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ABSTRACT 

Despite growing popularity of small-scale clusters built out 
of off-the-shelf components, there has been little research 
on how these small-scale clusters behave under different 
scheduling policies. Batch scheduling policies with back-
filling provide excellent space-sharing strategy for parallel 
jobs. However, as the performances of uniprocessor and 
symmetric multiprocessor have improved with time-
sharing scheduling strategies, it is intuitive that the per-
formance of a cluster of PCs with distributed memory may 
also improve with time-sharing strategies, or a combination 
of time-sharing and space-sharing strategies. Apart from 
the batch scheduling policies, this research explores the 
possibilities of using synchronized time-sharing scheduling 
algorithms for clusters. This paper describes simulation of 
the Gang scheduling policies on top of an existing batch 
scheme. The simulation results indicate that time-sharing 
scheduler for clusters could exhibit superior performance 
over a batch policy.     

1 INTRODUCTION 

With the increase in processing power and decrease in the 
prices of today’s commercial-off-the-shelf (COTS) PCs, 
and the increase in the bandwidth of easily available and 
affordable Ethernet, “home grown” clusters like Beowulf 
cluster have been popularly built for High-Performance-
Computing and Parallel Computing environment. Such 
parallel processing finds a wide range of usage among re-
searchers and practitioners. However, often the parallel 
systems suffer from under utilization due to inappropriate 
choice of scheduling policy. A scheduling policy is used to 
settle the conflicts in resource acquisition when a job re-
quires more nodes than that are currently available.  

In our previous studies (Rajaei and Dadfar 2005, 
2006), various backfilling techniques, namely conservative 
and aggressive backfilling (Srinivasan et al. 2002), multi-
ple-queue (Lawson and Smirni 2002) and lookahead 
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(Shmueli and Feitelson 2003), have been investigated. 
Multiple queue backfilling suffers from over-fragmentation 
of available nodes in a small-scale cluster (Rajaei and Dad-
far 2006), whereas other techniques seem to be more prom-
ising. The main drawback of backfilling is higher response 
time for some jobs which are requesting more resources 
particularly in case of aggressive backfilling, and some 
jobs may suffer from overestimation of required processing 
time.  

Gang scheduling (Zang et al. 2003) overcomes the 
problem of response time, while its disadvantage is the 
global synchronization overhead needed to coordinate a set 
of processes. Even though it incurs a heavy context switch 
overhead, it may still serve as a viable scheduling alterna-
tive in small-scale clusters. Gang scheduling also offers 
various tunable parameters, which can be dynamically 
changed according to size and nature of workload. The 
number of time slots, which are the interval allocated to a 
job during which it runs without preemption, and their du-
ration can be fine-tuned dynamically. Gang scheduling also 
supports dynamic prioritization of jobs.  

This research simulates Gang scheduling based upon 
various policies and tries to find its adaptability to small-
scale cluster. Arrival of the jobs to the system as well as 
the payloads and other interesting attributes are randomly 
generated. The generated jobs are sent to the simulated 
scheduler who in turn activates the desired nodes based on 
its current policy.   

The goal of this research is to provide a framework 
that can be used beyond the current simulation of schedul-
ing policies. We investigate whether a timesharing policy 
is suitable also for cluster computing. If the answer is posi-
tive, then we could replace the batch scheduling with an 
appropriate scheme satisfying the selection criteria. Other 
parameters such as migration policies and cost perform-
ance analysis constitute important research elements. 

The rest of this paper is organized as follows. Section 
2 describes related work. Section 3 provides details of the 
scheduling polices under investigation. The simulation 
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methods are discussed in Section 4 and details of the im-
plementation is provided in Section 5. Results and analysis 
are discussed in Section 6. Extension to the current work is 
described in Section 7 and finally, concluding remarks are 
provided in Section 8.    

2 RELATED WORK 

Various types of scheduling policies have been imple-
mented, especially for large-scale clusters - ranging from 
policies based on space-sharing to time-sharing to a com-
bination of both. Schedulers such as EASY (Srinivasan et 
al. 2002), do not support prioritization. Talby and Feitelson 
(1999) advocate use of priorities for more effective back-
filling policy. When a new job is submitted, all possible 
schedules are priced according to utilization and priority 
considerations and as long as no job is delayed beyond its 
slack which is a time duration that determines how long a 
job may have to wait before running. The slack is compa-
rable to the term shadow time (discussed later in Section 
3.1) but with additional consideration for priorities. One 
problem associated with slack-based policies is the consid-
eration of all possible scheduling which appears to be an 
NP-hard problem, and hence very time consuming. 

