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ABSTRACT 

There is an increasing need for the comprehensive simula-
tion of complex, dynamic, physical systems. Often such 
simulations are built by coupling existing, component 
models so that their concurrent simulations affect each 
other. The process of model coupling is, however, a non-
trivial task that is not adequately supported by existing 
frameworks. To provide better support, we have developed 
an approach to model coupling that uses high level model 
interfaces called Potential Coupling Interfaces. In this 
work, we present a visual, domain-specific language for 
model coupling, called the Coupling Description Lan-
guage, based on these interfaces. We show that it supports 
the resolution of model incompatibilities and allows for the 
fast-prototyping of coupled models. 

1 INTRODUCTION 

The practice of modeling and simulation within the scien-
tific community has resulted in the creation of a wealth of 
validated models across many domains. The challenge now 
is to integrate these models into more comprehensive simu-
lations of complex, dynamic, physical systems. Such com-
plex simulations are often built by model coupling, that is, 
the merging of existing, component models so that their 
concurrent simulations affect each other. Model coupling 
is, however, a nontrivial task that is not adequately sup-
ported by existing frameworks. Current frameworks (Jop-
pich, Kurschner, and the MpCCI team 2005; Blind et al. 
2000; Ford et al. 2004; Larson, Jacob, and Ong 2005; Hill 
et al. 2004) often require direct manipulation of model 
source code, which is prohibitively difficult in many situa-
tions. We have developed an approach to model coupling 
that avoids this hurdle, allowing for the fast-prototyping of 
coupled models. InCouple, our interface-based approach, 
allows the scientist to work with a novel model representa-
tion called the Potential Coupling Interface (PCI) (Bulate-
wicz, Cuny, and Warman 2004; Bulatewicz and Cuny 
2005). 
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 The PCI is an annotated flow graph that serves four 
roles: first, it is a form of model metadata describing the 
potential ways in which a model can be used in a coupling; 
second it is the basis for the automatic generation of source 
code that is used to instrument the original model codes; 
third it is the vehicle for the specification of how a set of 
coupled models are to interact with each other; and fourth 
it is a reusable interface that allows couplings to be quickly 
prototyped. Here we focus on the third and fourth roles. 
We report on a novel domain-specific language for model 
coupling called the Coupling Description Language (CDL) 
that allows scientists to specify the coupling between sets 
of models in terms of their PCIs. 

In Section 2, we provide a short introduction to the 
PCI. In Section 3, we present the Coupling Description 
Language and explain how it assists the scientist in resolv-
ing incompatibilities between models. In Section 4, we 
present an overview of the runtime system. In Sections 5 
and 6 we demonstrate the use of the CDL with a case study 
of the coupling of two well-known hydrology models and 
present preliminary results. 

2 THE POTENTIAL COUPLING INTERFACE 

A PCI describes the coupling potential of a model, that is, 
those aspects of the model that in some way affect how it 
can be coupled to another model. They look much like the 
flowcharts commonly found in model documentation. The 
graph depicts the overall control flow of the program with 
respect to potential coupling points, that is, places where 
the values of state variables – the variables that represent 
the state of the physical quantities being modeled – can be 
exchanged with other models. These places are indicated 
by dark arrows which can be expanded to appear as blocks, 
such as in the example PCI in Figure 1, where the high-
lighted block Coupling Point A is expanded. Using our 
PCICreate software, PCIs are generated automatically from 
user-annotated model codes and then edited to improve 
readability and to incorporate additional high-level infor-
mation. Block labels and colors (grayscale in the figure) in 
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the graph, for example, are supplied by the programmer to 
indicate the role of the code represented by the block. 
 

 
Figure 1: A PCI as It Appears in PCICreate 

 
PCIs are meant to be created just once, by the original 

programmer (or someone familiar with the model), as 
model metadata; after that they can be reused for any cou-
plings. The variables accessible at each coupling point (as 
shown in the smaller inspector window in the figure) are 
specified by the creator of the PCI. When a PCI is created, 
the original model source code is automatically instru-
mented with communication code, and after it is compiled, 
the resulting coupling-ready executable can be used in any 
coupling. The communication code enables the model to 
send and receive any variable at any coupling point, al-
though only a subset are sent and received in a particular 
coupling. The primary role of the PCI is to serve as a con-
text for describing coupled models, in which the PCI acts 
as a template. In the next section we present a language for 
describing coupled models in terms of PCIs. 

