
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

A DOMAIN-SPECIFIC LANGUAGE FOR MODEL COUPLING

Tom Bulatewicz
Janice Cuny

Computer and Information Science

University of Oregon
Eugene, OR 97403, U.S.A.

ABSTRACT

There is an increasing need for the comprehensive simula-
tion of complex, dynamic, physical systems. Often such
simulations are built by coupling existing, component
models so that their concurrent simulations affect each
other. The process of model coupling is, however, a non-
trivial task that is not adequately supported by existing
frameworks. To provide better support, we have developed
an approach to model coupling that uses high level model
interfaces called Potential Coupling Interfaces. In this
work, we present a visual, domain-specific language for
model coupling, called the Coupling Description Lan-
guage, based on these interfaces. We show that it supports
the resolution of model incompatibilities and allows for the
fast-prototyping of coupled models.

1 INTRODUCTION

The practice of modeling and simulation within the scien-
tific community has resulted in the creation of a wealth of
validated models across many domains. The challenge now
is to integrate these models into more comprehensive simu-
lations of complex, dynamic, physical systems. Such com-
plex simulations are often built by model coupling, that is,
the merging of existing, component models so that their
concurrent simulations affect each other. Model coupling
is, however, a nontrivial task that is not adequately sup-
ported by existing frameworks. Current frameworks (Jop-
pich, Kurschner, and the MpCCI team 2005; Blind et al.
2000; Ford et al. 2004; Larson, Jacob, and Ong 2005; Hill
et al. 2004) often require direct manipulation of model
source code, which is prohibitively difficult in many situa-
tions. We have developed an approach to model coupling
that avoids this hurdle, allowing for the fast-prototyping of
coupled models. InCouple, our interface-based approach,
allows the scientist to work with a novel model representa-
tion called the Potential Coupling Interface (PCI) (Bulate-
wicz, Cuny, and Warman 2004; Bulatewicz and Cuny
2005).
10911-4244-0501-7/06/$20.00 ©2006 IEEE
 The PCI is an annotated flow graph that serves four
roles: first, it is a form of model metadata describing the
potential ways in which a model can be used in a coupling;
second it is the basis for the automatic generation of source
code that is used to instrument the original model codes;
third it is the vehicle for the specification of how a set of
coupled models are to interact with each other; and fourth
it is a reusable interface that allows couplings to be quickly
prototyped. Here we focus on the third and fourth roles.
We report on a novel domain-specific language for model
coupling called the Coupling Description Language (CDL)
that allows scientists to specify the coupling between sets
of models in terms of their PCIs.

In Section 2, we provide a short introduction to the
PCI. In Section 3, we present the Coupling Description
Language and explain how it assists the scientist in resolv-
ing incompatibilities between models. In Section 4, we
present an overview of the runtime system. In Sections 5
and 6 we demonstrate the use of the CDL with a case study
of the coupling of two well-known hydrology models and
present preliminary results.

2 THE POTENTIAL COUPLING INTERFACE

A PCI describes the coupling potential of a model, that is,
those aspects of the model that in some way affect how it
can be coupled to another model. They look much like the
flowcharts commonly found in model documentation. The
graph depicts the overall control flow of the program with
respect to potential coupling points, that is, places where
the values of state variables – the variables that represent
the state of the physical quantities being modeled – can be
exchanged with other models. These places are indicated
by dark arrows which can be expanded to appear as blocks,
such as in the example PCI in Figure 1, where the high-
lighted block Coupling Point A is expanded. Using our
PCICreate software, PCIs are generated automatically from
user-annotated model codes and then edited to improve
readability and to incorporate additional high-level infor-
mation. Block labels and colors (grayscale in the figure) in

Bulatewicz and Cuny

the graph, for example, are supplied by the programmer to
indicate the role of the code represented by the block.

