
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

SIMULATION OF JOB SCHEDULING FOR SMALL SCALE CLUSTERS

Hassan Rajaei
Mohammad Dadfar

Pankaj Joshi

Dept. of Computer Science
Bowling Green State University

Bowling Green, OH 43403, U.S.A.

ABSTRACT

Despite growing popularity of small-scale clusters built out
of off-the-shelf components, there has been little research
on how these small-scale clusters behave under different
scheduling policies. Batch scheduling policies with back-
filling provide excellent space-sharing strategy for parallel
jobs. However, as the performances of uniprocessor and
symmetric multiprocessor have improved with time-
sharing scheduling strategies, it is intuitive that the per-
formance of a cluster of PCs with distributed memory may
also improve with time-sharing strategies, or a combination
of time-sharing and space-sharing strategies. Apart from
the batch scheduling policies, this research explores the
possibilities of using synchronized time-sharing scheduling
algorithms for clusters. This paper describes simulation of
the Gang scheduling policies on top of an existing batch
scheme. The simulation results indicate that time-sharing
scheduler for clusters could exhibit superior performance
over a batch policy.

1 INTRODUCTION

With the increase in processing power and decrease in the
prices of today’s commercial-off-the-shelf (COTS) PCs,
and the increase in the bandwidth of easily available and
affordable Ethernet, “home grown” clusters like Beowulf
cluster have been popularly built for High-Performance-
Computing and Parallel Computing environment. Such
parallel processing finds a wide range of usage among re-
searchers and practitioners. However, often the parallel
systems suffer from under utilization due to inappropriate
choice of scheduling policy. A scheduling policy is used to
settle the conflicts in resource acquisition when a job re-
quires more nodes than that are currently available.

In our previous studies (Rajaei and Dadfar 2005,
2006), various backfilling techniques, namely conservative
and aggressive backfilling (Srinivasan et al. 2002), multi-
ple-queue (Lawson and Smirni 2002) and lookahead

11951-4244-0501-7/06/$20.00 ©2006 IEEE
(Shmueli and Feitelson 2003), have been investigated.
Multiple queue backfilling suffers from over-fragmentation
of available nodes in a small-scale cluster (Rajaei and Dad-
far 2006), whereas other techniques seem to be more prom-
ising. The main drawback of backfilling is higher response
time for some jobs which are requesting more resources
particularly in case of aggressive backfilling, and some
jobs may suffer from overestimation of required processing
time.

Gang scheduling (Zang et al. 2003) overcomes the
problem of response time, while its disadvantage is the
global synchronization overhead needed to coordinate a set
of processes. Even though it incurs a heavy context switch
overhead, it may still serve as a viable scheduling alterna-
tive in small-scale clusters. Gang scheduling also offers
various tunable parameters, which can be dynamically
changed according to size and nature of workload. The
number of time slots, which are the interval allocated to a
job during which it runs without preemption, and their du-
ration can be fine-tuned dynamically. Gang scheduling also
supports dynamic prioritization of jobs.

This research simulates Gang scheduling based upon
various policies and tries to find its adaptability to small-
scale cluster. Arrival of the jobs to the system as well as
the payloads and other interesting attributes are randomly
generated. The generated jobs are sent to the simulated
scheduler who in turn activates the desired nodes based on
its current policy.

The goal of this research is to provide a framework
that can be used beyond the current simulation of schedul-
ing policies. We investigate whether a timesharing policy
is suitable also for cluster computing. If the answer is posi-
tive, then we could replace the batch scheduling with an
appropriate scheme satisfying the selection criteria. Other
parameters such as migration policies and cost perform-
ance analysis constitute important research elements.

The rest of this paper is organized as follows. Section
2 describes related work. Section 3 provides details of the
scheduling polices under investigation. The simulation

Rajaei, Dadfar, and Joshi

methods are discussed in Section 4 and details of the im-
plementation is provided in Section 5. Results and analysis
are discussed in Section 6. Extension to the current work is
described in Section 7 and finally, concluding remarks are
provided in Section 8.