3 THE COUPLING DESCRIPTION LANGUAGE 

Scientists describe the interactions between models in the 
coupling environment (CE), provided by our PCICouple 
application. A coupling specification begins with the PCIs 
for one or more models that are to be coupled. Figure 2 
shows an example of a coupling description with two PCIs. 
The center window shows the PCIs for the models Top-
Model (Beven 1997) (left) and ModFlow (McDonald and 
Harbaugh 1999) (right). The dashed arrow indicates that 
data is sent from Coupling Point C in ModFlow on the 
right to Coupling Point A in TopModel on the left. State 
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variables are changed at Coupling Point B and at the 
Setup block. The environment incorporates the Coupling 
Description Language which consists of a set of actions 
that operate on the accessible variables at coupling points. 
To describe a coupled model is to specify a set of actions, 
called an action list, for each of the relevant coupling 
points. The action lists for Coupling Points C and B are 
shown in the top-right and bottom-center of the figure, re-
spectively (there is only a single inspector window in PCI-
Couple; several screenshots of the inspector were collected 
in the figure and the dotted lines were added to indicate 
which blocks are associated with which inspector win-
dows). During execution of the coupled model, when a 
model reaches a coupling point, the actions in its action list 
are carried out. There are three kinds of actions: Send, Up-
date, and Store. Collectively, they allow the values of a 
model’s variables to be changed based on the values of 
other variables from that model, or from other, coupled 
models. 
 Send Action: The Send Action allows the value of a 
variable at one coupling point to be used at another cou-
pling point. Send Actions are explicitly depicted in the 
coupling environment by a labeled, dashed line between 
the source and destination coupling points in the PCI tem-
plates, as shown in Figure 2. Solid lines indicate the flow 
of control, and dashed lines indicate the flow of data. In the 
figure, the value of variable hnew is sent from Coupling 
Point C in ModFlow, to Coupling Point A in TopModel. 
When a scientist adds a Send Action to a coupling specifi-
cation, the sent variable appears in the list of accessible 
variables at the destination coupling point, making it us-
able by the actions at that point (the variable name is pre-
fixed with the name of the sending model to avoid name 
conflicts). Each kind of action has a set of properties that 
are set by the scientist when an action is added to the ac-
tion list of a coupling point. The properties of the Send Ac-
tion are variable, frequency, and mapping, as shown in the 
center-top of Figure 2. The variable property is the name 
of the variable to send, which is selected from the list of 
accessible variables at the coupling point. The frequency 
property indicates the activation frequency of the action, 
which is how often the action is performed. Normally, the 
actions in a coupling point’s action list are carried out each 
time execution reaches that point. In some cases though, in 
order to match the execution rates of different models, the 
interaction needs to occur at a lesser frequency. This is the 
purpose of the activation frequency property. It describes 
how often the action should be performed. For example, an 
activation frequency of 1 indicates that the action should 
take place every time the coupling point is reached, while a 
frequency of 4 indicates that the action should take place 
every 4th time the coupling point is reached. More general 
activation mechanisms are possible, but this simple use of 
frequency has been sufficient for our hydrology domain. 
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gure 2: The CE within PCICouple with Two Models (middle) and Various Inspector Windows (top and bottom) 
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The mapping property is the name of the data mapping that 
should be used for this action. It describes which individual 
instances should send the variable, and which should re-
ceive it. Data mappings are discussed further below. 
 Update Action: The Update Action is used to change 
the values of variables according to an update function, 
that is, a self-contained (stateless) subroutine that uses 
variables as arguments. When executed, the update func-
tion updates the value of one or more of its arguments. The 
coupling environment provides a collection of common 
functions (assign, sum, average, etc.) and the scientist can 
add their own. A function is written in the same program-
ming language as the model within which it is used. The 
scientist chooses the update function from the list of avail-
able functions, and assigns a variable to each of its argu-
ments, chosen from a list of accessible variables. The 
properties of the Update Action are function, frequency, 
and the argument assignments, as shown in the top-left and 
bottom-right of Figure 2. 
 Store Action: Store Actions provide a way to create 
stored variables, which are new, independent, mutable 
variables that do not exist in any of the model codes. They 
are accessible at all the coupling points in a PCI and are 
usable in Send and Update Actions. Each time a Store Ac-
tion is activated, the stored variable associated with the ac-
tion is set to either a (constant) value specified by the sci-
entist, or to the value of a model variable, overwriting any 
previously stored value. The latter case allows for the value 
of a variable at one coupling point to be accessed later, at a 
different coupling point. Stored variables can be used as 
arguments and updated in multiple Update Actions, provid-
ing a way for the result of one Update Action to be used in 
another Update Action, or in a subsequent activation of the 
same action. Each instance of each model has its own pri-
vate data memory in which these variables are stored. The 
properties of the Store Action are name, frequency, set 
from, and variable, as shown in the bottom-left of Figure 2. 
The name property is the name of the new stored variable. 
If its value is to be set to a model variable, then the set 
from property is set to “Existing”, and the variable is se-
lected from a list of model variables and assigned to the 
variable property. If its value is to be specified by the sci-
entist, then the set from property is set to “New” and the 
scientist specifies the value, data type, and shape of the 
new stored variable (additional fields appear). 
 These actions provide the building blocks for describ-
ing coupled models. We may want to couple different 
models together, or the same model to itself. In the latter 
case, many instances of the same model code can be cou-
pled, where an instance is an executing model process. 
Thus, for example, we can couple appropriately parameter-
ized instances of a model of a stream to simulate an entire 
watershed. In cases with multiple instances, showing a PCI 
for each instance would make the description cumbersome 
to create and difficult to understand. For this reason, we 
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separate the description of a coupling into two parts. The 
interaction between the models is described visually in the 
CE in terms of the models’ PCIs, and the communication 
between the instances of those models is described textu-
ally in data mappings. In this way, only a single PCI is dis-
played in the CE for each model in a coupling, and it 
serves as a template that represents the behavior of possi-
bly many instances of that model. 
 The data mappings are used to describe the communi-
cation between model instances. The CE describes the ac-
tion lists that are to be performed at each coupling point, 
but which instances communicate with which? Which ones 
perform which actions? This is described by data map-
pings. A simple data mapping is shown in Figure 3 (bot-
tom), with a partial coupling description (top). 
 