Figure 1: A PCI as It Appears in PCICreate

PCIs are meant to be created just once, by the original

programmer (or someone familiar with the model), as
model metadata; after that they can be reused for any cou-
plings. The variables accessible at each coupling point (as
shown in the smaller inspector window in the figure) are
specified by the creator of the PCI. When a PCI is created,
the original model source code is automatically instru-
mented with communication code, and after it is compiled,
the resulting coupling-ready executable can be used in any
coupling. The communication code enables the model to
send and receive any variable at any coupling point, al-
though only a subset are sent and received in a particular
coupling. The primary role of the PCI is to serve as a con-
text for describing coupled models, in which the PCI acts
as a template. In the next section we present a language for
describing coupled models in terms of PCIs.

3 THE COUPLING DESCRIPTION LANGUAGE

Scientists describe the interactions between models in the
coupling environment (CE), provided by our PCICouple
application. A coupling specification begins with the PCIs
for one or more models that are to be coupled. Figure 2
shows an example of a coupling description with two PCIs.
The center window shows the PCIs for the models Top-
Model (Beven 1997) (left) and ModFlow (McDonald and
Harbaugh 1999) (right). The dashed arrow indicates that
data is sent from Coupling Point C in ModFlow on the
right to Coupling Point A in TopModel on the left. State
1092
variables are changed at Coupling Point B and at the
Setup block. The environment incorporates the Coupling
Description Language which consists of a set of actions
that operate on the accessible variables at coupling points.
To describe a coupled model is to specify a set of actions,
called an action list, for each of the relevant coupling
points. The action lists for Coupling Points C and B are
shown in the top-right and bottom-center of the figure, re-
spectively (there is only a single inspector window in PCI-
Couple; several screenshots of the inspector were collected
in the figure and the dotted lines were added to indicate
which blocks are associated with which inspector win-
dows). During execution of the coupled model, when a
model reaches a coupling point, the actions in its action list
are carried out. There are three kinds of actions: Send, Up-
date, and Store. Collectively, they allow the values of a
model’s variables to be changed based on the values of
other variables from that model, or from other, coupled
models.
 Send Action: The Send Action allows the value of a
variable at one coupling point to be used at another cou-
pling point. Send Actions are explicitly depicted in the
coupling environment by a labeled, dashed line between
the source and destination coupling points in the PCI tem-
plates, as shown in Figure 2. Solid lines indicate the flow
of control, and dashed lines indicate the flow of data. In the
figure, the value of variable hnew is sent from Coupling
Point C in ModFlow, to Coupling Point A in TopModel.
When a scientist adds a Send Action to a coupling specifi-
cation, the sent variable appears in the list of accessible
variables at the destination coupling point, making it us-
able by the actions at that point (the variable name is pre-
fixed with the name of the sending model to avoid name
conflicts). Each kind of action has a set of properties that
are set by the scientist when an action is added to the ac-
tion list of a coupling point. The properties of the Send Ac-
tion are variable, frequency, and mapping, as shown in the
center-top of Figure 2. The variable property is the name
of the variable to send, which is selected from the list of
accessible variables at the coupling point. The frequency
property indicates the activation frequency of the action,
which is how often the action is performed. Normally, the
actions in a coupling point’s action list are carried out each
time execution reaches that point. In some cases though, in
order to match the execution rates of different models, the
interaction needs to occur at a lesser frequency. This is the
purpose of the activation frequency property. It describes
how often the action should be performed. For example, an
activation frequency of 1 indicates that the action should
take place every time the coupling point is reached, while a
frequency of 4 indicates that the action should take place
every 4th time the coupling point is reached. More general
activation mechanisms are possible, but this simple use of
frequency has been sufficient for our hydrology domain.

Bulatewicz and Cuny

Fi

gure 2: The CE within PCICouple with Two Models (middle) and Various Inspector Windows (top and bottom)
1093