2 RELATED WORK

Various types of scheduling policies have been imple-
mented, especially for large-scale clusters - ranging from
policies based on space-sharing to time-sharing to a com-
bination of both. Schedulers such as EASY (Srinivasan et
al. 2002), do not support prioritization. Talby and Feitelson
(1999) advocate use of priorities for more effective back-
filling policy. When a new job is submitted, all possible
schedules are priced according to utilization and priority
considerations and as long as no job is delayed beyond its
slack which is a time duration that determines how long a
job may have to wait before running. The slack is compa-
rable to the term shadow time (discussed later in Section
3.1) but with additional consideration for priorities. One
problem associated with slack-based policies is the consid-
eration of all possible scheduling which appears to be an
NP-hard problem, and hence very time consuming.

Multiple-queue backfilling (Lawson and Smirni 2002)
is based on aggressive backfilling and aims at reducing
fragmentation of system resources by dividing the system
into multiple disjoint partitions by job category that de-
pends on estimated job duration. However, in small clus-
ters our research suggests that the multiple-queue policy
may increase the system fragmentation contrast to what the
policy is advocating (Rajaei and Dadfar 2006). Neverthe-
less, we anticipate that the algorithm might show better
performance in large clusters or grids.

Attempts have been made to integrate gang schedul-
ing, backfilling and migration (Zhang et al. 2003) in order
to alleviate the problem with space sharing. For small clus-
ters, integrating gang scheduling with backfilling holds
promise mostly because of low overhead in the global con-
text switch. Current research explores this option, while
migration choice is left for future work.

With gang scheduling, processes involved in I/O or
blocking communication can make processors idle. Gang
scheduling policy in pairs (Uwe and Ramin 1998) aims at
alleviating this problem. The scheme pairs the gangs that
make heavy use of the CPU with the gangs that are inten-
sively using I/O or other blocking operations.

3 SCHEDULING POLICIES

In this section we consider three scheduling policies cho-
sen for our simulation studies: one batch scheduling with
backfilling and two gang scheduling policies; greedy and
backfilled.
1196
3.1 Batch Scheduling: Backfilling Lookahead

Batch scheduling is non-preemptive and once a job is
started, it runs until it completes its execution. Simple
batch scheduling algorithms like First Come First Serve
(FCFS) and Shortest Job Next (SJN) may waste processing
time when the first job cannot run in FCFS or longer jobs
may suffer from starvation using SJN. To overcome such
problems, various types of backfilling algorithms have
been used to allow small jobs from the back of the queue to
bypass the long jobs which are waiting for resource avail-
ability.

Unlike other backfilling policies, i.e. aggressive and
conservative, which consider the queued jobs one at a time,
backfilling with lookahead bases its scheduling decisions
on the whole contents of the queue. The waiting queue is
processed using a dynamic-programming based scheduling
algorithm that chooses the set of jobs which will maximize
the machine utilization and will not violate the reservation
for the first waiting job.

For this research, we have simulated what Shmueli
and Feitelson (2003) call the basic algorithm. It tries to
find a combination of jobs that together maximize utiliza-
tion without violating the prior reservation made by the job
which is at the head of the wait queue. It uses dynamic
programming approach for the aggressive backfilling. Our
previous research (Rajaei and Dadfar 2005) suggested that
there is very little to choose between conservative and ag-
gressive backfilling, but the complexity of efficient imple-
mentation of conservative backfilling is far greater. So we
consider the basic algorithm, which is based on aggressive
backfilling, to represent the basic characteristics of all
backfilling policies.

The backfilling lookahead algorithm executes the job
at the head of the wait queue if enough nodes are available.
Otherwise it calculates the shadow time, which is the earli-
est time at which enough free nodes will be available for
the job at the head of the wait queue to get executed. If any
other job in the wait queue can execute with the currently
available nodes and get completed before the shadow time,
then it is executed.