 
Figure 3: A Partial Coupling Description (top) and Data 
Mapping (bottom) 
 
In the figure, the data mapping indicates that the value of 
the y variable sent from the Stream model, should be scaled 
to 75% before being received by the Lake model. The re-
sulting value of the y variable is then available for use in 
Update and Store Actions at the destination coupling point 
in the Lake model, and the variable appears in the list of 
accessible variables at that point. Data mappings describe 
how one variable is transformed as it is communicated 
from one model to another by a Send Action. At most one 
variable can be sent in any single Send Action, and if two 
variables need to be transformed in the same way, then the 
specification of the data mapping can be reused. 
 The data mapping in the figure could represent a study 
site in which a stream leads into a lake. If there are several 
streams that lead to the same lake, each one can be simu-
lated by a different instance of the Stream model, and cou-
pled to the Lake model. This capability of coupling any 
number of instances of the same model to another model is 
an important feature of the CDL. The data mapping in Fig-
ure 4 indicates that there are three instances of the Stream 
model that communicate with a single instance of the Lake 
model. Since the data mapping indicates that there are 
three instances of the Stream model, then at least three in-
stances of the model will be started when the coupling is 
executed. 
4
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Figure 4: A Data Mapping Indicating that There are Three 
Instances of the Stream Model that Send to the Lake Model 
 
