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ABSTRACT 

This paper presents the performance evaluation of a CMB 
(Chandy-Misra-Bryant) protocol from the perspective of 
execution time. The performance of each logical process in 
simulation is measured. Our evaluation shows that logical 
processes can have different behaviors and different proto-
cols can be used simultaneously in simulations. While 
some logical processes may perform well using conserva-
tive protocols, others can use optimistic protocols because 
otherwise most of the time these processes would be 
blocked unnecessarily. In order to analyze the behavior of 
the simulations some models were simulated using a CMB 
implementation called ParSMPLX. These models showed 
that each logical process of a simulation has a different be-
havior that makes it more suitable for a specific protocol, 
increasing the performance.  

1 INTRODUCTION 

The simulation technique is a powerful tool to evaluate 
performance of computer systems, however it can consume 
a lot of time and computational resources. Even with fast 
processors, simulations can take many hours to complete. 
In order to reduce this time, simulations can be executed in 
parallel machines or distributed systems (Dongarra et al. 
2002, Kumar et al. 2004, Fujimoto 2003). 

One parallel simulation approach is to decompose the 
simulation model into logical processes and simulate each 
one in a different processor. This approach can reduce the 
simulation time for some applications, mainly those which 
are easy to become parallel and have large computational 
granularity. 

Research has been done in distributed simulation tech-
nique and most of these studies focus on two well known 
protocols: conservative and optimistic (Bruschi et al. 2004, 
Xu and Chung 2004, Bauer et al. 2005, Bononi et al. 2005, 
Curry et al. 2005, Lee, Luu and Konangi 2005). 
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Events in the conservative approach are executed only 
when causality errors can be avoided, i.e., when there is 
not an event with smaller timestamp than the first event in 
the event queue.The optimistic protocol, on the other hand, 
simulates all the events without being concerned about 
causality errors. If an error occurs, the simulation returns to 
a safe state (using rollbacks) and the simulation can con-
tinue. 

Various papers have shown that choosing a parallel 
simulation protocol is a difficult task because it depends on 
a set of factors concerning the model and the computa-
tional platform (Alonso, Frutos and Palacio 1994, Choi and 
Chung 1995, Xu and Chung 2004). Computational granu-
larity, model partitioning, load balancing, and lookahead 
are a few factors that can influence the simulation per-
formance. 

Attempting to predict the performance of a parallel 
simulation is a difficult task because different models have 
different characteristics. Some models can have good 
speedup, even though some logical processes of the simu-
lation are slower than others. 

This paper describes experiments that were carried out 
with sequential (SMPLX) and conservative distributed 
simulations (ParSMPLX) to find out the factors that can 
affect the performance of a simulation. The results show 
that each logical process of a simulation model has particu-
lar characteristics that make it more suitable for a specific 
protocol (conservative or optimistic) depending on factors 
such as blocked time, number of null messages exchanged, 
and the type of blocking that the logical process can ex-
perience (necessary or unnecessary). 

We explain the factors that affect the simulation per-
formance and use them to demonstrate how the perform-
ance can be analyzed in each one of the logical processes. 
When these metrics are collected and analysed at run-time, 
an opportunity is created for adapting the simulation for 
increased speed. The performance we obtained with our 
method differs from what has been reported in the litera-
ture.  
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The remainder of this paper is organized as follows. 
Section 2 presents work related to the performance evalua-
tion of parallel simulations. Section 3 describes the func-
tional extensions we used to monitor simulations. Section 4 
describes the models and the results we obtained. Finally, 
in Section 5, we present concluding remarks. 

2 RELATED WORK 

Various factors must be analyzed to reveal if a parallel 
simulation has “good speedup” or not. Small simulation 
models with fine granularity may exhibit better perform-
ance using sequential simulation. The use of parallel simu-
lation tend to produce better results in more complex mod-
els with high computational granularity (Teo and Tay 
1999, Xu and Chung 2004). 

Some of the factors that can affect the performance of 
distributed simulations are: model size, load balancing, 
computational granularity, communication overhead and 
model partitioning. In (Xu and Chung 2004), a model is 
proposed to predict the performance of synchronous dis-
crete-event simulations. This model is used to predict the 
maximum achievable speedup for given applications and 
platform characteristics. 