Bulatewicz and Cuny

The mapping property is the name of the data mapping that
should be used for this action. It describes which individual
instances should send the variable, and which should re-
ceive it. Data mappings are discussed further below.
 Update Action: The Update Action is used to change
the values of variables according to an update function,
that is, a self-contained (stateless) subroutine that uses
variables as arguments. When executed, the update func-
tion updates the value of one or more of its arguments. The
coupling environment provides a collection of common
functions (assign, sum, average, etc.) and the scientist can
add their own. A function is written in the same program-
ming language as the model within which it is used. The
scientist chooses the update function from the list of avail-
able functions, and assigns a variable to each of its argu-
ments, chosen from a list of accessible variables. The
properties of the Update Action are function, frequency,
and the argument assignments, as shown in the top-left and
bottom-right of Figure 2.
 Store Action: Store Actions provide a way to create
stored variables, which are new, independent, mutable
variables that do not exist in any of the model codes. They
are accessible at all the coupling points in a PCI and are
usable in Send and Update Actions. Each time a Store Ac-
tion is activated, the stored variable associated with the ac-
tion is set to either a (constant) value specified by the sci-
entist, or to the value of a model variable, overwriting any
previously stored value. The latter case allows for the value
of a variable at one coupling point to be accessed later, at a
different coupling point. Stored variables can be used as
arguments and updated in multiple Update Actions, provid-
ing a way for the result of one Update Action to be used in
another Update Action, or in a subsequent activation of the
same action. Each instance of each model has its own pri-
vate data memory in which these variables are stored. The
properties of the Store Action are name, frequency, set
from, and variable, as shown in the bottom-left of Figure 2.
The name property is the name of the new stored variable.
If its value is to be set to a model variable, then the set
from property is set to “Existing”, and the variable is se-
lected from a list of model variables and assigned to the
variable property. If its value is to be specified by the sci-
entist, then the set from property is set to “New” and the
scientist specifies the value, data type, and shape of the
new stored variable (additional fields appear).
 These actions provide the building blocks for describ-
ing coupled models. We may want to couple different
models together, or the same model to itself. In the latter
case, many instances of the same model code can be cou-
pled, where an instance is an executing model process.
Thus, for example, we can couple appropriately parameter-
ized instances of a model of a stream to simulate an entire
watershed. In cases with multiple instances, showing a PCI
for each instance would make the description cumbersome
to create and difficult to understand. For this reason, we
109
separate the description of a coupling into two parts. The
interaction between the models is described visually in the
CE in terms of the models’ PCIs, and the communication
between the instances of those models is described textu-
ally in data mappings. In this way, only a single PCI is dis-
played in the CE for each model in a coupling, and it
serves as a template that represents the behavior of possi-
bly many instances of that model.
 The data mappings are used to describe the communi-
cation between model instances. The CE describes the ac-
tion lists that are to be performed at each coupling point,
but which instances communicate with which? Which ones
perform which actions? This is described by data map-
pings. A simple data mapping is shown in Figure 3 (bot-
tom), with a partial coupling description (top).

Figure 3: A Partial Coupling Description (top) and Data
Mapping (bottom)

In the figure, the data mapping indicates that the value of
the y variable sent from the Stream model, should be scaled
to 75% before being received by the Lake model. The re-
sulting value of the y variable is then available for use in
Update and Store Actions at the destination coupling point
in the Lake model, and the variable appears in the list of
accessible variables at that point. Data mappings describe
how one variable is transformed as it is communicated
from one model to another by a Send Action. At most one
variable can be sent in any single Send Action, and if two
variables need to be transformed in the same way, then the
specification of the data mapping can be reused.
 The data mapping in the figure could represent a study
site in which a stream leads into a lake. If there are several
streams that lead to the same lake, each one can be simu-
lated by a different instance of the Stream model, and cou-
pled to the Lake model. This capability of coupling any
number of instances of the same model to another model is
an important feature of the CDL. The data mapping in Fig-
ure 4 indicates that there are three instances of the Stream
model that communicate with a single instance of the Lake
model. Since the data mapping indicates that there are
three instances of the Stream model, then at least three in-
stances of the model will be started when the coupling is
executed.
4

cz and Cuny
Bulatewi

Figure 4: A Data Mapping Indicating that There are Three
Instances of the Stream Model that Send to the Lake Model