In this way, each data mapping is only a partial description 
of the overall behavior of a coupled model. The global be-
havior of a coupled model is determined collectively by all 
the data mappings used in a coupling description. The sci-
entist does not need to explicitly list how many instances 
there are in a coupling, the total number can be determined 
from the collection of data mappings. 
 Since all three instances of the Stream model are send-
ing their value of the same y variable, those values must be 
combined in some way so that only a single value for y is 
received by the Lake model. This is because the Lake 
model, initially written in a different context, does not ex-
pect multiple values. The values of a variable sent from 
several instances of a model are combined as a weighted 
sum, as shown in Figure 4. Other schemes are possible, but 
again, this simple weighted scheme has worked for our 
domain. 
 In this example though, it is likely that each of these 
streams is part of a larger network of interconnected 
streams. Each of the streams in the network can be simu-
lated by a different instance of the Stream model, and those 
instances can be coupled together. The ability to couple to-
gether instances of the same model is an important feature 
of the CDL. Figure 5 shows how three instances of the 
same model, the Stream model, can send to each other. 
Each instance in a data mapping is uniquely identified by a 
number from 1 to n, called the instance identifier, where n 
is the total number of instances in a coupled model. The 
data mapping in the figure indicates that instances 1 and 2 
of the Stream model should send their y values to instance 
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3 of the Stream model. The values from instances 1 and 2 
are combined, via a weighted sum, and the resulting value 
is received by instance 3. 
 

 
Figure 5: A Data Mapping Indicating that There are Three 
Instances of the Stream Model that Send to Each Other 
 
Note that this data mapping indicates that there should be 
three instances of the Stream model in the coupled model. 
The topology of which instances send to which is deter-
mined directly from the data mapping. This topology may 
indicate that some instances are to receive a value, and that 
others are not. If an action uses a variable that is sent from 
another model, yet a particular instance does not receive 
the value, then that instance does not carry out the action. 
In this way, the communication topology dictates which 
instances carry out which actions. 
 For the case of sending array values, data mappings 
can describe how each individual element of an array is 
communicated and transformed between instances as well. 
An example of this is included in the case study in Section 
5. In both cases, data mappings are text files that are for-
matted similar to how they appear in the figures, and are 
prepared by the scientist. 
 Send Actions are asynchronous and always execute 
immediately, and the sent values are queued until the re-
ceiver is ready for them. We have adopted a producer-
consumer style of communication in which each Send Ac-
tion results in the sending of one value, destined to a spe-
cific action at another coupling point, where it is con-
sumed. This allows the models to remain synchronized, 
even if one model executes ahead of the other: the produc-
ing model can execute ahead sending values, the order of 
which is preserved in the receiving queue. The way in 
which data mappings are applied and values are queued 
during execution of the coupled model is described next. 
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4 RUNTIME SYSTEM OVERVIEW 

Once the coupling description is completed, the coupled 
model can be executed via PCICouple. As described in 
Section 2, as part of the PCI-creation process a coupling-
ready model executable is created for each model. The ex-
ecutable has the ability to send and receive any variable at 
any coupling point. Which variables are sent and received 
by each instance in a particular coupling is determined by a 
script that is generated from the coupling description. Each 
time a coupled model is executed, a set of scripts are com-
piled from the coupling description and one is given to 
each model instance. Scripts indicate which variable values 
are sent and received at each coupling point for each in-
stance, and the runtime system handles the necessary trans-
formations of these values. An overview is shown in Fig-
ure 6. 
 

 
Figure 6: Overview of the Runtime System 

 
Each shape in the figure represents an independently exe-
cuting process, of which there are four kinds: 
 

• Model Instances (circles) are independently exe-
cuting model processes. 

• Couplers (squares) facilitate the communication 
between model instances. 

• Updaters (diamonds) assist couplers in the execu-
tion of update functions. 

• Controllers (house shape) coordinate all the proc-
esses. 

 
The communication between these different processes is 
indicated by arrows in the figure. Notice that both updaters 
and model instances communicate only with couplers. 
Every instance is assigned to a specific coupler, indicated 
in the figure as a dashed line, and many instances can be 
assigned to the same coupler. An instance’s coupler pro-
vides two services to the instance, value storage and value 
updating: 
 

• The coupler stores values for the instance, to sup-
port Store Actions, and acts as a queue that col-
lects values destined to the instance, holding them 
until the instance is ready for them. 
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• To support Update Actions, the coupler applies 
any necessary data mappings, and then uses its 
updater process to carry out the execution of up-
date functions. Each coupler has an updater proc-
ess that can execute the built-in update functions 
and any custom functions added by the scientist. 

 
The controller is responsible for starting all the other proc-
esses and giving them information about the coupling de-
scription. We have developed a custom communication li-
brary as part of the runtime system, based on TCP sockets, 
that allows models to communicate over a network. We 
present a case study next that ties everything together. 