Teo and Tay (1999), present a scalable parallel simula-
tion framework called SPaDES (Structured Parallel Dis-
crete-Event Simulation). The paper shows that SPaDES 
can achieve good speedup for applications with scalable, 
large models. Teo, Wang and Tay (1999) present a frame-
work for studying the complex performance interactions in 
parallel simulations considering three main components: 
simulation model, parallel simulation strategy/protocol and 
execution platform. The paper analyses how the causal-
ity/dependency of events affects the performance of the 
simulation and determines the potential event parallelism 
in the simulation models. 

Bagrodia et al. (1999) describe the use of COMPASS, a 
parallel simulator for predicting the performance of pro-
grams. Real-world applications and synthetic benchmarks 
are used to study application scalability, sensitivity to 
communication latency, and the interplay between factors 
such as communication patterns and parallel file system 
caching on application performance. 

Teo, Ng and Onggo (2002) evaluate the performance of 
a conservative simulation using distributed-shared memory 
for inter-processor communication. They conclude that the 
performance of parallel simulation is highly dependent on 
two main factors: the event synchronization overhead and 
the cost of inter-process communication. 

Lee et al. (2005) performed an independent benchmark 
of the parallel distributed network simulator. The effect of 
cross-traffic on wall-clock time needed to complete a simu-
lation for a set of basic network topologies was measured. 
The results were compared with the wall-clock time 
needed on a single processor. They developed a perform-
1013
ance model that can be used as a guideline for designing 
future simulations. 

Teo, Turner and Juhasz (2005) describe a performance 
analyzer tool developed to predict the execution perform-
ance of parallel discrete event simulation programs, using 
either optimistic or conservative protocols. This analyzer 
predicts the parallel execution performance based on a se-
quential simulation run without the development of the 
parallel implementation. 

While the previous articles evaluated the entire simula-
tion, our research considers the evaluation of each logical 
process isolated from each other. This kind of evaluation 
can help us to find some weak points of the conservative 
simulation and allows for some considerations about hav-
ing two or more protocols simultaneously in a simulation. 

3 SIMULATION MONITORS 

In order to monitor the parallel simulation and analyze its 
performance, a modified functional extension based on 
SMPL (MacDougall 1987) was used. SMPL is an event 
oriented simulation library used with C language for 
IBM/PC compatible platform. Using the SMPL source 
code, a new version was developed for the Unix platform, 
the SMPLX (Ulson et al. 1999), using dynamical data 
structures. This approach is for sequential simulations. 

Ulson et al. (1999) also made some modifications in 
SMPLX to adapt it to the conservative protocol CMB with 
null messages. This approach was developed in 
IBM/RS6000 and IBM SP2 platforms, using the PVM and 
PVMe message passing environments. This version was 
called ParSMPL. Subsequently, Tatsumi (2003) adapted 
SMPLX and ParSMPL to the Linux operational system. 
The lookahead of the ParSMPL version was improved by 
implementing of dynamical lookahead. 

These environments allowed for the use of software 
monitors to obtain important information to evaluate the 
simulation. One factor is the type of blocking that occurs. 
Considering conservative parallel simulation with null 
messages, two types of blocking can occur when a com-
plete message arrives: 

 
• Necessary: When the received message is the 

event to be executed and the event queue is not 
empty. 

• Unnecessary: When the received message is not 
the event to be executed, but one that enables the 
execution of another event in the event queue. 

 
The unnecessary blocking by null message occurs when 

a null message arrives and it allows for an event of the 
event queue to be executed. There are more than these 3 
types of blocking, however they do not affect our evalua-
tion in this paper. 
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These metrics can help to characterize the behavior of 
each logical process. For example, if many messages are 
blocked necessarily, it can be concluded that the execution 
of an optimistic simulation will probably experience many 
rollbacks. However, this metric is not enough to evaluate 
the simulation. In addition, the blocked time of each case 
analyzed was estimated. This time corresponds to the in-
terval between the last executed event and the next one. 

This value is important because if a logical process 
takes more time being blocked necessarily than blocked 
unnecessarily, then the conservative protocol is probably 
performing well. If the opposite occurs, an exchange of 
protocol should be considered. 

The blocked time was estimated measuring the inter-
val between the execution of the last event and the recep-
tion of a new message to be evaluated. It was considered 
that the logical processes execute events in the rest of the 
time. 

