put and an output quantity. Complex mathematical models

are constructed through the composition of transfer func-

tions, yielding a network of interdependent quantities. If the

constraints for individual transfer functions are relatively

simple (e.g., linear differential equations), then mathemati-

cal models are amenable to mathematical analysis. In more

complicated cases, they are still amenable to computational

simulation.

Computational models can be executed. By contrast, the

basic entity of computational models is the state machine,

which relates different qualitative configurations (“states”) to

each other. A state machine may be specified, for example,

by simple computer programs that define how, given certain

events, one state is transformed into another. Complex com-

putational models are constructed through the composition

of state machines, yielding a “reactive system”. The com-

ponents of such a system represent biological entities —e.g.,

cells— which react to events in neighboring components

by state transformations.

Such computational models are highly nonlinear and

nondeterministic, and therefore generally not amenable to

mathematical analysis. However, while for the simulation

of a mathematical model an algorithm must be devised, a

computational model prescribes the steps taken by an ab-

stract machine, and is therefore inherently and immediately

executable. Since the primary semantics of reactive models

is computational, we speak of “execution” instead of sim-

ulation, and thus of executable biology. As computers are

extremely efficient in executing instructions —much more

so than in solving or simulating mathematical equations—

the execution of very large computational models is possible.
16
Quantitative versus qualitative modeling of biology. In

biology, mathematical models exist for many quantitative

relationships between variables, such as molecule concen-

trations. Such models, however, are difficult to obtain if

the number of interdependent variables grows, and if the

relationships depend on qualitative events, such as a con-

centration reaching a threshold value. If precise quantitative

relationships are unknown, if they involve many different

variables, and if they change over time, depending on cer-

tain events, then computational models offer a natural and

effective alternative. Indeed, since these premises are often

satisfied, biology presents an almost perfect playground for

computational models; much more so than, say, physics,

where mathematical models dominate. As computational

models are qualitative, they do not presuppose a precision

that is not present in the experimental data; as they are

nondeterministic, they allow many possible outcomes of a

chain of events, and like nature, do not necessarily produce

predetermined results.

Computational models can be analyzed by model check-

ing. Computational models cannot only be executed, but

they can also be used for testing and comparing hypothe-

ses. Suppose that we have collected experimental data.

A computational model represents a hypothesis about the

mechanism that results in the data. An execution of the

model can be used to check if a possible outcome of the

mechanism conforms to the data. Due to nondeterminism,

each repeated execution may yield a different possible out-

come. Therefore it is impossible to check by executing the

model if all possible outcomes conform to the data. This,

however, can be done by a technique called model check-

ing (Clarke et al. 1999). Model checking systematically

analyzes all of the infinitely many possible outcomes of a

computational model without executing them one by one.

If model checking tells us (1) that all possible outcomes

of the computational model agree with the experimental data,

and (2) that all experimental outcomes can be reproduced

by the model, then the model represents a mechanism that

explains the experimental data. If (2) is violated, then

the hypothesis that the computational model captures a

mechanism for explaining the data is found to be wrong. In

this case, either the model must be enriched as to produce

the additional outcomes that are present in the data, or

completely revised. If (1) is violated, then the situation is

more interesting. In this case, the mechanistic hypothesis

represented by the model may be wrong, and one may

attempt to restrict the model as to not produce outcomes that

are not supported by the data. Alternatively, the experimental

data may be incomplete and not exhibit some possible

observations that would show up if more data were collected.

Thus, in case (1), model checking can offer suggestions for

additional, targeted experiments that would either confirm

or invalidate the mechanistic hypothesis represented by the

computational model.
76
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Computational models can be compared by equivalence

checking. A second technique, called equivalence checking

(Milner 1971, Clarke et al. 1999), can be used to explain

differences in the possible outcomes between two compu-

tational models, which represent two different mechanistic

hypotheses. Suppose that we want to check which of two

mechanisms better explains a given set of data points. We

can use equivalence checking to find an outcome that is

possible in one model, but not in the other. This distin-

guishing outcome can be used to suggest new experiments,

whose results will rule out one of the two hypothetical

mechanisms.

While model checking is a “filter” that selects from

a set of possible mechanistic explanations the one that

best explains the available data, equivalence checking is an

“amplifier” that highlights the differences in the possible

outcomes produced by a set of different mechanisms. Both

model checking and equivalence checking are techniques

that were developed for validating properties of computer

systems (hardware and software). Yet viewed as algorithms

for analyzing computational models, they find natural appli-

cations in validating mechanisms used to explain biological

phenomena.