5 CASE STUDY 

In collaboration with Alphonce Guzha, from Utah Univer-
sity, we have conducted a number of case studies and re-
port on one of them here. Although the interpretation of the 
results is beyond the scope of this paper, we demonstrate 
the process of creating a coupled model using our ap-
proach. 

A common use of modeling in the field of hydrology 
is in the study of how rainfall affects surfacewater, such as 
rivers and streams. One such rainfall-runoff model is 
TopModel, which simulates the amount of surfacewater 
runoff that exits an area of land in response to rainfall. It is 
written in Fortran and consists of approximately 400 lines 
of code. The amount of runoff that is generated in response 
to a storm event is not only dependent upon the intensity of 
the rainfall, but it is also dependent upon the characteristics 
of the land upon which it falls. The slope of the land and 
the type of ground cover (grass, forest, urban, etc.) are im-
portant characteristics that are taken into account in the 
model. Another important characteristic is the depth of the 
groundwater beneath the land, called the water table head. 
If the water table is close to the surface, then water is 
drawn upward and contributes to the amount of runoff, de-
creasing the amount of groundwater. This upward move-
ment of water is called baseflow. Conversely, if the 
groundwater is deep below the surface, then runoff is 
drawn downward and contributes to the quantity of 
groundwater, decreasing the amount of runoff. This 
downward movement of water is called recharge. This wa-
ter flux occurs through the unsaturated zone, located just 
beneath the land surface. In the unsaturated zone, the very 
small spaces between particles of dirt and sand are filled 
partially by air and partially by water. Below the unsatu-
rated zone is the saturated zone, in which the small spaces 
between particles are filled entirely by groundwater. The 
upper limit of the saturated zone is the water table. An il-
lustration of these zones and the water flux between them 
is shown in Figure 7. 
 TopModel was not designed to accurately simulate 
groundwater and makes simplifying assumptions regarding 
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it: the saturated zone is in equilibrium with a steady re-
charge rate over an upslope contributing area, and the wa-
ter table is almost parallel to the surface such that the ef-
fective hydraulic gradient is equal to the local surface 
slope. A more accurate simulation can be achieved by in-
corporating a complete simulation of the groundwater. In 
this study, we show how the groundwater-flow model 
ModFlow can be coupled to TopModel to achieve a more 
comprehensive simulation. 

 

 
Figure 7: The Interaction between Surfacewater and 
Groundwater 
 
 ModFlow is a widely used groundwater-flow model 
developed by the U.S. Geological Society. It is written in 
Fortran and has approximately 10,000 lines of code. It 
simulates the movement of groundwater and the primary 
output is the water table head. In this coupling, the water 
table head value calculated by TopModel is replaced with 
the head value simulated by ModFlow. To simplify our 
discussion, we present only how ModFlow affects Top-
Model, whereas in our complete study, TopModel affects 
ModFlow as well. 
 The first step in creating the coupling is to identify 
which state variables in each model represent water table 
head. By inspection of the models’ PCIs, the participating 
variables can be identified and are TopModel’s sd variable 
and ModFlow’s hnew variable. As described in the Top-
Model PCI, sd represents the water table depth beneath an 
irregularly shaped 2d area of land called a subcatchment. A 
subcatchment is an area of land that drains to a single 
point. In our study site (the Tenmile Watershed in Wash-
ington State), there are three subcatchments. The sd vari-
able is a scalar, and represents a different subcatchment on 
each iteration of the subcatchment loop, visible in the 
TopModel PCI in Figure 2. ModFlow’s hnew variable is an 
array in which each element represents the water table head 
in a different regular grid cell. The spatial distributions of 
these variables are shown in Figure 8, as they appear in the 
ArcMap Geographic Information System (GIS). This dif-
ference in spatial distribution of the participating variables 
is common in couplings and must be accounted for. In the 
CDL, such incompatibilities are resolved through data 
mappings. We first present the coupling description and 
then explain how the data mapping is created through the 
use of a GIS. 
 The coupling description is shown in Figure 2. As in 
most couplings, the models communicate within their time 
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step loops. As long as the models start at the same point in 
simulation time, and use the same time step length, then 
the models will remain coordinated in simulation time. 
 

