
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

PERFORMANCE EVALUATION OF A CMB PROTOCOL

Célia L. O. Kawabata

Centro Universitário Central Paulista

Rua Miguel Petroni, 5111
São Carlos, SP 13563-470, BRAZIL

Regina H. C. Santana
Marcos J.Santana
Sarita M. Bruschi

ICMC, Universidade de São Paulo
Av. Trabalhador São-Carlense 400

São Carlos, SP 13560-970, BRAZIL

Kalinka R. L. J. Castelo Branco

Centro Universitário Eurípides
de Marília

Av Hygino Muzzi Filho 529
Marília, SP 17525-901, BRAZIL

ABSTRACT

This paper presents the performance evaluation of a CMB
(Chandy-Misra-Bryant) protocol from the perspective of
execution time. The performance of each logical process in
simulation is measured. Our evaluation shows that logical
processes can have different behaviors and different proto-
cols can be used simultaneously in simulations. While
some logical processes may perform well using conserva-
tive protocols, others can use optimistic protocols because
otherwise most of the time these processes would be
blocked unnecessarily. In order to analyze the behavior of
the simulations some models were simulated using a CMB
implementation called ParSMPLX. These models showed
that each logical process of a simulation has a different be-
havior that makes it more suitable for a specific protocol,
increasing the performance.

1 INTRODUCTION

The simulation technique is a powerful tool to evaluate
performance of computer systems, however it can consume
a lot of time and computational resources. Even with fast
processors, simulations can take many hours to complete.
In order to reduce this time, simulations can be executed in
parallel machines or distributed systems (Dongarra et al.
2002, Kumar et al. 2004, Fujimoto 2003).

One parallel simulation approach is to decompose the
simulation model into logical processes and simulate each
one in a different processor. This approach can reduce the
simulation time for some applications, mainly those which
are easy to become parallel and have large computational
granularity.

Research has been done in distributed simulation tech-
nique and most of these studies focus on two well known
protocols: conservative and optimistic (Bruschi et al. 2004,
Xu and Chung 2004, Bauer et al. 2005, Bononi et al. 2005,
Curry et al. 2005, Lee, Luu and Konangi 2005).

10121-4244-0501-7/06/$20.00 ©2006 IEEE
Events in the conservative approach are executed only
when causality errors can be avoided, i.e., when there is
not an event with smaller timestamp than the first event in
the event queue.The optimistic protocol, on the other hand,
simulates all the events without being concerned about
causality errors. If an error occurs, the simulation returns to
a safe state (using rollbacks) and the simulation can con-
tinue.

Various papers have shown that choosing a parallel
simulation protocol is a difficult task because it depends on
a set of factors concerning the model and the computa-
tional platform (Alonso, Frutos and Palacio 1994, Choi and
Chung 1995, Xu and Chung 2004). Computational granu-
larity, model partitioning, load balancing, and lookahead
are a few factors that can influence the simulation per-
formance.

Attempting to predict the performance of a parallel
simulation is a difficult task because different models have
different characteristics. Some models can have good
speedup, even though some logical processes of the simu-
lation are slower than others.

This paper describes experiments that were carried out
with sequential (SMPLX) and conservative distributed
simulations (ParSMPLX) to find out the factors that can
affect the performance of a simulation. The results show
that each logical process of a simulation model has particu-
lar characteristics that make it more suitable for a specific
protocol (conservative or optimistic) depending on factors
such as blocked time, number of null messages exchanged,
and the type of blocking that the logical process can ex-
perience (necessary or unnecessary).

We explain the factors that affect the simulation per-
formance and use them to demonstrate how the perform-
ance can be analyzed in each one of the logical processes.
When these metrics are collected and analysed at run-time,
an opportunity is created for adapting the simulation for
increased speed. The performance we obtained with our
method differs from what has been reported in the litera-
ture.

Kawabata, Santana, Santana, Bruschi, and Branco

The remainder of this paper is organized as follows.
Section 2 presents work related to the performance evalua-
tion of parallel simulations. Section 3 describes the func-
tional extensions we used to monitor simulations. Section 4
describes the models and the results we obtained. Finally,
in Section 5, we present concluding remarks.