3 MODELS OF EXECUTABLE BIOLOGY

A large number of recent and ongoing efforts are putting

the executable biology framework into practice. We now

briefly review a few of these efforts.

Executable models for biological mechanisms. The re-

semblance between biological systems and reactive systems

(Kam et al. 2001, Harel 2002) suggests the use of meth-

ods and tools designed for the construction and analysis of

computational reactive systems to model biological systems.

The first effort that followed this path was a modest model

of T-cell activation (Kam et al. 2001). Using the visual

language of Statecharts (Harel 1987), this model describes

the various stages in which a T-cell can be over its life

span; and the transitions between these different stages.

The initial T-cell model was followed by a more exten-

sive animated model of T-cell differentiation in the thymus

(Efroni et al. 2003). In order to visualize this model, the

method of reactive animation (Efroni et al. 2003, Efroni

et al. 2005), in which a reactive system drives the display

of an animation software, was developed. These studies

were followed by ongoing efforts to model Caenorhabdi-

tis elegans development (Kam et al. 2003, Fisher et al.

2005, Fisher et al. 2006a, Sadot et al. 2006), using both

Statecharts and a more recent visual language called Live

Sequence Charts (Damm and Harel 2001).

Executable models can be used to formulate biologi-

cal mechanistic models, as well as to test their consistency

with the experimental observations on which they are based.

The consistency of such executable models can be tested by
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means of formal verification (i.e., model checking) (Fisher

et al. 2004, Fisher et al. 2006a). As part of the ongoing

effort to model C. elegans vulval development, we have

created a formal dynamic model of vulval fate specification

based on the proposed mechanistic model of Sternberg and

Horvitz (1989). This work (Fisher et al. 2005) has demon-

strated that state-based mechanistic models are particularly

well suited for capturing the level of understanding ob-

tained using the tools and approaches common in the field

of developmental genetics, and that creating such executable

biological models is indeed beneficial. More recent work

(Fisher et al. 2006a) reports on a dynamic computational

model of the more sophisticated understanding of vulval

fate specification that we have today. There, we use model

checking to test the consistency of the current conceptual

model for vulval precursor cell fate specification with an

extensive set of observed behaviors and experimental per-

turbations of the vulval system. The analysis of this model

has predicted new genetic interactions that may further elu-

cidate the mechanisms underlying precise pattern formation

during animal development.

Process calculi for executing molecular processes. A

different approach stresses the importance of concurrency

and interaction between molecules as the main tools that

drive the execution of biological processes. This approach

uses process calculi, languages that have been developed to

model networks of communicating processes (Milner 1999).

A process is associated with a substance, and the interaction

between substances is modeled as communication between

the processes.

Initial work along this line suggested to use the pi-

calculus (Milner 1999) as a modeling language for molecular

interactions (Regev et al. 2001). These studies included the

modeling of the RTK-MAPK signal transduction pathway

and the construction of the BioSPI simulation environment.

This work was later extended to use the stochastic pi-

calculus (Priami 1995) in order to model a gene regulatory

positive feedback loop (Priami et al. 2001). Many other

studies have followed this direction, including experiments

with the ambient calculus (Regev et al. 2004) and the

brane calculus (Cardelli 2004), as well as applications of

this methodology to modeling transcription factor activation

and the glycolysis pathway (Curti et al. 2004), and RKIP

inhibition of ERK (and its analysis using model checking)

(Calder et al. 2005). A recent review by Cardelli (2005)

discusses the process calculus approach in depth.

Hybrid models combining mathematical and executable

models. Hybrid systems combine in one framework vari-

ables ranging over discrete and continuous domains (Hen-

zinger 1996). The discrete variables are controlled by dis-

crete transition changes that may depend on the values of

continuous variables. The changes in continuous variables

are according to differential equations (preferably linear) that
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depend on discrete control states (i.e., the combined value

of all discrete variables). Hybrid systems aim to bridge the

gap between mathematical models and executable models

by combining the two. The discrete part of such models is

the executable control mechanism that drives hybrid sys-

tems. However, hybrid systems require specialized software

for the simulation and analysis of the continuous part. A

major part of the work on hybrid systems is focused on the

construction of algorithms that perform the required anal-

ysis. We now briefly describe a few studies on modeling

and simulating biological systems using hybrid models.