Multiple-queue backfilling (Lawson and Smirni 2002) 
is based on aggressive backfilling and aims at reducing 
fragmentation of system resources by dividing the system 
into multiple disjoint partitions by job category that de-
pends on estimated job duration. However, in small clus-
ters our research suggests that the multiple-queue policy 
may increase the system fragmentation contrast to what the 
policy is advocating (Rajaei and Dadfar 2006). Neverthe-
less, we anticipate that the algorithm might show better 
performance in large clusters or grids. 

Attempts have been made to integrate gang schedul-
ing, backfilling and migration (Zhang et al. 2003) in order 
to alleviate the problem with space sharing. For small clus-
ters, integrating gang scheduling with backfilling holds 
promise mostly because of low overhead in the global con-
text switch. Current research explores this option, while 
migration choice is left for future work.  

With gang scheduling, processes involved in I/O or 
blocking communication can make processors idle. Gang 
scheduling policy in pairs (Uwe and Ramin 1998) aims at 
alleviating this problem. The scheme pairs the gangs that 
make heavy use of the CPU with the gangs that are inten-
sively using I/O or other blocking operations. 

3 SCHEDULING POLICIES 

In this section we consider three scheduling policies cho-
sen for our simulation studies: one batch scheduling with 
backfilling and two gang scheduling policies; greedy and 
backfilled. 
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3.1 Batch Scheduling:  Backfilling Lookahead 

Batch scheduling is non-preemptive and once a job is 
started, it runs until it completes its execution. Simple 
batch scheduling algorithms like First Come First Serve 
(FCFS) and Shortest Job Next (SJN) may waste processing 
time when the first job cannot run in FCFS or longer jobs 
may suffer from starvation using SJN. To overcome such 
problems, various types of backfilling algorithms have 
been used to allow small jobs from the back of the queue to 
bypass the long jobs which are waiting for resource avail-
ability. 

Unlike other backfilling policies, i.e. aggressive and 
conservative, which consider the queued jobs one at a time, 
backfilling with lookahead bases its scheduling decisions 
on the whole contents of the queue. The waiting queue is 
processed using a dynamic-programming based scheduling 
algorithm that chooses the set of jobs which will maximize 
the machine utilization and will not violate the reservation 
for the first waiting job.  

For this research, we have simulated what Shmueli 
and Feitelson (2003) call the basic algorithm. It tries to 
find a combination of jobs that together maximize utiliza-
tion without violating the prior reservation made by the job 
which is at the head of the wait queue. It uses dynamic 
programming approach for the aggressive backfilling. Our 
previous research (Rajaei and Dadfar 2005) suggested that 
there is very little to choose between conservative and ag-
gressive backfilling, but the complexity of efficient imple-
mentation of conservative backfilling is far greater. So we 
consider the basic algorithm, which is based on aggressive 
backfilling, to represent the basic characteristics of all 
backfilling policies. 

The backfilling lookahead algorithm executes the job 
at the head of the wait queue if enough nodes are available. 
Otherwise it calculates the shadow time, which is the earli-
est time at which enough free nodes will be available for 
the job at the head of the wait queue to get executed. If any 
other job in the wait queue can execute with the currently 
available nodes and get completed before the shadow time, 
then it is executed.  

3.2 Gang Scheduling 

Gang scheduling refers to a policy where all processes of a 
parallel application are grouped into a gang and simultane-
ously scheduled on distinct processors of a parallel com-
puter system such as a Beowulf cluster. Multiple gangs 
may execute concurrently by space-sharing the resources. 
Furthermore, division of the system according to time slots 
is supported through synchronized preemption and later 
rescheduling of the gang. Context switching is coordinated 
across the nodes such that all the processes are scheduled 
and de-scheduled at the same time. At the end of a time 
slot, the running gangs get blocked allowing other gangs to 
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run. One important promise of the gang scheduling regards 
better rescore utilization for parallel programs across the 
available compute nodes. 

There are three synchronization options: 
 
1. Achieved through synchronized clocks. (SHARE 

Scheduler IBM SP2). The nodes do not interact 
through explicit synchronization, and do not re-
ceive any coordination message from the central 
scheduler. 

2. Coordinated by the master node. (ParPar Sched-
uler or Score-D). We choose this option which 
suits better for our cluster. 

3. SCORE-D uses a high performance communica-
tion library called PM which supports network 
context switching (Choi et al. 2004). 

