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ABSTRACT 

We consider coordination among stocking locations 
through replenishment strategies that explicitly take into 
account lateral transshipments, i.e., transfer of a product 
among locations at the same echelon level. The basic con-
tribution of our research is the incorporation of supply ca-
pacity into the traditional emergency transshipment model. 
We formulate the capacitated production case as a network 
flow problem embedded in a stochastic optimization prob-
lem.  We develop a solution procedure based on infinitesi-
mal perturbation analysis (IPA) to solve the stochastic op-
timization problem numerically.  We analyze the impact on 
system behavior and on stocking locations’ performance 
when the supplier may fail to fulfill all the replenishment 
orders and the unmet demand is lost. We find that depend-
ing on the production capacity, system behavior can vary 
drastically. Moreover, in a production-inventory system, 
we find evidence that either capacity flexibility (i.e., extra 
production) or transshipment flexibility is required to 
maintain a certain level of service.  

1 INTRODUCTION 

Physical pooling of inventories has been widely used in 
practice to reduce cost and improve customer service.  How-
ever, information pooling, which entails the sharing of in-
ventory among stocking locations through lateral transship-
ments, has been less frequent.  Transshipments, the 
monitored movement of material between locations at the 
same echelon, provide an effective mechanism for correcting 
discrepancies between the locations’ observed demand and 
their available inventory.  As a result, transshipments lead to 
cost reductions and improved service without necessarily in-
creasing system-wide inventories.  In our current research, 
we focus on collaborative planning and replenishment poli-
cies via information pooling and, in particular, on trans-
shipments as a way to improve both cost and service. 

 

14701-4244-0501-7/06/$20.00 ©2006 IEEE
Our study is motivated by observations from various 
industries.  Inventory-pooling strategies to hedge against 
the risk of supply disruption are quite common in retailing.  
Different retail stores or dealerships pool inventory of their 
products to increase the effectiveness of their safety stock.  
Container shipping lines also pool their containers through 
an exchange.  Transshipments are increasingly common in 
apparel, fashion goods, and toys, particularly by those re-
tailers with brick and click outlets.  Transshipments of 
spare parts within a network of plants are quite frequent as 
well. 

All these transshipment practices, however, represent 
a reactive approach to unexpected stockouts.  We believe 
that, if we take transshipment opportunities into account 
during the planning phase, they can work as an effective 
mechanism for reducing cost and improving service.  
Therefore, our approach will be to plan the replenishment 
policy proactively considering the existing transshipment 
option as secondary supply during the review period. 

The literature on transshipments has generally ad-
dressed either problems with two retailers, e.g., Tagaras 
(1989), Tagaras and Cohen (1992), Robinson (1990) and 
Herer and Rashit (1999), or problems with multiple identi-
cal retailers, e.g., Krishnan and Rao (1965), Jönsson and 
Silver (1987), and Robinson (1990).  In contrast, we con-
sider multiple retailers, who may differ both in their cost 
structures and in their demand parameters, as in Herer, 
Tzur, and Yücesan (2006).  We further consider a supplier 
with limited production capacity as in Jönsson and Silver 
(1987),  who aim to minimize the total expected end-of-
period backorders at stocking locations by using trans-
shipment before observing demand to reassure an adequate 
inventory allocation.  In our setting, the total amount of 
product supplied to N locations is restricted for each time 
period.  When total replenishment orders exceed total sup-
ply, not all locations will be fully replenished. Therefore, a 
rule for the allocation of the available quantity among 
stocking locations must also be specified.  Other recent 
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work on transshipments includes Archibald et al. (1997), 
Bertrand and Bookbinder (1998), Tagaras (1999), Rudi et 
al. (2001), Herer and Tzur (2001, 2003), Slikker et al. 
(2004), Bendoly (2004), Dong and Rudi (2004), and Wong 
et al. (2005). 

We propose a simulation-based optimization approach 
for solving the multi-location transshipment problem with 
supplier capacity and lost sales. To minimize the total sys-
tem costs, the objective is to find the appropriate inventory 
policies, which are typically a base stock order-up-to pol-
icy.  Given a modified order-up-to-S policy, we use a net-
work flow framework to determine a myopically optimal 
transshipment policy between any pair of stocking loca-
tions. 