Another metric is a value that expresses the ratio of the 
executed time and blocked time. The executed time is the 
time consumed for running the events and the blocked time 
is the time consumed for waiting for messages from other 
logical processes. With these values, it can be observed if 
the logical process is using more time processing or being 
blocked. Values higher than 1 show good performances. 
When this value is smaller than 1, it is important to analyze 
if there were events in the queue that were ready to be exe-
cuted (events blocked unnecessarily). 

The speedup of the simulation was used to analyze the 
performance of the simulation comparing the sequential 
simulation with the distributed simulation (sequential 
simulation time divided by distributed simulation time). 

In our approach, only two logical processes were used 
because the models were quite simple, however it is impor-
tant to show many characteristics of conservative distrib-
uted simulations.  

4 MODELS AND RESULTS 

Some models were analyzed to evaluate the performance 
of each logical process of simulations. The models are a 
central server (Figure 1), a simplified computational sys-
tem (Figure 2) and a queue model with two different parti-
tionings (Figure 3 and 4). The central server was decom-
posed into two logical processes (one with CPU and the 
other with four disks). The simplified computational sys-
tem was decomposed into two logical processes (one with 
CPU and the other with one disk). The queue model was 
decomposed into two logical processes where the second 
partition minimizes the communication and has better load 
balancing. 
1014
 
Fig. 1: A Central Server with 2 Logical Processes 
 

 
Fig. 2: A Simplified Computational System 

 

 
Fig. 3: A Queue Model with 7 Resources 

 

Fig. 4: Same Queue Model with Different Partitioning 
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The models were executed in a network of computers 
isolated from external interference. The results of the first 
model can be observed in Tables 1 and 2, the second model 
in Tables 3 and 4, the third model in Tables 5 and 6 and the 
last model in Table 7 and 8. To simulate the computational 

granularity in each service center, a matrix multiplication 
task was used. The granularity is represented by the size of 
the square matrix to be multiplied: a fine granularity (zero 
and 25), a medium granularity (50 and 75) and a coarse 
grain (100). 
 

 

Table 1: Results of Logical Process 0 (Model 1 – Central Server) 

Granularity Speedup 
Executing / 

blocked 
(LP0) 

% blocked 
time (LP0) 

% necessary 
blocked 

time 

% unneces. 
blocked 

time 

% neces. 
blocked com-

plete msg (LP0)

% unneces. 
blocked compl 

msg (LP0) 

%unneces. 
blocked null 
msg (LP0) 

0 0.037 0.29 82.82 60.52 17.72 73.79 16.81 80.53 
25 0.625 0.76 56.85 31.32 23.66 75.66 6.77 77.05 
50 1.037 1.62 45.28 17.06 27.63 75.67 6.77 77.03 
75 1.132 2.06 42.55 13.89 28.57 75.66 6.78 77.03 

100 1.161 2.23 41.86 12.97 28.89 75.67 6.77 77.03 

 

 
Table 2: Results of Logical Process 1 (Model 1 – Central Server) 

Granularity 
Executing / 

blocked 
(LP1) 

% blocked 
time (LP1) 

% necessary 
blocked time 

% unneces-
sary blocked 

time 

% necessary 
blocked com-

plete msg (LP1)

% unneces. 
blocked compl 

msg (LP1) 

% unneces. 
blocked null 
msg (LP1) 

0 0.14 87.96 34.38 52.10 51.36 0.00 98.50 
25 0.51 66.37 17.67 47.80 51.03 0.00 95.28 
50 0.78 56.29 8.86 47.20 51.05 0.00 95.36 
75 0.85 54.04 6.87 47.13 51.05 0.00 95.36 

100 0.87 53.34 6.27 47.06 51.05 0.00 95.36 
 

 
Table 3: Results of Logical Process 0 (Model 2 – Simplified Computational System) 

Granularity Speedup 
Executing / 

blocked 
(LP0) 

% blocked 
time (LP0) 

% necessary 
blocked 

time 

% unneces. 
blocked 

time 

% neces. 
blocked com-

plete msg (LP0) 

% unneces. 
blocked compl 

msg (LP0) 

%unneces. 
blocked null 
msg (LP0) 

0 0.552 0.654 60.44 18.22 38.88 71.56 0.00 97.74 
25 0.819 1.444 40.91 10.32 28.41 71.19 0.00 98.46 
50 1.031 3.399 22.73 3.54 18.47 71.46 0.00 98.54 
75 1.110 4.693 17.57 1.51 15.79 71.46 0.00 98.54 