 
The number of time slots n is limited to a number sup-

plied by the user. This number should be kept moderate 
since increasing it would result in a job having to wait 
longer for its turn to run which can be unacceptable. The 
maximum time a job will have to wait after it is being pre-
empted, to get rescheduled, will be (n-1)*tq, where tq is 
the time quantum of each time slot. The maximum time 
can be reduced by reducing tq, but it will result in in-
creased number of context switches which is unacceptable.   

3.2.1 Gang Scheduling with Greedy Approach 

With the greedy approach, all jobs in the waiting queue are 
considered as suitable candidates for execution. The jobs 
that have the required number of nodes in any time slots 
are executed. The policy does not take into consideration 
of the arrival time of the jobs nor does it consider the esti-
mated end-time. As with any greedy approach, the result-
ing schedule may not be fair. 

3.2.2 Gang Scheduling with Backfilling 

The jobs in the waiting queue are considered as per the 
lookahead backfilling policy. The job at head of the wait-
ing queue has the reservation of the nodes it requires, and 
that reservation is not violated by the jobs that arrive later 
even if they get executed earlier than the first waiting job. 
This approach is fairer than the greedy approach, but not as 
fair as the conservative backfilling approach. 

The states in which the processes of a job can be at the 
various worker nodes are shown in Figure 1. Job1 runs in 
the time slot 0; i.e. all the processes belonging to Job 1 are 
in running state at time slot 0. With the arrival of context 
switch event from the scheduler, Job1 is blocked and Job3 
is unblocked. An unblocked process enters the ready state. 
But assuming no other active process is running in the 
worker node, the unblocked process readily enters the 
‘running’ state or starts running. 
119
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Figure 1: States Changes and Time-Slots in Gang Schedul-
ing with Backfilling for Two Jobs 

4 SIMULATION METHODS 

The architecture of the simulator is shown in Figure 2. A 
simulator for the scheduler is created on top of the Mes-
sage Passing Interface (MPI) for various message passing 
and synchronization purposes of the simulated scheduler. 
The simulation program itself is a parallel job to the clus-
ter. It consists of one dedicated scheduler process and sev-
eral application processes. The Portable Batch Scheduler 
(PBS) (Bode et al. 1999) is used to launch the simulator 
from the server to the compute nodes of the cluster. The 
PBS script reserves all the nodes and dispatches the job. 

 

 
Figure 2: Simulator Architecture 

 
Since our simulator runs on top of MPI/PBS, we use 

one node as the simulated scheduler and the rest as the 
simulated computed nodes. All 16 nodes of the cluster are 
reserved using the PBS commands. As an MPI application, 
the program lets Node 0 to act as a scheduler, while all the 
other 15 nodes wait for messages from the scheduler. The 
simulator accepts jobs from the user (Figure 3). Depending 
on the simulated policy, the scheduler allocates the re-
quired number of nodes for the job from the available re-
sources among the 15 workers. For the gang scheduling 
policy, the scheduler also allocates the time slot for the job. 

The general modes of operation for evaluating the 
scheduling policies are: 

 
1. Generate workloads. 
2. Simulate the behavior of various scheduling poli-

cies while running the simulated workloads. 
3. Determine various parameters of interest for each 

scheduling policy. 

Linux Kernel 

PBS Scheduler 

MPI Library 

Simulated  
Scheduler 

Jobs 
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Characteristics of the simulated jobs in this study are 
considered as follows: 

 
• Independent: Each job is independent of the other. 

That is, the order in which the jobs are executed 
should not impact execution of other jobs. 

• Rigid: Each job has a fixed number of processes 
that does not change during execution. 

• Deterministic: Each job will specify the estimated 
time for which it wants to remain in they system. 

 

Dedicated 
Scheduler
(Node 0)

Node 1

Node 2

Node 15

START_JOB /
SYNCH /

KILL_JOB

END_JOB / 
STATS

User 
Terminal

Jobs 
Submitted

 
Figure 3: Overview of the Simulated Scheduler 

 
For the gang scheduler, at the end of each time quan-

tum, the simulated scheduler broadcasts a SWITCH_ 
CONTEXT message using scatter provided by the com-
municator class. The message contains information about 
which time slot is to be scheduled next (e.g. slot # 3 in 
Figure 4). On receiving the context switch command from 
the scheduler, each node stops the currently running proc-
ess using SIGSTOP, and resumes the jobs scheduled to run 
next using the signal SIGCONT. 