In a series of studies, Ghosh and Tomlin have con-

structed a hybrid model of the Notch-Delta decision (Ghosh

and Tomlin 2001, Ghosh et al. 2003). Their work distin-

guishes between the control structure regulating the produc-

tion of the Notch and Delta proteins (represented by discrete

control variables), and the part that follows the levels of

these proteins (using continuous values and differential equa-

tions). Their model reproduces the Delta-Notch decision:

cells that express Delta are surrounded by cells that express

Notch. In addition, a detailed analysis of a two-cell model

shows that the model’s behavior matches a classical model

using nonlinear differential equations (Ghosh and Tomlin

2001). In a separate analysis of the same model, Ghosh

and Tomlin partition the initial states of the hybrid system

according to the resulting Delta-Notch pattern (Ghosh et al.

2003).

Other applications of hybrid systems to model biological

phenomena can be found for example in the work of Alur

et al. (2001), which uses a language called Charon to

execute hybrid models of a repressilator network; and in

other work like (de Jong et al. 2003, Antoniotti et al. 2004,

Hu et al. 2004, Lincoln and Tiwari 2004).

Additional approaches related to executable biology,

which we do not discuss here due to lack of space, include

Petri nets (e.g., Barjis and Barjis (1999), Dill et al. (2005)),

and boolean networks (e.g., Shmulevitch et al. (2002), Li

et al. (2004)).

4 CHALLENGES FOR COMPUTER SCIENCE

The use of computational models in biology poses new

challenges for computer science. We now present four such

technical challenges. Since these models were originally

developed, within computer science, to model hardware and

software systems, it is not surprising that certain adjustments

are in order when modeling biological systems.

Identifying the appropriate model of concurrency. Com-

plex reactive systems are built from simple ones by an

operation called parallel composition, which puts several

computational models together and executes all of them.

The composition is called “parallel” because the individual

models, so-called components, represent activities that go

on concurrently, rather than one after the other. However,
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there are several different interpretations of what “concur-

rently” means in detail. At one extreme is the synchronous

interpretation, where execution proceeds in a sequence of

steps, and each component contributes one quantum of com-

putation to each step. This interpretation is appropriate for

many hardware systems, where the components represent

individual gates of a circuit.

At the other extreme is the asynchronous interpretation,

where each computation step represents the contribution of a

single component, but different steps may represent different

components. Implicit to the asynchronous interpretation is

a scheduler, which chooses for each step the component

that will contribute to that step. The scheduler is usually

assumed to be “fair”, meaning that it cannot neglect to choose

any component forever. This interpretation is appropriate

for software, where the components represent individual

threads of a multi-threaded program. It is important to

note that because of the choices made by the scheduler,

the asynchronous model allows for many possible outcomes

when executing a system, even if each individual component

behaves deterministically.

For biological models, where the components may rep-

resent individual cells, neither the synchronous nor the

asynchronous interpretation of concurrency seem adequate.

This is because biological entities, such as cells, often pro-

ceed “roughly” in lock-step, but not completely so: some

reactions may be a bit faster here, and a bit slower there; a bit

faster now, and a bit slower later. But neither do biological

reactions proceed at completely independent rates, as the

asynchronous model would have it. The most appropriate

way of modeling concurrency in biological systems seems

to be a form of bounded asynchrony (Fisher et al. 2006b),

where the scheduler is constrained to be “bounded fair”,

meaning that it cannot neglect to choose any component

for too long.

The choice of concurrency model (synchronous or asyn-

chronous) has far-reaching implications on algorithms for

model checking and equivalence checking. Any new concur-

rency model, such as bounded asynchrony, presents therefore

the challenge of designing efficient methods for the analysis

of the model.

Identifying the appropriate level of abstraction. A sig-

nificant advantage of computational models is that different

models can be used to describe the same system at different

levels of detail, and that the various levels can be related

formally. For example, the same software may be described

in a high-level programming language or in low-level ma-

chine code. The high-level language is more suitable for a

programmer to read and write; the low-level code is more

suitable for a machine to execute; and there exist algorithms

(so-called compilers) to automatically translate one into the

other.

There are several natural levels of abstraction for de-

scribing biological systems using computational models.
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For example, the individual components may represent

molecules, or at a less detailed level, they may represent

cells. If mathematical models are considered as well, there

are even more possibilities. For instance, variables may

represent concentration levels of molecules, which repre-

sents a level between the modeling of individual molecules

and the modeling of cells as atomic entities.