2 RELATED WORK

Various factors must be analyzed to reveal if a parallel
simulation has “good speedup” or not. Small simulation
models with fine granularity may exhibit better perform-
ance using sequential simulation. The use of parallel simu-
lation tend to produce better results in more complex mod-
els with high computational granularity (Teo and Tay
1999, Xu and Chung 2004).

Some of the factors that can affect the performance of
distributed simulations are: model size, load balancing,
computational granularity, communication overhead and
model partitioning. In (Xu and Chung 2004), a model is
proposed to predict the performance of synchronous dis-
crete-event simulations. This model is used to predict the
maximum achievable speedup for given applications and
platform characteristics.

Teo and Tay (1999), present a scalable parallel simula-
tion framework called SPaDES (Structured Parallel Dis-
crete-Event Simulation). The paper shows that SPaDES
can achieve good speedup for applications with scalable,
large models. Teo, Wang and Tay (1999) present a frame-
work for studying the complex performance interactions in
parallel simulations considering three main components:
simulation model, parallel simulation strategy/protocol and
execution platform. The paper analyses how the causal-
ity/dependency of events affects the performance of the
simulation and determines the potential event parallelism
in the simulation models.

Bagrodia et al. (1999) describe the use of COMPASS, a
parallel simulator for predicting the performance of pro-
grams. Real-world applications and synthetic benchmarks
are used to study application scalability, sensitivity to
communication latency, and the interplay between factors
such as communication patterns and parallel file system
caching on application performance.

Teo, Ng and Onggo (2002) evaluate the performance of
a conservative simulation using distributed-shared memory
for inter-processor communication. They conclude that the
performance of parallel simulation is highly dependent on
two main factors: the event synchronization overhead and
the cost of inter-process communication.

Lee et al. (2005) performed an independent benchmark
of the parallel distributed network simulator. The effect of
cross-traffic on wall-clock time needed to complete a simu-
lation for a set of basic network topologies was measured.
The results were compared with the wall-clock time
needed on a single processor. They developed a perform-
1013
ance model that can be used as a guideline for designing
future simulations.

Teo, Turner and Juhasz (2005) describe a performance
analyzer tool developed to predict the execution perform-
ance of parallel discrete event simulation programs, using
either optimistic or conservative protocols. This analyzer
predicts the parallel execution performance based on a se-
quential simulation run without the development of the
parallel implementation.

While the previous articles evaluated the entire simula-
tion, our research considers the evaluation of each logical
process isolated from each other. This kind of evaluation
can help us to find some weak points of the conservative
simulation and allows for some considerations about hav-
ing two or more protocols simultaneously in a simulation.

3 SIMULATION MONITORS

In order to monitor the parallel simulation and analyze its
performance, a modified functional extension based on
SMPL (MacDougall 1987) was used. SMPL is an event
oriented simulation library used with C language for
IBM/PC compatible platform. Using the SMPL source
code, a new version was developed for the Unix platform,
the SMPLX (Ulson et al. 1999), using dynamical data
structures. This approach is for sequential simulations.

Ulson et al. (1999) also made some modifications in
SMPLX to adapt it to the conservative protocol CMB with
null messages. This approach was developed in
IBM/RS6000 and IBM SP2 platforms, using the PVM and
PVMe message passing environments. This version was
called ParSMPL. Subsequently, Tatsumi (2003) adapted
SMPLX and ParSMPL to the Linux operational system.
The lookahead of the ParSMPL version was improved by
implementing of dynamical lookahead.

These environments allowed for the use of software
monitors to obtain important information to evaluate the
simulation. One factor is the type of blocking that occurs.
Considering conservative parallel simulation with null
messages, two types of blocking can occur when a com-
plete message arrives:

• Necessary: When the received message is the

event to be executed and the event queue is not
empty.

• Unnecessary: When the received message is not
the event to be executed, but one that enables the
execution of another event in the event queue.

The unnecessary blocking by null message occurs when

a null message arrives and it allows for an event of the
event queue to be executed. There are more than these 3
types of blocking, however they do not affect our evalua-
tion in this paper.

Kawabata, Santana, Santana, Bruschi, and Branco

These metrics can help to characterize the behavior of
each logical process. For example, if many messages are
blocked necessarily, it can be concluded that the execution
of an optimistic simulation will probably experience many
rollbacks. However, this metric is not enough to evaluate
the simulation. In addition, the blocked time of each case
analyzed was estimated. This time corresponds to the in-
terval between the last executed event and the next one.