 

Message Id :SYNCH
TimeSlot : 3

ReceiveMsg

SIGSTOP
Current Job 

SIGCONT
Job at 

TimeSlot 3

Dedicated 
Scheduler

Node

 
Figure 4: Scheduler Signals for Context Switch 

 
Experiments were carried out with a randomly gener-

ated workload.  The arrival time, estimated execution time 
of the jobs (submitted by the user), the actual simulated 
1198
run-time by the simulator, and the number of requested 
nodes were generated randomly.  

5 IMPLEMENTATION 

In this study, three scheduling policies were simulated, 
namely Lookahead Backfilling Policy, Gang Scheduling 
with Greedy Approach and Gang Scheduling with Looka-
head Backfilling Policy. This section provides some details 
of the implementations. 

5.1 The Environment 

Our cluster has the following system features: 
 
• 16 homogeneous compute nodes. 
• 2.8 GHz Pentium 4 processor per node . 
• 1 GB of RAM per node. 
• 1 GB Ethernet switch. 
• Linux operating system with Gentoo. 
• Batch System with PBS based Torque. 

5.2 The Simulator 

The simulator is written in C++ using MPI. The base class 
Simulator provides some very basic functionalities of the 
simulation platform. It maintains an event list where 
events, in the form of arrival of new jobs, are inserted in 
the order of their arrival time. It also maintains the waiting 
queue where events that cannot be scheduled immediately 
are queued. Derived classes override processEventQueue() 
and processWaitQueue() methods to process the event and 
waiting queues. 

For time management, the simulator provides a one-
shot timer functionality. Subclasses need to override a 
method called timerFunction() which is invoked when the 
one-shot timer expires. The scheduler classes, which derive 
from the Simulator class, make use of the timer to trigger 
events like global context switch, start and termination of 
jobs. The simulation time is forwarded at the timer expira-
tion. The resolution of simulation time and the time inter-
val between context switches have been kept the same in 
this implementation for simplicity.  

Jobs are generated in a pseudo-random fashion using 
the Linux rand() function in the current implementation. 
Other distributions, like exponential or Poisson, can be 
used for the study of scheduling characteristics under vari-
ous workloads.  

5.3 The Scheduler 

It is possible to simulate batch schedulers in a uniprocessor 
and compare performances of various batch scheduling 
policies. However, for timesharing scheduling policies it is 
hard to make proper estimation of context switch and 
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communication overhead. Further, it is non trivial to make 
a good heuristic assumption for either the context switch or 
the communication overhead. Therefore, unlike our previ-
ous works, we chose to implement a simulated scheduler 
that manages processes across the nodes of the cluster. The 
context switch overhead then is what Linux scheduler en-
forces and the communication cost is what the underlying 
MPI library and the hardware entail. 

The scheduler is designed atop MPI primarily because 
of its ease of use and its efficiency. Without MPI, using the 
Linux sockets for collective communication (broadcast, 
multicast) at the user-level would have been very ineffi-
cient considering the synchronization overhead.  

6 RESULTS AND ANALYSIS 

Experiments were carried out with a randomly generated 
workload as mentioned in Section 5.2.   

A simulated policy is evaluated by scheduling criteria 
which reflect user’s parameters of interest. A fair and quick 
response time is desired. Completion time of the last job, 
or makespan, is frequently used in research. The makespan 
represents the utilization throughput. In this research, the 
following parameters of interest have been considered: 

 
• Makespan: Total time to completely process all 

jobs from a given pool of jobs. 
• Wait Time (Response Time): Length of time from 

when a job arrives to when it enters the running 
state for the first time. 

• The above parameters are studied to gauge the 
performance of various scheduling policies as the 
number of jobs increase, the number of time slots 
change, or the nature of jobs (communication ori-
ented or compute-intensive) change. 

 
Based on the above criteria we gathered the needed 

statistics and analyzed the scheduling policies. Figure 5 il-
lustrates that the gang scheduling outperforms the backfill 
with lookahead in terms of both makespan and the average 
response time. Plotted against increasing number of jobs, 
the makespan for the backfill is always more than those for 
the gang scheduling. 

Within the gang-scheduling (GS) category, the gang 
scheduling with greedy approach seems superior to the 
gang scheduling with backfill. Interestingly, GS with back-
fill tends to exhibit a behavior that is a compromise be-
tween backfill and GS with greedy approach. For less 
number of jobs, the GS with backfill coalesces with GS 
with greedy approach. This is because, as the number of 
jobs is less, time slots are readily available for most of 
them and neither the greedy nor the backfill policy effec-
tively comes into play. As the number of jobs increases, 
they are queued and scheduling criteria are applied to pick 
the job to be scheduled. The greedy GS tries to schedule as 
1199
many jobs as it can without consideration for fairness or 
reservation for the first job in the wait queue as is done by 
GS with backfill. It is not surprising that for a fairer sched-
uling policy the makespan is relatively worse but it is still 
better than the backfilling used with batch processing. 