Simulation-based derivative estimates help the search 
for an improved policy while allowing for complex fea-
tures that are typically outside of the scope of analytical 
models.  Infinitesimal perturbation analysis (IPA) is an ef-
ficient simulation-based optimization technique (Ho et al. 
1979).  With IPA, instead of using finite differences in a 
gradient search method, we use the mean value of the sam-
ple path derivative, which is obtained through a single 
simulation.  Glasserman (1991) established the general 
conditions for the unbiasedness of the IPA estimator.  Ap-
plications of IPA have been reported in simulations of 
Markov chains (Glasserman 1992), inventory models (Fu 
1994), manufacturing systems (Glasserman 1994), finance 
(Fu and Hu 1997), and control charts for statistical process 
control (Fu and Hu 1999).  IPA-based methods have also 
been introduced to analyze supply chain problems 
(Glasserman and Tayur 1995, Herer et al. 2006). 

The remainder of the paper is organized as follows: In 
the following section, we introduce the capacitated trans-
shipment problem and the notation used in the paper. Sec-
tion 3 is devoted to determining the replenishment quanti-
ties incorporating various allocation rules under limited 
supplier capacity. The policy for replenishments and trans-
shipments together with the formulation is explained in 
Section 4. Section 5 presents the details of the solution 
technique. We illustrate the solution technique with a nu-
merical study and discuss the findings in Section 6. We 
conclude with final remarks in Section 7. 

2  THE MODEL 

We consider a supplier serving N retailers, or stocking lo-
cations, which face random customer demand. The demand 
distribution of each stocking location in a period is as-
sumed to be known and stationary over time. The stocking 
locations review their inventory periodically and replen-
ishment orders are placed with the supplier that has a finite 
total production capacity, Cprod. In any period, transship-
ments provide a means to reconcile demand-supply mis-
matches. 
1471
Within each period, events occur in the following order: 
the first event in each period is the arrival of replenishment 
orders placed in the previous period. These orders are used 
to increase inventory. Next in the period is the occurrence of 
demand. Since demand represents the only uncertain event 
of the period, once it is observed, all the decisions of the pe-
riod, namely, the determination of the transshipment and re-
plenishment quantities, are taken. The transshipment trans-
fers are then made immediately, and subsequently the 
demand is satisfied. Unsatisfied demand is lost. At this 
point, inventories and lost demand are observed, and holding 
and penalty costs, respectively, are incurred. The remaining 
inventory is carried to the next period.  

We consider modified base stock policies for replen-
ishment. The policy is “modified” in the following sense. 
In a base stock policy, when the supplier does not have a 
capacity constraint, the inventory positions at all stocking 
locations are raised up to Si units at the beginning of each 
period. Given the finite supplier capacity, however, the lo-
cations may not receive the full replenishment quantity or-
dered in the previous period. Therefore, order-up-to levels 
may not be attained at the beginning of each period. When 
replenishment through the supplier is capacitated, different 
allocation rules are considered to specify how the supplier 
rations its limited capacity among the locations. 

2.1  Notation 

In developing our model, we use the following parameters: 
ic = unit procurement cost at stocking location i;  

ijt̂ = direct transshipment cost per unit transshipped from 
stocking location i to stocking location j; this is the 
additional administrative and logistics costs (packag-
ing, re-labeling, transferring, etc.) per unit due to 
transshipment. 

ijt = effective transshipment cost, or simply transshipment 
cost, per unit transshipped from stocking location i to 
stocking location j, jiijij cctt −+= ˆ ; 

ih = holding cost incurred at stocking location i per unit 
held per period; 

ip = penalty cost incurred at stocking location i per unit of 
lost demand per period. 
 

We assume (as was assumed in Tagaras (1989), Robinson 
(1990) and Herer and Rashit (1999) as well as others) the 
following relationships regarding the problem parameters: 
 ijji thh +<    i, j = 1,…,N 

 ijij tpp +<    i, j = 1,…,N 

 jiij pht +<    i, j = 1,…,N 
In the first relationship, we assume that it is not 

worthwhile to transship between two locations, each hav-
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ing a surplus. In other words, shipping items to one stock-
ing location is not allowed, if there is already a surplus 
item there. Similarly, in the second inequality, we assume 
that it is not worthwhile to transship between two loca-
tions, each having a shortage. And finally, we assume that 
if there is a shortage at one of the stocking locations and 
surplus at another, lateral transshipments are (myopically), 
cost advantageous. These inequalities ensure that trans-
shipment from location i to location j is economically justi-
fiable only if location i has excess inventory and location j 
has shortage.  