3.2 Gang Scheduling

Gang scheduling refers to a policy where all processes of a
parallel application are grouped into a gang and simultane-
ously scheduled on distinct processors of a parallel com-
puter system such as a Beowulf cluster. Multiple gangs
may execute concurrently by space-sharing the resources.
Furthermore, division of the system according to time slots
is supported through synchronized preemption and later
rescheduling of the gang. Context switching is coordinated
across the nodes such that all the processes are scheduled
and de-scheduled at the same time. At the end of a time
slot, the running gangs get blocked allowing other gangs to

Rajaei, Dadfar, and Joshi

run. One important promise of the gang scheduling regards
better rescore utilization for parallel programs across the
available compute nodes.

There are three synchronization options:

1. Achieved through synchronized clocks. (SHARE

Scheduler IBM SP2). The nodes do not interact
through explicit synchronization, and do not re-
ceive any coordination message from the central
scheduler.

2. Coordinated by the master node. (ParPar Sched-
uler or Score-D). We choose this option which
suits better for our cluster.

3. SCORE-D uses a high performance communica-
tion library called PM which supports network
context switching (Choi et al. 2004).

The number of time slots n is limited to a number sup-

plied by the user. This number should be kept moderate
since increasing it would result in a job having to wait
longer for its turn to run which can be unacceptable. The
maximum time a job will have to wait after it is being pre-
empted, to get rescheduled, will be (n-1)*tq, where tq is
the time quantum of each time slot. The maximum time
can be reduced by reducing tq, but it will result in in-
creased number of context switches which is unacceptable.

3.2.1 Gang Scheduling with Greedy Approach

With the greedy approach, all jobs in the waiting queue are
considered as suitable candidates for execution. The jobs
that have the required number of nodes in any time slots
are executed. The policy does not take into consideration
of the arrival time of the jobs nor does it consider the esti-
mated end-time. As with any greedy approach, the result-
ing schedule may not be fair.

3.2.2 Gang Scheduling with Backfilling

The jobs in the waiting queue are considered as per the
lookahead backfilling policy. The job at head of the wait-
ing queue has the reservation of the nodes it requires, and
that reservation is not violated by the jobs that arrive later
even if they get executed earlier than the first waiting job.
This approach is fairer than the greedy approach, but not as
fair as the conservative backfilling approach.

The states in which the processes of a job can be at the
various worker nodes are shown in Figure 1. Job1 runs in
the time slot 0; i.e. all the processes belonging to Job 1 are
in running state at time slot 0. With the arrival of context
switch event from the scheduler, Job1 is blocked and Job3
is unblocked. An unblocked process enters the ready state.
But assuming no other active process is running in the
worker node, the unblocked process readily enters the
‘running’ state or starts running.
119
running

blocked

ready

Job1 States

Time
Slot1

Time Slot 0

scheduled

running

blocked

ready

Job3 States

Time Slot 1

scheduled

Time
Slot2

Figure 1: States Changes and Time-Slots in Gang Schedul-
ing with Backfilling for Two Jobs

4 SIMULATION METHODS

The architecture of the simulator is shown in Figure 2. A
simulator for the scheduler is created on top of the Mes-
sage Passing Interface (MPI) for various message passing
and synchronization purposes of the simulated scheduler.
The simulation program itself is a parallel job to the clus-
ter. It consists of one dedicated scheduler process and sev-
eral application processes. The Portable Batch Scheduler
(PBS) (Bode et al. 1999) is used to launch the simulator
from the server to the compute nodes of the cluster. The
PBS script reserves all the nodes and dispatches the job.

Figure 2: Simulator Architecture

Since our simulator runs on top of MPI/PBS, we use

one node as the simulated scheduler and the rest as the
simulated computed nodes. All 16 nodes of the cluster are
reserved using the PBS commands. As an MPI application,
the program lets Node 0 to act as a scheduler, while all the
other 15 nodes wait for messages from the scheduler. The
simulator accepts jobs from the user (Figure 3). Depending
on the simulated policy, the scheduler allocates the re-
quired number of nodes for the job from the available re-
sources among the 15 workers. For the gang scheduling
policy, the scheduler also allocates the time slot for the job.