100 1.129 5.346 15.76 0.83 14.80 71.52 0.00 98.56 
 

 
Table 4: Results of Logical Process 1 (Model 2 – Simplified Computational System) 

Granularity 
Executing / 

blocked 
(LP1) 

% blocked 
time (LP1) 

% necessary 
blocked time 

% unneces-
sary blocked 

time 

% necessary 
blocked com-

plete msg (LP1)

% unneces. 
blocked compl 

msg (LP1) 

% unneces. 
blocked null 
msg (LP1) 

0 0.045 95.72 2.51 53.07 9.90 0.00 43.45 
25 0.151 86.86 1.71 53.52 9.80 0.00 43.73 
50 0.277 78.33 1.12 54.26 9.84 0.00 44.17 
75 0.323 75.58 0.95 54.38 9.84 0.00 44.17 

100 0.337 74.79 0.89 54.51 9.78 0.00 44.23 
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Table 5: Results of Logical Process 0 (Model 3 – A Queue Model) 

Granularity Speedup 
Executing / 

blocked 
(LP0) 

% blocked 
time (LP0) 

% necessary 
blocked 

time 

% unneces. 
blocked 

time 

% neces. 
blocked com-

plete msg (LP0) 

% unneces. 
blocked compl 

msg (LP0) 

%unneces. 
blocked null 
msg (LP0) 

0 0.306 0.32 75.49 15.52 50.30 85.76 0.00 93.00 
25 0.809 1.52 39.72 4.92 31.80 85.05 0.00 95.58 
50 1.000 2.62 27.59 1.22 25.68 85.05 0.00 95.58 
75 1.036 2.96 25.27 0.52 24.51 85.05 0.00 95.58 
100 1.046 3.07 24.58 0.32 24.15 85.05 0.00 95.58 
 

Table 6: Results of Logical Process 1 (Model 3 – A Queue Model) 

Granularity 
Executing / 

blocked 
(LP1) 

% blocked 
time (LP1) 

% necessary 
blocked time 

% unneces-
sary blocked 

time 

% necessary 
blocked com-

plete msg (LP1)

% unneces 
blocked compl 

msg (LP1) 

% unneces 
blocked null 
msg (LP1) 

0 0.12 89.03 15.48 71.74 41.64 0.00 99.96 
25 0.25 80.17 9.47 70.02 42.04 0.00 99.87 
50 0.30 76.84 7.03 69.65 42.04 0.00 99.87 
75 0.31 76.18 6.57 69.56 42.04 0.00 99.87 

100 0.32 76.01 6.44 69.55 42.04 0.00 99.88 

 

Table 7: Results of Logical Process 0 (Model 3 – A Queue Model with a Different Partitioning) 

Granularity Speedup 
Executing / 

blocked 
(LP0) 

% blocked 
time (LP0) 

% necessary 
blocked 

time 

% unneces. 
blocked 

time 

% neces. 
blocked com-

plete msg (LP0)

% unneces. 
blocked compl 

msg (LP0) 

%unneces. 
blocked null 
msg (LP0) 

0 0.335 0.43 170.78 420.22 602.03 92.34 0.00 91.56 
25 0.854 2.19 50.96 230.43 734.03 92.23 0.00 95.85 
50 1.041 4.33 11.32 169.21 901.41 92.23 0.00 95.85 
75 1.076 5.09 3.90 157.96 962.18 92.23 0.00 95.85 
100 1.087 5.35 1.78 154.68 982.84 92.23 0.00 95.85 

 

Table 8: Results of Logical Process 1 (Model 3 – A Queue Model with a Different Partitioning) 

Granularity 
Executing / 

blocked 
(LP1) 

% blocked 
time (LP1) 

% necessary 
blocked time 

% unneces-
sary blocked 

time 

% necessary 
blocked com-

plete msg (LP1)

% unneces. 
blocked compl 

msg (LP1) 

% unneces. 
blocked null 
msg (LP1) 

0 0.16 86.40 17.64 67.16 43.78 0.00 99.92 
25 0.21 82.44 12.91 68.94 44.07 0.00 99.92 
50 0.23 81.35 11.02 70.19 44.07 0.00 99.92 
75 0.23 81.08 10.66 70.37 44.07 0.00 99.92 

100 0.23 80.98 10.56 70.40 44.07 0.00 99.92 
In logical process 0 of model 1, it can be observed that 
the ratio of executed time to blocked time is higher than 1 
for values of granularity higher than 50. The blocked time 
decreases as granularity increases. Although there is a high 
percentage of unnecessary blocked null messages, a large 
amount of complete messages that were blocked necessar-
ily were found, indicating that the conservative approach is 
more appropriate. If an optimist approach were used, a 
high quantity of messages could be executed incorrectly, 
resulting in more rollbacks. 