There are several challenges in this area. First, we need

to identify the levels of abstraction that are most useful for

carrying out manipulations and analyses of biological mod-

els, both by humans and by machines. In other words, we

need to identify the equivalent of high-level programming

languages and of low-level machine languages for the mod-

eling of biological systems. Second, we need to formally

relate the different levels of abstraction. At a minimum,

this means that certain properties that are established on

one level (such as the possibility of outcomes) must be pre-

served at the other level. Without such a theory of property

preservation we cannot establish the equivalence of models

at different levels. More ambitiously, we would like to have

compilers that translate models at one level into equivalent

models at the other level.

Identifying the appropriate roles for probability and

time. Computational models are naturally nondeterminis-

tic, in the sense that repeated executions of a model may

give different results. This is useful for modeling systems

whose behavior cannot be predicted with mathematical pre-

cision, e.g., because slight differences in reaction times,

molecule concentrations, environment conditions, etc. may

cause significantly different outcomes. Nondeterminism,

however, does not quantify the likelihood of any specific

outcome; it simply specifies the set of possible results of

a dynamic process. In order to quantify the probability

of every possible outcome, stochastic models are needed.

Computational models can be extended to Markov decision

processes in order to represent stochastic behavior. How-

ever, model checking algorithms for probabilistic systems

are considerably less efficient, and no satisfiable solutions

are known for abstracting probabilistic systems. New re-

sults in these directions would considerably strengthen the

appeal of computational models for biology (Rutten et al.

2004).

A second, related issue concerns the modeling of time.

Many biological processes can be modeled as continuous-

time Markov chains (Priami et al. 2001, Calder et al. 2005).

The use of continuous time, like the use of probabilities,

leads to appealingly natural models, but pays a price in

terms of scalability of available analysis methods, and of-

fers a degree of accuracy that is often not supported by

the available data. We believe that the key lies in the de-

velopment of nondeterministic discrete-time abstractions,

like bounded asynchrony, which are able to capture and

explain the phenomena of interest. These abstractions need

to be related back to the underlying continuous, stochastic
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processes, and ideally, are automatically synthesized from

them. It should be noted that discrete abstractions, while

sacrificing numerical precision (a precision that may not be

justifiable by the data), introduce complexity in the form

of memory (i.e., states) into the system. They provide

a qualitative characterization of quantitative models, and

in the desirable case, they robustly reproduce the possible

outcomes of a biological process (Alur et al. 2000).

Identifying useful building blocks. The design of large

computational models is greatly aided by identifying a small

set of basic building blocks that, possibly instantiated with

different parameters, can be composed to build the complex

systems of interest. Important examples of the building-

block approach can be found in hardware design. Large

circuits are designed from a very small number of different

types of gates. At a higher level of abstraction, computer

architectures are designed from standard components such

as registers and arithmetic units. Such standard components

can be collected in component libraries, so that designers

can draw on them when needed. For the effective use of

computational models in biology, we need such libraries of

standard components, at different levels of abstraction (e.g.,

molecules, reactions and inhibitions, pathways, cells). In

order to make these building blocks accessible to biologists,

we further need a system description language that can be

learned easily by experts in biology (rather than experts in

computer science). Such a language should build on visual

notations that are already familiar to biologists.

5 CHALLENGES FOR LIFE SCIENCES

Executable biology poses new challenges also for the life sci-

ences. Three key challenges emerge as particularly relevant:

the development of new methodologies to test experimen-

tally dynamic scenarios proposed by executable models;

the development of new techniques to collect quantitative

data through laboratory experimentation; and most impor-

tantly, the shift of biology to an engineering science, where

students are educated to use formal approaches to biology.

Developing experimental methodologies to test system

dynamics. Dynamic models can represent phenomena of

importance to biology which static diagrammatic models

cannot represent, such as time and concurrency. By adding

time-dynamic aspects to biological models, the influence of

time on system behavior becomes an important component

to validate experimentally. We expect that the increasing

usefulness of dynamic models in biology will also lead to

an increasing need to validate dynamic scenarios. An ex-

ample of such dynamic scenarios was described in a recent

executable model representing aspects of cell fate specifi-

cation (Fisher et al. 2005), where we have suggested the

existence of a race between two signaling pathways, which

determines cell fates during C. elegans vulval development.
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Unfortunately, in practice, time is experimentally daunt-

ing. Techniques that enable direct measurement of pathway

activities or protein levels, at a single-cell resolution, are not

yet a common practice. The challenge therefore is two-fold:

first, to develop techniques that allow such measurements;

and second, to allow these measurements to be taken con-

tinuously from the same element, providing a dynamic view

of the studied processes.