In this way, each data mapping is only a partial description
of the overall behavior of a coupled model. The global be-
havior of a coupled model is determined collectively by all
the data mappings used in a coupling description. The sci-
entist does not need to explicitly list how many instances
there are in a coupling, the total number can be determined
from the collection of data mappings.
 Since all three instances of the Stream model are send-
ing their value of the same y variable, those values must be
combined in some way so that only a single value for y is
received by the Lake model. This is because the Lake
model, initially written in a different context, does not ex-
pect multiple values. The values of a variable sent from
several instances of a model are combined as a weighted
sum, as shown in Figure 4. Other schemes are possible, but
again, this simple weighted scheme has worked for our
domain.
 In this example though, it is likely that each of these
streams is part of a larger network of interconnected
streams. Each of the streams in the network can be simu-
lated by a different instance of the Stream model, and those
instances can be coupled together. The ability to couple to-
gether instances of the same model is an important feature
of the CDL. Figure 5 shows how three instances of the
same model, the Stream model, can send to each other.
Each instance in a data mapping is uniquely identified by a
number from 1 to n, called the instance identifier, where n
is the total number of instances in a coupled model. The
data mapping in the figure indicates that instances 1 and 2
of the Stream model should send their y values to instance
1095
3 of the Stream model. The values from instances 1 and 2
are combined, via a weighted sum, and the resulting value
is received by instance 3.

Figure 5: A Data Mapping Indicating that There are Three
Instances of the Stream Model that Send to Each Other

Note that this data mapping indicates that there should be
three instances of the Stream model in the coupled model.
The topology of which instances send to which is deter-
mined directly from the data mapping. This topology may
indicate that some instances are to receive a value, and that
others are not. If an action uses a variable that is sent from
another model, yet a particular instance does not receive
the value, then that instance does not carry out the action.
In this way, the communication topology dictates which
instances carry out which actions.
 For the case of sending array values, data mappings
can describe how each individual element of an array is
communicated and transformed between instances as well.
An example of this is included in the case study in Section
5. In both cases, data mappings are text files that are for-
matted similar to how they appear in the figures, and are
prepared by the scientist.
 Send Actions are asynchronous and always execute
immediately, and the sent values are queued until the re-
ceiver is ready for them. We have adopted a producer-
consumer style of communication in which each Send Ac-
tion results in the sending of one value, destined to a spe-
cific action at another coupling point, where it is con-
sumed. This allows the models to remain synchronized,
even if one model executes ahead of the other: the produc-
ing model can execute ahead sending values, the order of
which is preserved in the receiving queue. The way in
which data mappings are applied and values are queued
during execution of the coupled model is described next.

Bulatewicz and Cuny

4 RUNTIME SYSTEM OVERVIEW

Once the coupling description is completed, the coupled
model can be executed via PCICouple. As described in
Section 2, as part of the PCI-creation process a coupling-
ready model executable is created for each model. The ex-
ecutable has the ability to send and receive any variable at
any coupling point. Which variables are sent and received
by each instance in a particular coupling is determined by a
script that is generated from the coupling description. Each
time a coupled model is executed, a set of scripts are com-
piled from the coupling description and one is given to
each model instance. Scripts indicate which variable values
are sent and received at each coupling point for each in-
stance, and the runtime system handles the necessary trans-
formations of these values. An overview is shown in Fig-
ure 6.

Figure 6: Overview of the Runtime System

Each shape in the figure represents an independently exe-
cuting process, of which there are four kinds:

• Model Instances (circles) are independently exe-
cuting model processes.

• Couplers (squares) facilitate the communication
between model instances.

• Updaters (diamonds) assist couplers in the execu-
tion of update functions.

• Controllers (house shape) coordinate all the proc-
esses.

The communication between these different processes is
indicated by arrows in the figure. Notice that both updaters
and model instances communicate only with couplers.
Every instance is assigned to a specific coupler, indicated
in the figure as a dashed line, and many instances can be
assigned to the same coupler. An instance’s coupler pro-
vides two services to the instance, value storage and value
updating:

• The coupler stores values for the instance, to sup-
port Store Actions, and acts as a queue that col-
lects values destined to the instance, holding them
until the instance is ready for them.
1096
• To support Update Actions, the coupler applies
any necessary data mappings, and then uses its
updater process to carry out the execution of up-
date functions. Each coupler has an updater proc-
ess that can execute the built-in update functions
and any custom functions added by the scientist.