In addition, we have 
iD  = random variable associated with the periodic demand 

at location i with E[Di] = μi <∞; 
n
id  = actual realization of demand at stocking location i in 

period n; when we consider demand in an arbi-
trary period, time superscripts are dropped.   

prodC = total production capacity per period 

( ⎥
⎦

⎤
⎢
⎣

⎡
> ∑

i
i

prod DEC ); 

n
iI  = net inventory level at stocking location i at the be-

ginning of period n after replenishment.  n
iI  is the net 

inventory level in period n after the arrival of replen-
ishment orders from the previous period, but before 
demand is observed.  

n
iI 0  = net inventory level at stocking location i at the end 

of period n. 
Two decisions need to be made for each stocking loca-

tion every period: Transshipment quantities between any 
pair of stocking locations and replenishment quantities.  
The associated decision variables are the following: 

Si = target inventory level (or order-up-to level) at 
stocking location i at the beginning of each period; 

n
MB ji

F = number of items transshipped from stocking 

location i to stocking location j in period n (this notation is 
motivated by the network flow formulation in section 4);  

n
iR  = number of items received from the supplier by 

stocking location i in period n+1 that were ordered from 
the supplier in period n. Note that, when production is ca-
pacitated, the number of items received is not necessarily 
equal to the number of items ordered. 

3 DETERMINING THE REPLENISHMENT 
QUANTITIES 

In any period n, the net inventory level at stocking location  
i at the end of period ( n

iI 0 ) is the sum of the inventory level 
in period n, immediately after demand is observed 
147
( n
i

n
i dI − ), and the difference between the total quantity 

received (via transshipments from other locations, 

∑
≠ijj

n
MB ij

F
:

) and sent (via transshipments to other loca-

tions, ∑
≠ijj

n
MB ji

F
:

) during period n.  Therefore, in period 

n+1, the net inventory level at stocking location i ( 1+n
iI ) 

immediately before demand ( 1+n
id ) is observed, is the sum 

of the on-hand inventory level in period n at the end of pe-
riod n ( )(0 nIi

+ ) and items received from the supplier in pe-

riod n ( n
iR )  In each period, the replenishment quantity 

n
iR  is the minimum of remaining production capacity 

( ∑
≠

−
ij

n
j

prod RC ) and the difference between the order-up-

to value and the inventory level at the end of the period at 
location i. Therefore, the sample path of the system in any 
period n can be described as follows: 
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and, under complete pooling, n
MB ji

F , the transshipment 

quantity from stocking location i to j is equal to 
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The total cost of the system in period n is given by: 
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where )(0 nIi

+ = max{0, n
iI 0 } and )(0 nIi

− = max{0, - n
iI 0 }. 

The unit purchase cost at location i is multiplied by the 
demand at location i and not by the replenishment quantity 
at location i since the procurement cost differentials are in-
cluded in the transshipment costs. 

When total replenishment orders exceed total supply 
capacity, not all locations will be able to attain their base 
stock levels. We will refer to this difference between the 
order-up-to level (Si) and the inventory level at location i at 
2
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the beginning of period n+1 ( 1+n

iI ) as the shortfall at loca-
tion i at the end of period n.  We will use the shortfall val-
ues later in the analysis. Moreover, for the allocation of the 
available supplier capacity among stocking locations, we 
implement four allocation rules: (i) beginning inventory 
balancing rule; (ii) shortfall balancing rule; (iii) equal allo-
cation rule; (iv) priority-based allocation rule. 

4 DETERMINING THE TRANSSHIPMENT 
QUANTITIES 

In each period, the replenishment and transshipment quan-
tities must be determined.  Herer et al. (2006), who focused 
on the uncapacitated version of our problem, proved that, if 
transshipments are only made to compensate for an actual 
shortage (instead of building up inventory at another stock-
ing location), there exists an optimal order-up-to S = (S1, 
S2, …, SN) policy for all possible stationary transshipment 
policies.  For the capacitated case, their characterization of 
the optimal replenishment policy is an open problem. Nev-
ertheless, since the transshipment policy is stationary and 
the fixed ordering cost is negligible, we will continue to 
adhere to an order-up-to S replenishment policy. 
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Figure 1: Network Flow Representation of the Problem for 
Period n 

 
Once demand is observed, for a given base stock level, 

it is possible to solve the transshipment decision problem 
via a network flow formulation. After solving for the my-
opically optimal transshipment decision, instead of using Ri 
values obtained through the LP, we will make the replen-
ishment decision in accordance with one of the allocation 
rules. 