This value is important because if a logical process
takes more time being blocked necessarily than blocked
unnecessarily, then the conservative protocol is probably
performing well. If the opposite occurs, an exchange of
protocol should be considered.

The blocked time was estimated measuring the inter-
val between the execution of the last event and the recep-
tion of a new message to be evaluated. It was considered
that the logical processes execute events in the rest of the
time.

Another metric is a value that expresses the ratio of the
executed time and blocked time. The executed time is the
time consumed for running the events and the blocked time
is the time consumed for waiting for messages from other
logical processes. With these values, it can be observed if
the logical process is using more time processing or being
blocked. Values higher than 1 show good performances.
When this value is smaller than 1, it is important to analyze
if there were events in the queue that were ready to be exe-
cuted (events blocked unnecessarily).

The speedup of the simulation was used to analyze the
performance of the simulation comparing the sequential
simulation with the distributed simulation (sequential
simulation time divided by distributed simulation time).

In our approach, only two logical processes were used
because the models were quite simple, however it is impor-
tant to show many characteristics of conservative distrib-
uted simulations.

4 MODELS AND RESULTS

Some models were analyzed to evaluate the performance
of each logical process of simulations. The models are a
central server (Figure 1), a simplified computational sys-
tem (Figure 2) and a queue model with two different parti-
tionings (Figure 3 and 4). The central server was decom-
posed into two logical processes (one with CPU and the
other with four disks). The simplified computational sys-
tem was decomposed into two logical processes (one with
CPU and the other with one disk). The queue model was
decomposed into two logical processes where the second
partition minimizes the communication and has better load
balancing.
1014

Fig. 1: A Central Server with 2 Logical Processes

Fig. 2: A Simplified Computational System

Fig. 3: A Queue Model with 7 Resources

Fig. 4: Same Queue Model with Different Partitioning

CPU DISK

60%
LP0 LP1

CPU

LP0

LP1

DISK 4

DISK 1

DISK 2

DISK 3

25%

25%

25%

25%

Kawabata, Santana, Santana, Bruschi, and Branco

The models were executed in a network of computers
isolated from external interference. The results of the first
model can be observed in Tables 1 and 2, the second model
in Tables 3 and 4, the third model in Tables 5 and 6 and the
last model in Table 7 and 8. To simulate the computational

granularity in each service center, a matrix multiplication
task was used. The granularity is represented by the size of
the square matrix to be multiplied: a fine granularity (zero
and 25), a medium granularity (50 and 75) and a coarse
grain (100).

Table 1: Results of Logical Process 0 (Model 1 – Central Server)

Granularity Speedup
Executing /

blocked
(LP0)

% blocked
time (LP0)

% necessary
blocked

time

% unneces.
blocked

time

% neces.
blocked com-

plete msg (LP0)

% unneces.
blocked compl

msg (LP0)

%unneces.
blocked null
msg (LP0)

0 0.037 0.29 82.82 60.52 17.72 73.79 16.81 80.53
25 0.625 0.76 56.85 31.32 23.66 75.66 6.77 77.05
50 1.037 1.62 45.28 17.06 27.63 75.67 6.77 77.03
75 1.132 2.06 42.55 13.89 28.57 75.66 6.78 77.03

100 1.161 2.23 41.86 12.97 28.89 75.67 6.77 77.03

Table 2: Results of Logical Process 1 (Model 1 – Central Server)

Granularity
Executing /

blocked
(LP1)

% blocked
time (LP1)

% necessary
blocked time

% unneces-
sary blocked

time

% necessary
blocked com-

plete msg (LP1)

% unneces.
blocked compl

msg (LP1)

% unneces.
blocked null
msg (LP1)

0 0.14 87.96 34.38 52.10 51.36 0.00 98.50
25 0.51 66.37 17.67 47.80 51.03 0.00 95.28
50 0.78 56.29 8.86 47.20 51.05 0.00 95.36
75 0.85 54.04 6.87 47.13 51.05 0.00 95.36

100 0.87 53.34 6.27 47.06 51.05 0.00 95.36

Table 3: Results of Logical Process 0 (Model 2 – Simplified Computational System)

Granularity Speedup
Executing /

blocked
(LP0)

% blocked
time (LP0)

% necessary
blocked

time

% unneces.
blocked

time

% neces.
blocked com-

plete msg (LP0)