Developing new techniques to collect quantitative data. A

major effort in recent years is the construction of quantitative

mathematical models that explain biological phenomena. A

variety of biological systems have been modeled in this

way, including the networks controlling bacterial chemo-

taxis (Bray et al. 1998, Alon et al. 1999), development

patterning in Drosophila (Burstein 1995, Marnellos and

Mjolsness 1998), and infection of E. coli by lambda phage

(McAdams and Shapiro 1995). From an executable biology

point of view, we are interested in such models for two

reasons. First, quantitative parts can be incorporated into

computational executable models to establish hybrid models

(Henzinger 1996), adding another dimension of accuracy

to computational models. Second, computational models

often represent high-level abstractions of detailed mathe-

matical models. Hence we would like to use mathematical

models to infer abstract computational models directly from

data, without the laborious manual process of hand-coding

computational models.

Mathematical models by their very nature handle quan-

tities and require large amounts of detailed data (i.e., concen-

trations of molecules, individual binding constants, reaction

rates, and probability distributions). Such data is difficult to

obtain, particularly in relevant biological contexts (in vivo,

in single cells rather than whole populations, etc.) (Gilman

and Arkin 2002). Experimental data, such as fluorescence

levels of tagged proteins or immunoblots, is usually lim-

ited to unit-less ratios of expression levels that are only

proportional to the actual protein concentrations. Not hav-

ing direct measures can significantly hinder or complicate

finding parameter values (Brown and Sethna 2003). In

many studies (see Kaern et al. (2005) and Sprinzak and

Elowitz (2005) for reviews), the linear relation between the

concentrations of fluorescent proteins and their measured

fluorescence intensities has been used to measure protein

levels in living cells, though only in relative terms and not

in absolute numbers. Hence, improvements in the existing

experimental methodologies to enable direct quantitative

measurements are essential. One of the recent efforts to

follow this path is the development of a technique that

converts observed fluorescence intensities into numbers of

molecules (Rosenfeld et al. 2006).

Biology as an engineering science. Modeling of biolog-

ical systems is intended to facilitate our understanding of

biological phenomena in their full complexity. In order for
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executable biology to realize its potential as a mainstream

biological research technique, the method should be used

extensively by biologists. Thus, we have to suggest forms

to represent models and data that are natural, formal, and

can become standard. Stressing user-friendliness, flexibility,

visuality, and accessibility are therefore a critical necessity.

Indeed, one of the challenges facing computer scientists

today is the necessity to build software tools that are more

accessible to biologists. In particular, we hope that such

tools will enable the integration of executable biology into

everyday biological methodology, bringing to a much wider

audience the advantages we discussed above.

At the same time, a major challenge for biologists is

to apply more formal approaches in biology, and develop a

formal and standardized representation of biological knowl-

edge and data (Gilman and Arkin 2002, Lazebnik 2002). In

order to use executable biology tools and build executable

models, biologists will need to adapt a more formal and

algorithmic view of systems. Even with the most user-

friendly tools, the construction of executable models is still

similar to the engineering of hardware and software systems,

which require the user to think about state machines and

recipes of computation. These notions, to which computer

scientists are introduced at an early stage, are crucial for

the successful application of these techniques on a large

scale by biologists. In accordance with the suggestions to

formalize biology, part of the formal education of future

biologists should include engineering disciplines that teach

an algorithmic and formal way of thinking. Notions such

as state transitions, concurrency, and abstraction should

become familiar to every biologist.

6 CONCLUDING REMARKS

Modeling offers great advantages in integrating and evaluat-

ing information, providing strong predictions, and focusing

experimental directions. The long-term vision is that system-

level models would revolutionize biological comprehension

and eventually lead to drug discovery and the design of

new therapies. Although the way to achieve this ambitious

goal is still long, it holds the promise of changing the face

of biology and medicine. Moreover, the magnitude of the

systems to be handled will challenge computer science to

develop tools and techniques that handle ever more com-

plex systems. It is our strong belief that abstraction and

high-level reasoning will play a large role in the realization

of this goal, both in biology and computer science.

Executable biology is a pioneering and powerful ap-

proach in this direction. We believe that much research is

still needed in order to create user-friendly formalisms to

be handled by biologists, and that these efforts require the

tight collaboration between biologists and computer scien-

tists. The inherent differences between mathematical and

executable models and the difficulty to obtain precise data
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make both styles indispensable. We therefore expect that

executable biology will take its place in the mainstream of

biological research.
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