The controller is responsible for starting all the other proc-
esses and giving them information about the coupling de-
scription. We have developed a custom communication li-
brary as part of the runtime system, based on TCP sockets,
that allows models to communicate over a network. We
present a case study next that ties everything together.

5 CASE STUDY

In collaboration with Alphonce Guzha, from Utah Univer-
sity, we have conducted a number of case studies and re-
port on one of them here. Although the interpretation of the
results is beyond the scope of this paper, we demonstrate
the process of creating a coupled model using our ap-
proach.

A common use of modeling in the field of hydrology
is in the study of how rainfall affects surfacewater, such as
rivers and streams. One such rainfall-runoff model is
TopModel, which simulates the amount of surfacewater
runoff that exits an area of land in response to rainfall. It is
written in Fortran and consists of approximately 400 lines
of code. The amount of runoff that is generated in response
to a storm event is not only dependent upon the intensity of
the rainfall, but it is also dependent upon the characteristics
of the land upon which it falls. The slope of the land and
the type of ground cover (grass, forest, urban, etc.) are im-
portant characteristics that are taken into account in the
model. Another important characteristic is the depth of the
groundwater beneath the land, called the water table head.
If the water table is close to the surface, then water is
drawn upward and contributes to the amount of runoff, de-
creasing the amount of groundwater. This upward move-
ment of water is called baseflow. Conversely, if the
groundwater is deep below the surface, then runoff is
drawn downward and contributes to the quantity of
groundwater, decreasing the amount of runoff. This
downward movement of water is called recharge. This wa-
ter flux occurs through the unsaturated zone, located just
beneath the land surface. In the unsaturated zone, the very
small spaces between particles of dirt and sand are filled
partially by air and partially by water. Below the unsatu-
rated zone is the saturated zone, in which the small spaces
between particles are filled entirely by groundwater. The
upper limit of the saturated zone is the water table. An il-
lustration of these zones and the water flux between them
is shown in Figure 7.
 TopModel was not designed to accurately simulate
groundwater and makes simplifying assumptions regarding

Bulatewicz and Cuny

it: the saturated zone is in equilibrium with a steady re-
charge rate over an upslope contributing area, and the wa-
ter table is almost parallel to the surface such that the ef-
fective hydraulic gradient is equal to the local surface
slope. A more accurate simulation can be achieved by in-
corporating a complete simulation of the groundwater. In
this study, we show how the groundwater-flow model
ModFlow can be coupled to TopModel to achieve a more
comprehensive simulation.

Figure 7: The Interaction between Surfacewater and
Groundwater

 ModFlow is a widely used groundwater-flow model
developed by the U.S. Geological Society. It is written in
Fortran and has approximately 10,000 lines of code. It
simulates the movement of groundwater and the primary
output is the water table head. In this coupling, the water
table head value calculated by TopModel is replaced with
the head value simulated by ModFlow. To simplify our
discussion, we present only how ModFlow affects Top-
Model, whereas in our complete study, TopModel affects
ModFlow as well.
 The first step in creating the coupling is to identify
which state variables in each model represent water table
head. By inspection of the models’ PCIs, the participating
variables can be identified and are TopModel’s sd variable
and ModFlow’s hnew variable. As described in the Top-
Model PCI, sd represents the water table depth beneath an
irregularly shaped 2d area of land called a subcatchment. A
subcatchment is an area of land that drains to a single
point. In our study site (the Tenmile Watershed in Wash-
ington State), there are three subcatchments. The sd vari-
able is a scalar, and represents a different subcatchment on
each iteration of the subcatchment loop, visible in the
TopModel PCI in Figure 2. ModFlow’s hnew variable is an
array in which each element represents the water table head
in a different regular grid cell. The spatial distributions of
these variables are shown in Figure 8, as they appear in the
ArcMap Geographic Information System (GIS). This dif-
ference in spatial distribution of the participating variables
is common in couplings and must be accounted for. In the
CDL, such incompatibilities are resolved through data
mappings. We first present the coupling description and
then explain how the data mapping is created through the
use of a GIS.
 The coupling description is shown in Figure 2. As in
most couplings, the models communicate within their time
109
step loops. As long as the models start at the same point in
simulation time, and use the same time step length, then
the models will remain coordinated in simulation time.