% unneces.
blocked compl

msg (LP0)

%unneces.
blocked null
msg (LP0)

0 0.552 0.654 60.44 18.22 38.88 71.56 0.00 97.74
25 0.819 1.444 40.91 10.32 28.41 71.19 0.00 98.46
50 1.031 3.399 22.73 3.54 18.47 71.46 0.00 98.54
75 1.110 4.693 17.57 1.51 15.79 71.46 0.00 98.54

100 1.129 5.346 15.76 0.83 14.80 71.52 0.00 98.56

Table 4: Results of Logical Process 1 (Model 2 – Simplified Computational System)

Granularity
Executing /

blocked
(LP1)

% blocked
time (LP1)

% necessary
blocked time

% unneces-
sary blocked

time

% necessary
blocked com-

plete msg (LP1)

% unneces.
blocked compl

msg (LP1)

% unneces.
blocked null
msg (LP1)

0 0.045 95.72 2.51 53.07 9.90 0.00 43.45
25 0.151 86.86 1.71 53.52 9.80 0.00 43.73
50 0.277 78.33 1.12 54.26 9.84 0.00 44.17
75 0.323 75.58 0.95 54.38 9.84 0.00 44.17

100 0.337 74.79 0.89 54.51 9.78 0.00 44.23

1015

Kawabata, Santana, Santana, Bruschi, and Branco

Table 5: Results of Logical Process 0 (Model 3 – A Queue Model)

Granularity Speedup
Executing /

blocked
(LP0)

% blocked
time (LP0)

% necessary
blocked

time

% unneces.
blocked

time

% neces.
blocked com-

plete msg (LP0)

% unneces.
blocked compl

msg (LP0)

%unneces.
blocked null
msg (LP0)

0 0.306 0.32 75.49 15.52 50.30 85.76 0.00 93.00
25 0.809 1.52 39.72 4.92 31.80 85.05 0.00 95.58
50 1.000 2.62 27.59 1.22 25.68 85.05 0.00 95.58
75 1.036 2.96 25.27 0.52 24.51 85.05 0.00 95.58
100 1.046 3.07 24.58 0.32 24.15 85.05 0.00 95.58

Table 6: Results of Logical Process 1 (Model 3 – A Queue Model)

Granularity
Executing /

blocked
(LP1)

% blocked
time (LP1)

% necessary
blocked time

% unneces-
sary blocked

time

% necessary
blocked com-

plete msg (LP1)

% unneces
blocked compl

msg (LP1)

% unneces
blocked null
msg (LP1)

0 0.12 89.03 15.48 71.74 41.64 0.00 99.96
25 0.25 80.17 9.47 70.02 42.04 0.00 99.87
50 0.30 76.84 7.03 69.65 42.04 0.00 99.87
75 0.31 76.18 6.57 69.56 42.04 0.00 99.87

100 0.32 76.01 6.44 69.55 42.04 0.00 99.88

Table 7: Results of Logical Process 0 (Model 3 – A Queue Model with a Different Partitioning)

Granularity Speedup
Executing /

blocked
(LP0)

% blocked
time (LP0)

% necessary
blocked

time

% unneces.
blocked

time

% neces.
blocked com-

plete msg (LP0)

% unneces.
blocked compl

msg (LP0)

%unneces.
blocked null
msg (LP0)

0 0.335 0.43 170.78 420.22 602.03 92.34 0.00 91.56
25 0.854 2.19 50.96 230.43 734.03 92.23 0.00 95.85
50 1.041 4.33 11.32 169.21 901.41 92.23 0.00 95.85
75 1.076 5.09 3.90 157.96 962.18 92.23 0.00 95.85
100 1.087 5.35 1.78 154.68 982.84 92.23 0.00 95.85

Table 8: Results of Logical Process 1 (Model 3 – A Queue Model with a Different Partitioning)

Granularity
Executing /

blocked
(LP1)

% blocked
time (LP1)

% necessary
blocked time

% unneces-
sary blocked

time

% necessary
blocked com-

plete msg (LP1)

% unneces.
blocked compl

msg (LP1)

% unneces.
blocked null
msg (LP1)

0 0.16 86.40 17.64 67.16 43.78 0.00 99.92
25 0.21 82.44 12.91 68.94 44.07 0.00 99.92
50 0.23 81.35 11.02 70.19 44.07 0.00 99.92
75 0.23 81.08 10.66 70.37 44.07 0.00 99.92

100 0.23 80.98 10.56 70.40 44.07 0.00 99.92
In logical process 0 of model 1, it can be observed that
the ratio of executed time to blocked time is higher than 1
for values of granularity higher than 50. The blocked time
decreases as granularity increases. Although there is a high
percentage of unnecessary blocked null messages, a large
amount of complete messages that were blocked necessar-
ily were found, indicating that the conservative approach is
more appropriate. If an optimist approach were used, a
high quantity of messages could be executed incorrectly,
resulting in more rollbacks.