 
Figure 8. Three Subcatchments Superimposed on a Regular 
Grid with Four Cells as They Appear in ArcMap 
 
ModFlow though, usually uses a long time step length, on 
the order of days or weeks due to the slow speed at which 
groundwater moves, and TopModel can use either a short 
step length to study individual storm events (on the order 
of hours), or a longer step length to study long term trends 
(on the order of days). Differing step lengths can be ac-
commodated by adjusting the activation frequencies of ac-
tions. For example, if ModFlow uses a step length of 2 
days, and TopModel uses a step length of 1 day, then the 
greatest frequency at which the models can communicate is 
every 2 days, and the activation frequencies of the actions 
in TopModel would be set to 2, and set to 1 in ModFlow. 
In this study, the models are parameterized to use a com-
mon step length of 1 day. 
 Inspection of the model PCIs reveals that TopModel 
simulates each subcatchment individually, each in a differ-
ent iteration of the subcatchment loop. The time step loop 
is therefore executed in its entirety for each subcatchment, 
in our case, three times. The time step loop in ModFlow 
though, is executed only once (the outer Stress loop is used 
to coordinate the time step loop, but each time step is only 
executed once). Without accounting for this inconsistency, 
the models would remain coordinated in simulation time 
for the simulation of the first subcatchment only. After 
that, ModFlow would exit, and TopModel would begin its 
simulation of the next subcatchment and expect to commu-
nicate again with ModFlow. This structural incompatibility 
can be resolved by using three instances of TopModel, 
where each instance simulates a different subcatchment. 
Since each instance simulates only a single subcatchment, 
the subcatchment loop is executed only once in each in-
stance, resulting in the time step loop being executed only 
once in each instance, just as in ModFlow. 
 The coupling description includes four action lists, one 
at each of the three expanded coupling points (A, B, and 
C), and one at TopModel’s Setup block. We explain the 
purpose of each. 
 

7
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 Setup Block: There are three instances of TopModel 
in this coupling that execute concurrently, each of which 
should simulate a different subcatchment. When executed 
though, each instance will read the same input files, result-
ing in all the instances simulating a subcatchment with the 
same characteristics. In order for each instance to simulate 
a different subcatchment, each instance must use a differ-
ent input characteristics file. Analogous issues occur with 
output files as well. The variables that store the filenames 
used by TopModel are accessible at the Setup block and 
are the subcats and outputs variables. These variables store 
the filenames of the input characteristics file and the output 
file, respectively. Two Update Actions are added to this 
block, each of which applies the custom update function, 
makeUnique, to each of these variables, making the filename 
stored in the variable unique. The function simply pre-
pends the instance identifier (accessible in all update func-
tions via the instanceID variable) to the filenames, making 
them unique. 

Coupling Point A: Although the value of the hnew 
variable sent from ModFlow needs to be used at Coupling 
Point B, the value is sent to Coupling Point A and stored 
because Coupling Point B is located within a loop, and 
communicating with ModFlow at that point would cause 
the models to become unsynchronized, similar to the sub-
catchment loop incompatibility discussed earlier. 

Coupling Point C: Since TopModel needs to use Mod-
Flow’s hnew variable, a Send Action is added to Coupling 
Point C in ModFlow, which sends the variable’s value to 
TopModel, making it accessible at Coupling Point A. 

Coupling Point B: To set the value of TopModel’s sd 
variable, an Update Action is added to Coupling Point B 
which applies the custom update function, setHead, which 
sets the value of the sd variable based on the value of 
ModFlow’s hnew variable. Note that ModFlow’s hnew 
value is an elevation, whereas TopModel’s sd variable is a 
depth. In order to set the sd value to the hnew value, the 
elevation must be converted to a depth. This requires 
knowledge of the elevation of the surface, since the depth 
is equal to the difference between the surface elevation and 
the water table elevation. The surface elevation data is not 
present in either model, but is additional information that is 
incorporated into the update function and exists only in the 
coupled model. These custom update functions were writ-
ten in Fortran and account for any differences in units be-
tween the variables upon which they operate. Here, the 
depth value is calculated in feet and converted into meters 
when the value of sd is set. 
 Differences in units are easy to resolve, but differences 
in spatial distribution are not so straightforward. Although 
hnew is an array representative of the water table head 
across a regular grid, the value received by TopModel must 
be a scalar that represents the water table head below the 
subcatchment being simulated. This transformation is ac-
complished via the data mapping shown in Figure 9, and is 
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assigned to the Send Action in the coupling description. 
The data mapping indicates that there are three instances of 
TopModel and one instance of ModFlow, and it describes 
how the water table head values from each grid cell are 
weighted and combined to arrive at a value representative 
of the water table head below each subcatchment. 
 