Figure 8. Three Subcatchments Superimposed on a Regular
Grid with Four Cells as They Appear in ArcMap

ModFlow though, usually uses a long time step length, on
the order of days or weeks due to the slow speed at which
groundwater moves, and TopModel can use either a short
step length to study individual storm events (on the order
of hours), or a longer step length to study long term trends
(on the order of days). Differing step lengths can be ac-
commodated by adjusting the activation frequencies of ac-
tions. For example, if ModFlow uses a step length of 2
days, and TopModel uses a step length of 1 day, then the
greatest frequency at which the models can communicate is
every 2 days, and the activation frequencies of the actions
in TopModel would be set to 2, and set to 1 in ModFlow.
In this study, the models are parameterized to use a com-
mon step length of 1 day.
 Inspection of the model PCIs reveals that TopModel
simulates each subcatchment individually, each in a differ-
ent iteration of the subcatchment loop. The time step loop
is therefore executed in its entirety for each subcatchment,
in our case, three times. The time step loop in ModFlow
though, is executed only once (the outer Stress loop is used
to coordinate the time step loop, but each time step is only
executed once). Without accounting for this inconsistency,
the models would remain coordinated in simulation time
for the simulation of the first subcatchment only. After
that, ModFlow would exit, and TopModel would begin its
simulation of the next subcatchment and expect to commu-
nicate again with ModFlow. This structural incompatibility
can be resolved by using three instances of TopModel,
where each instance simulates a different subcatchment.
Since each instance simulates only a single subcatchment,
the subcatchment loop is executed only once in each in-
stance, resulting in the time step loop being executed only
once in each instance, just as in ModFlow.
 The coupling description includes four action lists, one
at each of the three expanded coupling points (A, B, and
C), and one at TopModel’s Setup block. We explain the
purpose of each.

7

Bulatewicz and Cuny

 Setup Block: There are three instances of TopModel
in this coupling that execute concurrently, each of which
should simulate a different subcatchment. When executed
though, each instance will read the same input files, result-
ing in all the instances simulating a subcatchment with the
same characteristics. In order for each instance to simulate
a different subcatchment, each instance must use a differ-
ent input characteristics file. Analogous issues occur with
output files as well. The variables that store the filenames
used by TopModel are accessible at the Setup block and
are the subcats and outputs variables. These variables store
the filenames of the input characteristics file and the output
file, respectively. Two Update Actions are added to this
block, each of which applies the custom update function,
makeUnique, to each of these variables, making the filename
stored in the variable unique. The function simply pre-
pends the instance identifier (accessible in all update func-
tions via the instanceID variable) to the filenames, making
them unique.

Coupling Point A: Although the value of the hnew
variable sent from ModFlow needs to be used at Coupling
Point B, the value is sent to Coupling Point A and stored
because Coupling Point B is located within a loop, and
communicating with ModFlow at that point would cause
the models to become unsynchronized, similar to the sub-
catchment loop incompatibility discussed earlier.

Coupling Point C: Since TopModel needs to use Mod-
Flow’s hnew variable, a Send Action is added to Coupling
Point C in ModFlow, which sends the variable’s value to
TopModel, making it accessible at Coupling Point A.

Coupling Point B: To set the value of TopModel’s sd
variable, an Update Action is added to Coupling Point B
which applies the custom update function, setHead, which
sets the value of the sd variable based on the value of
ModFlow’s hnew variable. Note that ModFlow’s hnew
value is an elevation, whereas TopModel’s sd variable is a
depth. In order to set the sd value to the hnew value, the
elevation must be converted to a depth. This requires
knowledge of the elevation of the surface, since the depth
is equal to the difference between the surface elevation and
the water table elevation. The surface elevation data is not
present in either model, but is additional information that is
incorporated into the update function and exists only in the
coupled model. These custom update functions were writ-
ten in Fortran and account for any differences in units be-
tween the variables upon which they operate. Here, the
depth value is calculated in feet and converted into meters
when the value of sd is set.
 Differences in units are easy to resolve, but differences
in spatial distribution are not so straightforward. Although
hnew is an array representative of the water table head
across a regular grid, the value received by TopModel must
be a scalar that represents the water table head below the
subcatchment being simulated. This transformation is ac-
complished via the data mapping shown in Figure 9, and is
1098
assigned to the Send Action in the coupling description.
The data mapping indicates that there are three instances of
TopModel and one instance of ModFlow, and it describes
how the water table head values from each grid cell are
weighted and combined to arrive at a value representative
of the water table head below each subcatchment.