On the other hand, in logical process 1 of the same
model, a large percentage of unnecessary blocked null
messages and almost 50% of unnecessary blocked time can
be observed. The percentage of complete messages
blocked necessarily is not as high (51%). This shows that
the change of protocol should be considered because much
time is being wasted waiting for messages that just update
the clock channel.

Model 2 shows a similar behavior to model 1. In logical
process 0, there is a high percentage of complete messages
1016

Kawabata, Santana, Santana, Bruschi, and Branco

(more than 70%) in all granularities and for values of
granularity higher than 25 there is a ratio of executed time
to blocked time higher than one, showing that this logical
process performs well.

Logical process 1 has a different behavior because all
granularities have a ratio of executed time to blocked time
lower than one, resulting in a bad performance. However,
in this case, there is a low percentage of complete mes-
sages that caused necessary blocking (10%) and a high
percentage of null messages that caused unnecessary
blocking (44%), showing that a change of protocol to the
optimistic one can improve the simulation performance.

Figures 3 and 4 show the same model with different
partitioning. In logical process 0 of both models, the
blocked time decreases as granularity increases. It is dif-
ferent from logical process 1, which remains with a high
percentage of blocked time in both models.

Checking the unnecessary blocked time in logical
process 0, it can be observed that it decreases as granular-
ity increases. This behavior is different from logical proc-
ess 1 where the percentage is almost the same.

The outcomes show that logical process 0 can perform
well when granularity is increased, while logical process 1
remains blocked most of the time despite the increase of
granularity.

By analyzing the ratio of executed time to blocked
time, it can be concluded that the performance of logical
process 0 increases as granularity increases and a large
amount of complete messages is blocked necessarily (more
than 80%). On the other hand, analyzing the logical proc-
ess 1, it can be observed that the percentage of complete
messages blocked necessarily was low (40%) and the per-
centage of null messages blocked unnecessarily was high
(99%). These results, in addition to the high percentage of
unnecessary blocked time (70%), show that the execution
of the messages in the queue could have resulted in a better
performance.

Although the speedup of model 4 is better than model
3, it can be considered poor in both cases, showing that this
kind of model does not perform well with the conservative
simulation. The use of sequential simulation or another ap-
proach of distributed simulation could perform better.

From all the results obtained, it can be observed that:

• Blocked time and unnecessary blocked time de-

creases as the computational granularity increases.
• The ratio of executed time to blocked time in-

creases as the granularity increases.
• The percentage of complete blocked messages

that was necessary in relation to all complete mes-
sages that arrived in the logical process can be re-
lated to the blocked time. If it has a high percent-
age of these types of messages (more than 50%)
and not much blocked time (a ratio of executed
1017
time to blocked time higher than one) then the
conservative approach is performing well

• In the same way, if most of the null messages
were unnecessarily blocked (a percentage of null
messages that caused unnecessary blocking higher
than 50%), a low percentage of complete mes-
sages causes necessary blocking (fewer than 50%)
and the ratio of executed time to blocked time was
lower than 1, then the change of the protocol to
optimistic can be considered.

• In some cases, if the ratio of executed time to
blocked time is lower than 1 and a high percent-
age of complete messages causes necessary block-
ing, then the performance is not good. On the
other hand, changing to the optimistic protocol is
also not appropriate. In this case, the use of se-
quential simulation is more appropriate.

From the examples used to test, it can be observed that

the number of necessary and unnecessary blocking events
does not change with granularity, therefore this metric
cannot be used alone to evaluate a simulation. However,
this information can be used with blocked time, resulting in
a good parameter to evaluate a simulation.