 
Figure 9: Data Mapping Relating the Regular Grid to the 
Irregular Subcatchments 
 
Notice that since hnew is an array, the data mapping de-
scribes how each element is communicated and trans-
formed. For example, the value of hnew received by in-
stance 1 of TopModel is a combination of the water table 
heads of the cells below it, cells 1, 2 and 4 (elements 1, 2 
and 4 of the hnew array), shown in Figure 8. Specifically, 
the value is composed of 20.4% of the value from cell 1, 
79.1% of the value from cell 2, and 0.5% of the value of 
cell 4. 
 This data mapping was created automatically via a 
script that we wrote in ArcMap. The grid cell polygons 
within ArcMap were numbered according to which ele-
ment of hnew they are associated with, and the subcatch-
ment polygons were numbered according to which instance 
of TopModel simulates it. The script then performs a 
common GIS operation called an overlay. The script de-
termines which polygons overlap with each other, and by 
how much, and then generates an output file in the proper 
data mapping format. In this way, the precise relationship 
between the variables can be established. Note though, that 
data mappings are general-purpose and can describe the 
relationship between any kind of data, not just spatial data. 
In this case we use a GIS to create the mapping, but other 
third-parties could be used to create mappings between 
other kinds of data. 
 Once the model input files have been prepared, the 
coupling can be executed via PCICouple. The runtime sys-
tem will start one instance of ModFlow and three instances 
of TopModel, along with any necessary couplers and up-
daters. The instances will communicate with each other 
throughout their simulations, and each instance will write 
its output files which can then be analyzed. 
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6 RESULTS 

We are interested in investigating how variations in 
the water table head simulated by ModFlow affect the 
overland flow simulated by TopModel. We performed two 
executions of the coupled model in which ModFlow was 
parameterized to simulate different water table heads, and 
we compared the TopModel output from these runs to the 
output simulated by TopModel in an uncoupled simulation, 
which serves as a control. We created the input file sets for 
the models for each of the three cases using initial data that 
we collected for the Tenmile Watershed. 

Figure 10 shows the overland flow from subcatchment 
2 for a two week period during which there were several 
storm events.  
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Figure 10: Comparison of the Overland Flow Simulated by 
TopModel in Each Case 
 
The output of the standalone execution of TopModel is in-
dicated by the solid line (labeled “topmodel only” in the 
legend), and the output from TopModel in each of the two 
coupled model runs is indicated by the dotted and dashed 
lines. The dotted line (labeled “topmodel+modflow (shal-
low)” in the figure) represents the output from TopModel 
when it was coupled to ModFlow, where ModFlow was 
parameterized to simulate a water table head that is half the 
depth as simulated by TopModel alone. The dashed line 
(labeled “topmodel+modflow (deep)” in the figure) repre-
sents the output from TopModel when it was coupled to 
ModFlow, where ModFlow was parameterized to simulate 
a water table head that is twice the depth as simulated by 
TopModel alone. 

The simulated outflow in each of the coupled cases is 
consistent with our expectations: in the case of the shallow 
water table, the outflow is greater than the control case, in-
dicating that baseflow from the saturated zone is contribut-
ing to the outflow. In the case of the deep water table, the 
outflow is less than the control case, indicating that the 
saturated zone contributes little to the outflow. 

7 CONCLUSIONS 

This paper introduces a new domain-specific language for 
model coupling. The interactions between models are de-
109
scribed visually, in terms of the models’ PCIs. Through the 
use of only three constructs, the actions, the way in which 
the variables of different models affect each other can be 
described. We have presented a case study that demon-
strates the process of creating a coupling through our ap-
proach. We showed how the complex relationships be-
tween model variables can be resolved in couplings via 
data mappings, which can be automatically created. We 
conclude that the ability to couple models without dealing 
with model source code significantly reduces the time re-
quired to design a coupling to the point that coupled mod-
els can be quickly prototyped. 
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