Figure 9: Data Mapping Relating the Regular Grid to the
Irregular Subcatchments

Notice that since hnew is an array, the data mapping de-
scribes how each element is communicated and trans-
formed. For example, the value of hnew received by in-
stance 1 of TopModel is a combination of the water table
heads of the cells below it, cells 1, 2 and 4 (elements 1, 2
and 4 of the hnew array), shown in Figure 8. Specifically,
the value is composed of 20.4% of the value from cell 1,
79.1% of the value from cell 2, and 0.5% of the value of
cell 4.
 This data mapping was created automatically via a
script that we wrote in ArcMap. The grid cell polygons
within ArcMap were numbered according to which ele-
ment of hnew they are associated with, and the subcatch-
ment polygons were numbered according to which instance
of TopModel simulates it. The script then performs a
common GIS operation called an overlay. The script de-
termines which polygons overlap with each other, and by
how much, and then generates an output file in the proper
data mapping format. In this way, the precise relationship
between the variables can be established. Note though, that
data mappings are general-purpose and can describe the
relationship between any kind of data, not just spatial data.
In this case we use a GIS to create the mapping, but other
third-parties could be used to create mappings between
other kinds of data.
 Once the model input files have been prepared, the
coupling can be executed via PCICouple. The runtime sys-
tem will start one instance of ModFlow and three instances
of TopModel, along with any necessary couplers and up-
daters. The instances will communicate with each other
throughout their simulations, and each instance will write
its output files which can then be analyzed.

Bulatewicz and Cuny

6 RESULTS

We are interested in investigating how variations in
the water table head simulated by ModFlow affect the
overland flow simulated by TopModel. We performed two
executions of the coupled model in which ModFlow was
parameterized to simulate different water table heads, and
we compared the TopModel output from these runs to the
output simulated by TopModel in an uncoupled simulation,
which serves as a control. We created the input file sets for
the models for each of the three cases using initial data that
we collected for the Tenmile Watershed.

Figure 10 shows the overland flow from subcatchment
2 for a two week period during which there were several
storm events.

0.8

0.6

0.4

0.2

0.0

ov
er

la
nd

 fl
ow

 (m
/d

ay
)

144142140138136134132130
time (days)

 topmodel only
 topmodel+modflow (shallow)
 topmodel+modflow (deep)

Figure 10: Comparison of the Overland Flow Simulated by
TopModel in Each Case

The output of the standalone execution of TopModel is in-
dicated by the solid line (labeled “topmodel only” in the
legend), and the output from TopModel in each of the two
coupled model runs is indicated by the dotted and dashed
lines. The dotted line (labeled “topmodel+modflow (shal-
low)” in the figure) represents the output from TopModel
when it was coupled to ModFlow, where ModFlow was
parameterized to simulate a water table head that is half the
depth as simulated by TopModel alone. The dashed line
(labeled “topmodel+modflow (deep)” in the figure) repre-
sents the output from TopModel when it was coupled to
ModFlow, where ModFlow was parameterized to simulate
a water table head that is twice the depth as simulated by
TopModel alone.

The simulated outflow in each of the coupled cases is
consistent with our expectations: in the case of the shallow
water table, the outflow is greater than the control case, in-
dicating that baseflow from the saturated zone is contribut-
ing to the outflow. In the case of the deep water table, the
outflow is less than the control case, indicating that the
saturated zone contributes little to the outflow.