The general modes of operation for evaluating the
scheduling policies are:

1. Generate workloads.
2. Simulate the behavior of various scheduling poli-

cies while running the simulated workloads.
3. Determine various parameters of interest for each

scheduling policy.

Linux Kernel

PBS Scheduler

MPI Library

Simulated
Scheduler

Jobs

7

Rajaei, Dadfar, and Joshi

Characteristics of the simulated jobs in this study are
considered as follows:

• Independent: Each job is independent of the other.

That is, the order in which the jobs are executed
should not impact execution of other jobs.

• Rigid: Each job has a fixed number of processes
that does not change during execution.

• Deterministic: Each job will specify the estimated
time for which it wants to remain in they system.

Dedicated
Scheduler
(Node 0)

Node 1

Node 2

Node 15

START_JOB /
SYNCH /

KILL_JOB

END_JOB /
STATS

User
Terminal

Jobs
Submitted

Figure 3: Overview of the Simulated Scheduler

For the gang scheduler, at the end of each time quan-

tum, the simulated scheduler broadcasts a SWITCH_
CONTEXT message using scatter provided by the com-
municator class. The message contains information about
which time slot is to be scheduled next (e.g. slot # 3 in
Figure 4). On receiving the context switch command from
the scheduler, each node stops the currently running proc-
ess using SIGSTOP, and resumes the jobs scheduled to run
next using the signal SIGCONT.

Message Id :SYNCH
TimeSlot : 3

ReceiveMsg

SIGSTOP
Current Job

SIGCONT
Job at

TimeSlot 3

Dedicated
Scheduler

Node

Figure 4: Scheduler Signals for Context Switch

Experiments were carried out with a randomly gener-

ated workload. The arrival time, estimated execution time
of the jobs (submitted by the user), the actual simulated
1198
run-time by the simulator, and the number of requested
nodes were generated randomly.

5 IMPLEMENTATION

In this study, three scheduling policies were simulated,
namely Lookahead Backfilling Policy, Gang Scheduling
with Greedy Approach and Gang Scheduling with Looka-
head Backfilling Policy. This section provides some details
of the implementations.

5.1 The Environment

Our cluster has the following system features:

• 16 homogeneous compute nodes.
• 2.8 GHz Pentium 4 processor per node .
• 1 GB of RAM per node.
• 1 GB Ethernet switch.
• Linux operating system with Gentoo.
• Batch System with PBS based Torque.

5.2 The Simulator

The simulator is written in C++ using MPI. The base class
Simulator provides some very basic functionalities of the
simulation platform. It maintains an event list where
events, in the form of arrival of new jobs, are inserted in
the order of their arrival time. It also maintains the waiting
queue where events that cannot be scheduled immediately
are queued. Derived classes override processEventQueue()
and processWaitQueue() methods to process the event and
waiting queues.

For time management, the simulator provides a one-
shot timer functionality. Subclasses need to override a
method called timerFunction() which is invoked when the
one-shot timer expires. The scheduler classes, which derive
from the Simulator class, make use of the timer to trigger
events like global context switch, start and termination of
jobs. The simulation time is forwarded at the timer expira-
tion. The resolution of simulation time and the time inter-
val between context switches have been kept the same in
this implementation for simplicity.

Jobs are generated in a pseudo-random fashion using
the Linux rand() function in the current implementation.
Other distributions, like exponential or Poisson, can be
used for the study of scheduling characteristics under vari-
ous workloads.

5.3 The Scheduler

It is possible to simulate batch schedulers in a uniprocessor
and compare performances of various batch scheduling
policies. However, for timesharing scheduling policies it is
hard to make proper estimation of context switch and

Rajaei, Dadfar, and Joshi

communication overhead. Further, it is non trivial to make
a good heuristic assumption for either the context switch or
the communication overhead. Therefore, unlike our previ-
ous works, we chose to implement a simulated scheduler
that manages processes across the nodes of the cluster. The
context switch overhead then is what Linux scheduler en-
forces and the communication cost is what the underlying
MPI library and the hardware entail.