We adapt the complete network flow problem and the 
associated LP formulation approach of Herer et al. (2006) 
to model the multi-location capacitated transshipment 
problem. The network flow representation of the problem 
is illustrated in Figure 1 for a 3-retailer configuration.  To 
keep the notation consistent with their paper, we will use 
the following decision variables in our LP formulation: 
147
:n
MB ji

F  transshipment quantity from stocking location 

i to stocking location j in period n; 
n
EB ii

F : inventory held at stocking location i in period 

n, which is denoted by )(0 nIi
+  in Section 3; 

)(nIi
− : shortage at stocking location i in period n, 

which translates into lost sales; 
n
REi
F : total replenishment for stocking location i in pe-

riod n; 
)1( ++ nIi : on-hand inventory at stocking location i in 

the beginning of period n+1, after arrival of replenishment 
orders.  

In the network flow problem formulation (as depicted 
in Figure 1), we have a source node, iB , to represent the 
beginning, i.e., initial inventory at stocking location i, after 
replenishment orders arrive, and a source node, R , to rep-
resent the replenishment that is requested in the period but 
arrives at the start of the next period.  The sink node asso-
ciated with the demand at retailer i is denoted by iM .  
Similarly, we denote by iE  the ending inventory at stock-
ing location i, including units on order from the supplier.  
We use the letter ‘F’ to denote the flows in the network 
and subscripts to indicate the starting and ending nodes of 
the flows; thus, n

MB ji
F is the flow in the network from 

node Bi to Mj in period n. 

4.1 LP Formulation with Lost Sales 

Thus, the formulation for the case where unsatisfied de-
mand is lost is as follows: 
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 1)( ++ nI i ≥ 0,  i = 1, …, N       (9) 

 
As defined earlier, let )(nIi

− denote the unsatisfied demand 
of location i in period n, which will be lost, and ip  be the 
unit penalty cost of lost sales at location i. Then, in the ob-

jective function, the expression ( ∑
=

−N

i
ii nIp

1
)( ) can be inter-

preted as the total penalty for lost sales.  The constraint sets 
(4) and (8) ensure the balance of the inventory position of 
each stocking location at the beginning and at the end of 
each period, respectively.  Constraint set (7) guarantees 
that the observed demand at location i (di) will be satisfied 
either from the location’s own inventory ( n

MB ii
F ), trans-

shipped from another location ( n
MB ij

F ) or lost ( )(nIi
− ).  

Moreover, due to the supplier capacity constraint, the in-
ventory position may not attain the order-up-to levels, Si, 
which is captured by constraint set (5). Finally, constraint 
(6) guarantees that total replenishment to all stocking loca-
tions will be at most Cprod units, reflecting supplier capac-
ity.  Non-negativity constraints (9) are also included.  The 
objective is to minimize the cost of demand-supply mis-
match (inventory holding and shortage penalty costs) and 
transshipment costs. 

5  THE SOLUTION ALGORITHM 

For the capacitated transshipment problem, determining the 
exact order-up-to levels is analytically difficult. To com-
pute the order-up-to-S values, we therefore use a sample-
path-based optimization procedure, based on IPA, to 
minimize the total average cost per period.  In IPA, the 
idea is to use the expected value of the sample path deriva-
tive obtained via simulation, instead of using the derivative 
of the expected cost, in a gradient search algorithm to up-
date the Si values.   In particular, we start with arbitrary or-
der-up-to levels, Si, for each stocking location.  After ran-
domly generating an instance of the demand at each 
stocking location, an LP formulation is constructed in a de-
terministic fashion to compute the transshipment quanti-
ties, i.e., to solve problem ( nP

~ ).  The solution of the LP 
provides us with a set of replenishment quantities.  These 
replenishment quantities reflect the allocation of limited 
supplier capacity under the priority based allocation rule. 
However, since we want to experiment with various differ-
ent allocation rules, we determine the replenishment quan-
tities and the gradient values for that particular period 
based on the replenishment allocation rules introduced in 
Section 3. 

The fact that, for a linear program, the dual value of a 
constraint is the derivative of the objective function with 
respect to the right-hand side of that constraint is already 
1474
used by Swaminathan and Tayur (1999). To calculate the 
gradient values in our setting, however, we need to go fur-
ther.  In particular, we need to calculate the gradient over 
one complete regenerative cycle, two consecutive periods 
in which all stocking locations simultaneously reach their 
order-up-to levels, Si, which is often more than a single pe-
riod. Therefore, we need to propagate the gradients through 
the periods in the cycle. Moreover, since we do not use the 
replenishment quantities (Ri) calculated by the LP, the 
shadow prices provided by the sensitivity analysis output 
of the LP solution will not be helpful.  As a consequence, 
we use the LP to compute the transshipment quantities, but 
not the replenishment quantities; we further use the LP out-
put to accumulate the IPA gradients ( iSTC ∂∂ / ), which 
are used in a path search algorithm to determine the opti-
mal order-up-to levels.  This is indeed the specialization of 
stochastic approximation to the capacitated transshipment 
problem. The stochastic optimization algorithm outlined in 
Figure 2 exploits this property; the technical details are 
presented in Özdemir (2004).  