7 CONCLUSIONS

This paper introduces a new domain-specific language for
model coupling. The interactions between models are de-
109
scribed visually, in terms of the models’ PCIs. Through the
use of only three constructs, the actions, the way in which
the variables of different models affect each other can be
described. We have presented a case study that demon-
strates the process of creating a coupling through our ap-
proach. We showed how the complex relationships be-
tween model variables can be resolved in couplings via
data mappings, which can be automatically created. We
conclude that the ability to couple models without dealing
with model source code significantly reduces the time re-
quired to design a coupling to the point that coupled mod-
els can be quickly prototyped.

ACKNOWLEDGMENTS

This work was partially supported by the National Science
Foundation grants ACI-0081487 and SBE-0318372. The
authors thank Alphonce Guzha for providing domain ex-
pertise in the design of the TopModel/ModFlow coupling.

REFERENCES

Beven, K. J. 1997. Topmodel: a critique. Hydrological
Processes, 11(9): 1069-1085.

Blind, M. W., A. Ubbels, L. R. Wentholt, Th. L. van Stijn,
A. H. Bakema, J. D. Bulens, J. J. Noort, B. van Ad-
richem, J. Stout, and F. C. van Geer. 2000. Towards a
well-oiled model infrastructure for water management:
the generic framework water program. In Proceedings
of HydroInformatics 2000. Cedar Rapids, IA.

Bulatewicz, T., J. Cuny, and M. Warman. 2004. The poten-
tial coupling interface: Metadata for model coupling.
In Proceedings of the 2004 Winter Simulation Confer-
ence, Piscataway, New Jersey: Institute for Electrical
and Electronics Engineers.

Bulatewicz, T. and J. Cuny. 2005. Interface-based support
for model coupling: Spatial representation and com-
patibility issues. In Proceedings of the 2005 GeoCom-
putation Conference, Ann Arbor, MI.

Ford, R. W., G. D. Riley, M. K. Bane, C. W. Armstrong,
and T. L. Freeman. 2004. GCF: A general coupling
framework. Concurrency and Computation: Practice
and Experience, 18(2): 163-181.

Hill, C., C. DeLuca, V. Balaji, M. Suarez, and A. DaSilva.
2004. The architecture of the earth system modeling
framework. Computing in Science and Engineering,
6(1): 18-28.

Joppich, W., M. Kurschner, and the MpCCI team. 2005.
MpCCI - a tool for the simulation of coupled applica-
tions. Concurrency and Computation: Practice and
Experience, 18(2): 183-192.

Larson, J., R. Jacob, and E. Ong. 2005. The model cou-
pling toolkit: A new Fortran90 toolkit for building
multiphysics parallel coupled models. International
9

Bulatewicz and Cuny

Journal for High Performance Computing Applica-
tions, 19(3): 277-292.

McDonald, M. G., and A. W. Harbaugh. 1988. A modular
three-dimensional finite difference ground-water flow
model. In Techniques of Water-Resources Investiga-
tions of the United States Geological Survey, Book 6,
Chapter A1.

AUTHOR BIOGRAPHIES

TOM BULATEWICZ received a B.S. and B.A. from the
University of Rochester in 2001, an M.S. from the Univer-
sity of Oregon in 2003, and a Ph.D. from the University of
Oregon in 2006. His research interests include distributed
computing, domain-specific environments and modeling

1100
and simulation. His email address is <tomb@cs.
uoregon.edu>.

JANICE CUNY received a B.A. from Princeton Univer-
sity in 1973, an M.S. from the University of Wisconsin in
1974, and a Ph.D. from the University of Michigan in
1981. She has been on the faculty at Purdue University and
the University of Massachusetts. Currently she is a Profes-
sor of Computer and Information Science at the University
of Oregon but is on leave at the National Science Founda-
tion where she runs the Broadening Participation in Com-
puting (BPC) initiative. Her research interests include dis-
tributed computing, programming environments, and
domain-specific environments for scientific computation.
Her email address is <cuny@cs.uoregon.edu>.

mailto:tomb@cs.uoregon.edu
mailto:tomb@cs.uoregon.edu
mailto:cuny@cs.uoregon.edu

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