The scheduler is designed atop MPI primarily because
of its ease of use and its efficiency. Without MPI, using the
Linux sockets for collective communication (broadcast,
multicast) at the user-level would have been very ineffi-
cient considering the synchronization overhead.

6 RESULTS AND ANALYSIS

Experiments were carried out with a randomly generated
workload as mentioned in Section 5.2.

A simulated policy is evaluated by scheduling criteria
which reflect user’s parameters of interest. A fair and quick
response time is desired. Completion time of the last job,
or makespan, is frequently used in research. The makespan
represents the utilization throughput. In this research, the
following parameters of interest have been considered:

• Makespan: Total time to completely process all

jobs from a given pool of jobs.
• Wait Time (Response Time): Length of time from

when a job arrives to when it enters the running
state for the first time.

• The above parameters are studied to gauge the
performance of various scheduling policies as the
number of jobs increase, the number of time slots
change, or the nature of jobs (communication ori-
ented or compute-intensive) change.

Based on the above criteria we gathered the needed

statistics and analyzed the scheduling policies. Figure 5 il-
lustrates that the gang scheduling outperforms the backfill
with lookahead in terms of both makespan and the average
response time. Plotted against increasing number of jobs,
the makespan for the backfill is always more than those for
the gang scheduling.

Within the gang-scheduling (GS) category, the gang
scheduling with greedy approach seems superior to the
gang scheduling with backfill. Interestingly, GS with back-
fill tends to exhibit a behavior that is a compromise be-
tween backfill and GS with greedy approach. For less
number of jobs, the GS with backfill coalesces with GS
with greedy approach. This is because, as the number of
jobs is less, time slots are readily available for most of
them and neither the greedy nor the backfill policy effec-
tively comes into play. As the number of jobs increases,
they are queued and scheduling criteria are applied to pick
the job to be scheduled. The greedy GS tries to schedule as
1199
many jobs as it can without consideration for fairness or
reservation for the first job in the wait queue as is done by
GS with backfill. It is not surprising that for a fairer sched-
uling policy the makespan is relatively worse but it is still
better than the backfilling used with batch processing.

0
20
40
60
80

100
120
140

10 20 30 40 50 60 70 80

Number of Jobs

M
ak

es
pa

n
(in

 T
ic

ks
)

Backfill
GS Greedy
GS Backfill

 Figure 5: Makespan vs. Number of Jobs

As expected the average wait (response) time for the
gang scheduling is far less than that for the backfill as
shown in Figure 6. In the case of backfill, the average re-
sponse time increases more rapidly making it unsuitable
for interactive jobs. The gang scheduler performs appre-
ciably, as the response time does not show a rapid increase
in average response time. It also suggests that more jobs
are getting completed making room for newer jobs to get
scheduled.

0
5

10
15
20
25
30
35
40

10 20 30 40 50 60 70 80

Number of Jobs

A
ve

ra
ge

 W
ai

t o
r R

es
po

ns
e

Ti
m

e
(in

 T
ic

ks
)

Backfill
GS Greedy
GS Backfill

Figure 6: Average Wait Time vs. Number of Jobs

Figure 7 shows how the response time varies between

a backfill scheduler and a gang scheduler. Both of the
schedulers take a sample of simulated workload consisting
of 80 jobs. We can see that in case of backfill, as the jobs
keep arriving, the jobs that are arriving later suffer from
the increase in response time. For the gang scheduler, the
response time does not show such wide variation. The re-
sponse time is always and consistently lower than com-
pared to backfill. It is expected that with more jobs coming

Rajaei, Dadfar, and Joshi

and running for a longer time, the response times for jobs
arriving late are going to increase, but the gang scheduler
will consistently outperform the backfilling scheduler.