 

0
20
40
60
80

100
120
140

10 20 30 40 50 60 70 80

Number of Jobs

M
ak

es
pa

n 
(in

 T
ic

ks
)

Backfill
GS Greedy
GS Backfill

 Figure 5: Makespan vs. Number of Jobs 
 

As expected the average wait (response) time for the 
gang scheduling is far less than that for the backfill as 
shown in Figure 6. In the case of backfill, the average re-
sponse time increases more rapidly making it unsuitable 
for interactive jobs.  The gang scheduler performs appre-
ciably, as the response time does not show a rapid increase 
in average response time. It also suggests that more jobs 
are getting completed making room for newer jobs to get 
scheduled.  
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Figure 6: Average Wait Time vs. Number of Jobs 
 
Figure 7 shows how the response time varies between 

a backfill scheduler and a gang scheduler. Both of the 
schedulers take a sample of simulated workload consisting 
of 80 jobs. We can see that in case of backfill, as the jobs 
keep arriving, the jobs that are arriving later suffer from 
the increase in response time. For the gang scheduler, the 
response time does not show such wide variation. The re-
sponse time is always and consistently lower than com-
pared to backfill. It is expected that with more jobs coming 
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and running for a longer time, the response times for jobs 
arriving late are going to increase, but the gang scheduler 
will consistently outperform the backfilling scheduler. 
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Figure 7: Response Time vs. Jobs Sorted by Arrival Time 

As illustrated by Figure 8, performance of the gang 
scheduling exhibits appreciable improvement when the 
number of time slots is increased from 1 to 5. With only 
one time slot, the gang scheduler behaves like a batch 
scheduler. If the number of time slots is increased beyond 
5, there is a tendency for the makespan to worsen. This can 
be attributed to increase in number of context switches as 
the number of slots increases.  Overall, there is a change of 
about 10 ticks between when the number of slots is 5 to 
when it is 10 or beyond. The reason why the makespan 
does not deteriorate further is because even if the number 
of slots is increased, the number of jobs is the same, which 
means that some of the slots are not used at all. So even if 
we assign 15 slots, there might be only 10 active slots. 
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Figure 8: Makespan vs. number of time slots 

 
As the number of time slots increases (see Figure 9), 

the average wait time decreases significantly between the 
number of slots 1 and 5. As the system behaves like having 
virtual nodes equal to the number of slots times the number 
of actual nodes, more jobs can run without any delay, thus 
reducing the total and average wait time.  
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Figure 9: Average Wait Time vs. Number of Time Slots 

7 FUTURE WORK 

There are several interesting extensions to the current work 
which we plan to explore. One is the use of process migra-
tion, another one is implicit scheduling, and a third on the 
use of statistics based on real workload. The scalability of 
the scheduling algorithms needs closely to be looked at.   

It has been suggested that the gang scheduling policy 
can be improved through the addition of migration capa-
bilities (Zhang e al. 2003). The process of migration em-
bodies moving a job in the Ousterhout matrix to a row in 
which there are enough free processors to execute that job. 
This will allow the row from which the job got migrated to 
have more free nodes and can therefore be able to run jobs 
which are requesting large number of nodes. 

An implicit scheduling method takes a totally different 
approach and does not use global synchronization. Further 
study needs to ascertain if the implicit scheduling can be a 
viable option, or its complexity outweighs the required per-
formance value.  

The workload was randomly generated in this study. A 
real application could exhibit differently and hence impact 
the outcomes. We need to look at this situation as well. 

8 CONCLUDING REMARKS 

Gang scheduling offers an attractive solution to the draw-
backs of batch scheduling, especially with respect to the 
response time and overestimation of the processing time of 
the jobs. It further introduces various tunable parameters 
like number of slots, the duration of slots, and job priority 
which can be dynamically altered to maximize the objec-
tive functions like CPU utilization. This simulation study 
indicates that, concurrent context switch of processes does 
not seem to degrade the performance, as the makespan did 
not increase alarmingly as the number of arriving jobs was 
increased. However, the effect of applications which re-
quire swapping when the context switch occurs needs to be 
investigated further. In future studies, we could build more 
credibility by running real workloads to the simulated 
scheduler or have statistics gathered from diverse real ap-
0
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plications mapped to the arrival jobs. Consequently, we 
might have better proof that the performance of gang 
scheduling is superior to that of batch scheduling and its 
various flavors. 
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