The parallel simulation with fine granularity did not
perform well in the experiments reported in this paper. In
this case, the sequential simulation is more appropriate.
This occurs because logical processes spend more time be-
ing blocked than executing the simulation.

5 CONCLUSIONS

This paper shows that the performance of each logical
process of the simulation can be analyzed and evaluated
and that in the same simulation different logical processes
can show different performances.

The analysis was possible by adding software monitors
to the simulation code. The monitors collected some values
that were used to estimate each logical process perform-
ance in execution time. The values obtained were used to
define some metrics that show the performance of the logi-
cal processes.

These metrics demonstrate that logical processes have
distinct characteristics that make them more suitable for a
specific protocol. In the analyzed cases, one logical process
performs well using the conservative approach, however
the other could be more efficient using the optimist ap-
proach.

On the other hand, the adoption of an optimistic proto-
col to the whole simulation is not a good solution because
the occurrence of rollbacks could degrade the simulation
performance. Taking this into account, our results lead us
to conclude that each one of the logical processes has a dif-
ferent behavior which makes it more suitable for a differ-

Kawabata, Santana, Santana, Bruschi, and Branco

ent protocol. If the same simulation with different proto-
cols can be executed, a better performance can be obtained.

In further work, we plan to evaluate complex models
with ParSMPLX and investigate the performance of the
optimistic protocol.

REFERENCES

Alonso, J. M., A. A. Frutos, and R. B. Palacio. 1994. Con-
servative and optimistic distributed simulation in mas-
sively parallel computers: a comparative study. Pro-
ceedings of the 1ST International Conference On
Massively Parallel Computing Systems, 528-532.

Bagrodia, R., E. Deeljman, S. Docy, and T. Phan. 1999.
Performance prediction of large parallel applications
using parallel simulations. Proceedings of the 7th
ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (PPoP ’99).

Bauer, D., G. Yaun, C. D. Carothers, M. Yuksel, and S.
Kalyanaraman. 2005. Seven-O'Clock: a new distrib-
uted GVT algorithm using network atomic operations.
Proceedings of the 18th Workshop on Parallel and
Distributed Simulation (PADS’ 2005).

Bononi, L., M. Bracuto, G. D’Angelo, and L. Donatiello.
2005. Concurrent replication of parallel and distrib-
uted simulations. Proceedings of the 18th Workshop
on Parallel and Distributed Simulation (PADS’ 2005).

Bruschi, S. M., R. H. C. Santana, M. J. Santana, and T. S.
Aiza. 2004. An automatic distributed simulation envi-
ronment. Proceedings of the 2004 Winter Simulation
Conference. Piscataway, New Jersey: Institute of Elec-
trical and Electronics Engineers.

Choi, E., and M. J. Chung. 1995. An important factor for
optimistic protocol on distributed systems: granularity.
Proceedings of the 1995 Winter Simulation Confer-
ence. 642-649. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers.

Curry, R., C. Kiddle, R. Simmonds, and B. Unger. 2005.
Sequential performance of asynchronous conservative
PDES algorithms. Proceedings of the 18th Workshop
on Parallel and Distributed Simulation (PADS’ 2005).

Dongarra, J., I. Foster, G. C. Fox, W. Gropp, K. Kennedy,
L. Torczon, and A. White. 2002. Sourcebook of paral-
lel computing. Morgan Kaufmann Publishing.

Fujimoto, R. M. 2003. Distributed simulation systems.
Proceedings of the 2003 Winter Simulation Confer-
ence. 124-134. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers.

Kumar, V., A. Grama, A. Gupta, and G. Karpis. 2004. In-
troduction to parallel computing design and analysis
of parallel algorithms. Benjamin-Cummings Publish-
ing.

Lee, J. S., T. Luu, and V. K. Konangi. 2005. Design of a
satellite cluster system in distributed simulation. Simu-
lation 81: 57-66.
101
Lee, S.; J. Leaney, T. O'Neill, and M. Hunter. 2005. Per-
formance benchmark of a parallel and distributed net-
work simulator. Proceedings of the 18th Workshop on
Parallel and Distributed Simulation (PADS’ 2005).

MacDougall, M. H. 1987. Simulating computing systems -
techniques and tools. The MIT Press.

Tatsumi, E. S. 2003. Avaliação e aprimoramento de uma
implementação para simulação distribuída conserva-
tiva visando utilização em um ambiente automático.
MSc. Dissertation, Department of Computer and Sta-
tistic, University of São Paulo, Brazil.