0

20

40

60

80

100

1 3 5 7 9 111315171921232527293133353739
Arrival Time of Job (Ticks)

R
es

po
ns

e
Ti

m
e

(T
ic

ks
)

Backfill
GS - Greedy

Figure 7: Response Time vs. Jobs Sorted by Arrival Time

As illustrated by Figure 8, performance of the gang
scheduling exhibits appreciable improvement when the
number of time slots is increased from 1 to 5. With only
one time slot, the gang scheduler behaves like a batch
scheduler. If the number of time slots is increased beyond
5, there is a tendency for the makespan to worsen. This can
be attributed to increase in number of context switches as
the number of slots increases. Overall, there is a change of
about 10 ticks between when the number of slots is 5 to
when it is 10 or beyond. The reason why the makespan
does not deteriorate further is because even if the number
of slots is increased, the number of jobs is the same, which
means that some of the slots are not used at all. So even if
we assign 15 slots, there might be only 10 active slots.

0
20
40
60
80

100
120
140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Time Slots

M
ak

es
pa

n
(ti

ck
s)

Figure 8: Makespan vs. number of time slots

As the number of time slots increases (see Figure 9),

the average wait time decreases significantly between the
number of slots 1 and 5. As the system behaves like having
virtual nodes equal to the number of slots times the number
of actual nodes, more jobs can run without any delay, thus
reducing the total and average wait time.

120
0
5

10
15
20
25
30
35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of time slots

A
ve

ra
ge

 W
ai

t T
im

e
(T

ic
ks

)

Figure 9: Average Wait Time vs. Number of Time Slots

7 FUTURE WORK

There are several interesting extensions to the current work
which we plan to explore. One is the use of process migra-
tion, another one is implicit scheduling, and a third on the
use of statistics based on real workload. The scalability of
the scheduling algorithms needs closely to be looked at.

It has been suggested that the gang scheduling policy
can be improved through the addition of migration capa-
bilities (Zhang e al. 2003). The process of migration em-
bodies moving a job in the Ousterhout matrix to a row in
which there are enough free processors to execute that job.
This will allow the row from which the job got migrated to
have more free nodes and can therefore be able to run jobs
which are requesting large number of nodes.

An implicit scheduling method takes a totally different
approach and does not use global synchronization. Further
study needs to ascertain if the implicit scheduling can be a
viable option, or its complexity outweighs the required per-
formance value.

The workload was randomly generated in this study. A
real application could exhibit differently and hence impact
the outcomes. We need to look at this situation as well.

8 CONCLUDING REMARKS

Gang scheduling offers an attractive solution to the draw-
backs of batch scheduling, especially with respect to the
response time and overestimation of the processing time of
the jobs. It further introduces various tunable parameters
like number of slots, the duration of slots, and job priority
which can be dynamically altered to maximize the objec-
tive functions like CPU utilization. This simulation study
indicates that, concurrent context switch of processes does
not seem to degrade the performance, as the makespan did
not increase alarmingly as the number of arriving jobs was
increased. However, the effect of applications which re-
quire swapping when the context switch occurs needs to be
investigated further. In future studies, we could build more
credibility by running real workloads to the simulated
scheduler or have statistics gathered from diverse real ap-
0

Rajaei, Dadfar, and Joshi

plications mapped to the arrival jobs. Consequently, we
might have better proof that the performance of gang
scheduling is superior to that of batch scheduling and its
various flavors.

REFERENCES

Bode, B., D. M. Halstead, R. Kendall, and Z. Lei. 1999.
The Portable Batch Scheduler and the Maui Scheduler
on Linux Clusters. In Annual Technical Conference,
USENIX 1999.

Choi, G. S., J. Kim, D. Ersoz, A. B. Yoo, and C. R. Das.
2004. Coscheduling in Clusters: Is It a Viable Alterna-
tive?, In Proceedings of Super Computing (SC).

Frachtenberg E., F. Petrini, S. Coll, and W. C. Feng. 2001.
Gang Scheduling with Lightweight User-Level Com-
munication. International Conference on Parallel
Processing (ICPP) Workshops, pp. 339-348.

Góes, L. F. W., and C. A. P. S. Martins. 2004. Reconfigur-
able Gang Scheduling Algorithm. 10th Workshop on
Job Scheduling Strategies for Parallel Processing
(JSSPP). LNCS.

Gonzalez Jr., Mario. 1997. Deterministic Processor Sched-
uling. ACM Computing Surveys, Vol.9, No.3.