When supply capacity is limited, however, it may take 
several periods of supply to fulfill all replenishment re-
quests received in a single period. Therefore, we need to 
establish that the number of periods to fulfill all replenish-
ment requests (i.e., the length of the regenerative cycle) is 
finite so that eventually all locations reach their order-up-to 
levels. In other words, we need to establish the stability of 
the replenishment policy. This is also done in Özdemir 
(2004). 

6 COMPUTATIONAL STUDY 

We analyze the impact of different factors on transship-
ment relations with limited production capacity under 5 
configurations of 10 stocking locations.  In all configura-
tions, we consider stocking locations with identical cost 
parameters.  In particular, we set the holding cost to hi = $ 
1 and penalty cost to pi = $ 4 for all ten locations. Each lo-
cation faces an independent demand distributed uniformly 
over (0, 200).  As summarized in Table 1, we consider five 
alternative system configurations with different unit trans-
shipment costs, tij, for units transshipped from stocking lo-
cation i to stocking location j.  Note that tij = ∞ implies that 
transshipments are not allowed between locations i and j. 
 As a base case, in system #1, no material movement is 
allowed among stocking locations, turning the system into 
10 independent newsvendors.  In system #2, only the first 
stocking location can transship to the other stocking loca-
tions.  In system #3, transshipments from all stocking loca- 
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Figure 2: Basic Modules of the Solution Algorithm 
 
Table 1: System Configurations 

System t1i ti1 tij 
1 ∞ ∞ ∞ 
2 0.5 ∞ ∞ 
3 0.5 0.5 ∞ 
4 0.5 0.5 1.0 
5 0.5 0.5 0.5 

 
tions to the first stocking location are also allowed.  In sys-
tems #4 and #5, all material movement is allowed.  In sys-
tem #4, however, transshipments between any two stocking 
locations (which do not include location #1) are twice as 
expensive.  For each system, we generate nine scenarios 
with different supplier capacities. The capacity values used 
are:  

 
Cprod= {1050, 1100, 1150, 1200, 1250, 1300, 1400, 1500, 
∞}. 

 
In general, the selection of effective values for algo-

rithm parameters is a difficult problem; we set the total 
number of steps for the path search to K= 2000, the number 
of regenerative cycles at each step to U= 2000, and the step 
size to kk 1000=α .  As a stopping criterion, we compare 
the computed order-up-to levels over 1000 iterations and 
require that these values do not differ by more than 1.  In 
all of our experiments, the convergence criterion was satis-
fied before 2000 steps. 

For the lost sale scenarios, we observe a pattern very 
similar to the ones with backlogged demand.  When pro-
duction capacity increases, total cost of the systems de-
crease.  In particular, switching from system # 1, a configu-
ration   without   transshipments,   to   system   # 2,  a con- 
147
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Figure 3: Total Inventory Level with Lost Sales 

 
figuration with limited transshipment flexibility, results in 
large cost savings. We observe that savings through trans-
shipments are more pronounced when unsatisfied demand 
is lost.  We have a similar observation about the total in-
ventory when unsatisfied demand is lost. As can be seen in 
Figure 3, when unsatisfied demand is lost total inventory 
carried in any system is relatively stable. We still observe 
that the inventory levels decrease as the production capac-
ity increases. Nevertheless, this impact is practically insig-
nificant. 

7 SUMMARY 

We consider a supply chain, which consists of N stocking 
locations and one supplier. The locations may be coordi-
nated through replenishment strategies and lateral trans-
shipments. The supplier has limited production capacity. 
Therefore, total amount of product supplied to N locations 
is limited for each time period. When total replenishment 
orders exceed total supply, not all locations will be able to 
attain their base stock values. Therefore, different alloca-
tion rules are considered to specify how the supplier rations 
its limited capacity among the locations.  Unmet customer 
demand is lost.  We team up the modeling flexibility of 
simulation with stochastic optimization to address the 
multi-location transshipment problem.  With this numerical 
approach, we can study problems with non-identical costs 
and correlated demand structures. 
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