Teo, P., S. J. Turner, and Z. Juhasz. 2005. Optimistic pro-
tocol analysis in a performance analyser and predic-
tion tool. Proceedings of the 18th Workshop on Paral-
lel and Distributed Simulation (PADS’ 2005).

Teo, Y. M., Y. K. Ng, and B. S. S. Onggo. 2002. Conser-
vative simulation using distributed-shared memory.
Proceedings of the 16th Workshop on Parallel and
Distributed Simulation (PADS’ 2002).

Teo, Y. M., and S. C. Tay. 1999. Performance evaluation
of a parallel simulation environment. Proceedings of
the 32nd Annual Simulation Symposium.

Teo, Y. M., H. Wang, and S. C. Tay. 1999. A Framework
for analyzing parallel simulation performance. Pro-
ceedings of the 32nd Annual Simulation Symposium.

Ulson, R. S., J. C. M. Morselli Jr., R. H. C. Santana, and
M. J. Santana. 1999. Conservative distributed simula-
tion on portability platforms: the CMB protocol be-
havior. Proceedings of the International Conference
Applied Modeling and Simulation (IASTED).

Xu, J., and M. J. Chung. 2004. Predicting the performance
of synchronous discrete event simulation. IEEE
Transactions on Parallel and Distributed Systems, 15,
12: 1130-1137.

AUTHOR BIOGRAPHIES

CÉLIA L. O. KAWABATA is a lecturer in the Centro
Universitário Central Paulista (UNICEP). She has a B.Sc.,
M.Sc. and Ph.D. in Computer Science from USP, in 1997,
2000 and 2005, respectively. Her research interests include
distributed simulation and performance evaluation. She is a
member of the Brazilian Computer Society (SBC). Her e-
mail address is <celiak@gmail.com>.

REGINA H. C. SANTANA is an Associate Professor in
the Computer Science Department at the University of São
Paulo (USP) and co-ordinator of the B.Sc Computer Sci-
ence course. She has a B.Sc. in Electrical Engineering from
USP (1980), an M.Sc. in Computer Science from USP
(1985) and a Ph.D. in Electronics and Computer Science
from the University of Southampton, UK (1990). Her re-
search interests include distributed simulation, modeling
techniques and performance evaluation. She is a member
8

mailto:celiak@gmail.com

Kawabata, Santana, Santana, Bruschi, and Branco

of the Brazilian Computer Society (SBC). Her e-mail ad-
dress is <rcs@icmc.usp.br>.

MARCOS J. SANTANA is an Associate Professor in the
Computer Science Department at the University of São
Paulo (USP). He has a B.Sc. in Electrical Engineering from
USP (1980), an M.Sc. in Computer Science from USP
(1985) and a Ph.D. in Electronics and Computer Science
from the University of Southampton, UK (1990). His re-
search interests include modelling techniques, performance
evaluation and parallel/distributed computing. He is a
member of the SBC. His e-mail address is
<mjs@icmc.usp.br>.

SARITA M. BRUSCHI is a lecturer in the Computer Sci-
ence Department at the University of São Paulo (USP). She
has a B.Sc. in Computer Science from UNESP (1994), and
an M.Sc. and Ph.D. in Computer Science from USP in
1997 and 2002, respectively. Since 2003 she has been
working at the Distributed System and Concurrrent Pro-
gramming Laboratory in the Institute of Mathematical and
Computational Sciences. Her special fields of interest in-
clude distributed simulation, performance evaluation and
parallel/distributed computing. She is a member of the
Brazilian Computer Society (SBC). Her e-mail address is
<sarita@icmc.usp.br>.

KALINKA R. L. J. CASTELO BRANCO is a lecturer in
the Fundação de Ensino “Eurípides Soares da Rocha”
(UNIVEM). She has an M.Sc. and Ph.D. in Computer Sci-
ence from USP in 1999 and 2004, respectively. Her re-
search interests include distributed systems, performance
evaluation, load balance and computer networks. She is a
member of the Brazilian Computer Society (SBC). Her e-
mail address is <kalinka@fundanet.br>.
1019

mailto:rcs@icmc.usp.br
mailto:mjs@icmc.usp.br
mailto:sarita@icmc.usp.br
mailto:kalinka@fundanet.br

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