Hori, A., H. Tezuka, and Y. Ishikawa. 1998. Highly Effi-
cient Gang Scheduling Implementation. In Proceed-
ings of Supercomputing ’98.

Lawson, B. G. and E. Smirni. 2002. Multiple-Queue Back-
filling Scheduling with Priorities and Reservations of
Parallel Systems. In Proceedings of 8th Job Schedul-
ing Strategies for Parallel Processing.

MPI: Message Passing Interface. Available via
<http://www.mpi-forum.org>.

Rajaei, H., and M. Dadfar. 2005. Job Scheduling in a Clus-
ter Computing. In Proceedings of the 2005 American
Society for Engineering Education Annual Confer-
ence. ASEE.

Rajaei, H., and M. Dadfar. 2006. Comparison of Backfill-
ing Algorithms for Job Scheduling in Distributed
Memory Parallel System. In Proceedings of the 2006
American Society for Engineering Education Annual
Conference. ASEE.

Shmueli, E. and D. G. Feitelson. 2003. Backfilling with
Lookahead to Optimize the Performance of Parallel
Job Scheduling. Job Scheduling Strategies for Parallel
Processing (JSSPP). Lecture Notes in Computer Sci-
ence, 2862, Springer-Verlag, pp. 228–251.

Srinivasan, S., R. Kettimuthu, V. Subramani, and P.
Sadayappan. 2002. Characterization of Backfilling
Strategies for Parallel Job Scheduling. In Proceedings
of IEEE International Conference on Parallel Proc-
essing Workshops, pages 514–519.

Talby, D., and D. G. Feitelson. 1999. Supporting Priorities
and Improving Utilization of the IBM SP2 Scheduler
Using Slack-based Backfilling. In Proceedings of the
1201
13th IEEE International Parallel Processing Sympo-
sium, pp. 513.

Uwe, S., and Y. Ramin. 1998. Improving First-Come-First-
Serve Job Scheduling by Gang Scheduling. Job Sched-
uling Strategies for Parallel Processing (JSSPP)
pp.180-198.

Wiseman, Y., and D. G. Feitelson. 2003. Paired Gang
Scheduling. IEEE Transactions on Parallel and Dis-
tributed Systems. 14(6), pp. 581-592.

Zhang, Y., H. Franke, J. Moreira,. and A. Sivasubrama-
niam. 2003. An Integrated Approach to Parallel
Scheduling Using Gang-Scheduling, Backfilling, and
Migration. IEEE Transactions on Parallel and Dis-
tributed Systems. 14(3), pp. 236-247.

AUTHOR BIOGRAPHIES

HASSAN RAJAEI is an Associate Professor of Computer
Science at Bowling Green State University. His research
interests include computer simulation, distributed and par-
allel simulation, performance evaluation of communication
networks, wireless communications, distributed and paral-
lel processing. Dr. Rajaei received his Ph.D. from Royal
Institute of Technologies, KTH, Stockholm, Sweden and
he holds an MSEE from Univ. of Utah. His e-mail address
is <rajaei@cs.bgsu.edu> and his Web address is
<http://www.cs.bgsu.edu/rajaei/>.

MOHAMMAD B. DADFAR is an Associate Professor in
the Computer Science Department at Bowling Green State
University. His research interests include Computer Exten-
sion and Analysis of Perturbation Series, Scheduling Algo-
rithms, and Computers in Education. He currently teaches
undergraduate and graduate courses in data communica-
tions, operating systems, and computer algorithms. He is a
member of ACM and ASEE. His e-mail address is
<dadarf@cs.bgsu.edu> and his Web address is
<http://www.cs.bgsu.edu/dadfar/>.

PANKAJ JOSHI was a graduate student of Computer Sci-
ence at Bowling Green Sate University. He graduated in
2005 and joined the industry.

http://www.mpi-forum.org/
mailto:rajaei@cs.bgsu.edu
http://www.cs.bgsu.edu/rajaei/
mailto:dadarf@cs.bgsu.edu
http://www.cs.bgsu.edu/dadfar/

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