On the other hand, in logical process 1 of the same 
model, a large percentage of unnecessary blocked null 
messages and almost 50% of unnecessary blocked time can 
be observed. The percentage of complete messages 
blocked necessarily is not as high (51%). This shows that 
the change of protocol should be considered because much 
time is being wasted waiting for messages that just update 
the clock channel. 

Model 2 shows a similar behavior to model 1. In logical 
process 0, there is a high percentage of complete messages 
1016
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(more than 70%) in all granularities and for values of 
granularity higher than 25 there is a ratio of executed time 
to blocked time higher than one, showing that this logical 
process performs well. 

Logical process 1 has a different behavior because all 
granularities have a ratio of executed time to blocked time 
lower than one, resulting in a bad performance. However, 
in this case, there is a low percentage of complete mes-
sages that caused necessary blocking (10%) and a high 
percentage of null messages that caused unnecessary 
blocking (44%), showing that a change of protocol to the 
optimistic one can improve the simulation performance. 

Figures 3 and 4 show the same model with different 
partitioning. In logical process 0 of both models, the 
blocked time decreases as granularity increases. It is dif-
ferent from logical process 1, which remains with a high 
percentage of blocked time in both models. 

Checking the unnecessary blocked time in logical 
process 0, it can be observed that it decreases as granular-
ity increases. This behavior is different from logical proc-
ess 1 where the percentage is almost the same. 

The outcomes show that logical process 0 can perform 
well when granularity is increased, while logical process 1 
remains blocked most of the time despite the increase of 
granularity. 

By analyzing the ratio of executed time to blocked 
time, it can be concluded that the performance of logical 
process 0 increases as granularity increases and a large 
amount of complete messages is blocked necessarily (more 
than 80%). On the other hand, analyzing the logical proc-
ess 1, it can be observed that the percentage of complete 
messages blocked necessarily was low (40%) and the per-
centage of null messages blocked unnecessarily was high 
(99%). These results, in addition to the high percentage of 
unnecessary blocked time (70%), show that the execution 
of the messages in the queue could have resulted in a better 
performance. 

Although the speedup of model 4 is better than model 
3, it can be considered poor in both cases, showing that this 
kind of model does not perform well with the conservative 
simulation. The use of sequential simulation or another ap-
proach of distributed simulation could perform better.  

From all the results obtained, it can be observed that: 
 
• Blocked time and unnecessary blocked time de-

creases as the computational granularity increases. 
• The ratio of executed time to blocked time in-

creases as the granularity increases. 
• The percentage of complete blocked messages 

that was necessary in relation to all complete mes-
sages that arrived in the logical process can be re-
lated to the blocked time. If it has a high percent-
age of these types of messages (more than 50%) 
and not much blocked time (a ratio of executed 
1017
time to blocked time higher than one) then the 
conservative approach is performing well 

• In the same way, if most of the null messages 
were unnecessarily blocked (a percentage of null 
messages that caused unnecessary blocking higher 
than 50%), a low percentage of complete mes-
sages causes necessary blocking (fewer than 50%) 
and the ratio of executed time to blocked time was 
lower than 1, then the change of the protocol to 
optimistic can be considered. 

• In some cases, if the ratio of executed time to 
blocked time is lower than 1 and a high percent-
age of complete messages causes necessary block-
ing, then the performance is not good. On the 
other hand, changing to the optimistic protocol is 
also not appropriate. In this case, the use of se-
quential simulation is more appropriate. 

 
From the examples used to test, it can be observed that 

the number of necessary and unnecessary blocking events 
does not change with granularity, therefore this metric 
cannot be used alone to evaluate a simulation. However, 
this information can be used with blocked time, resulting in 
a good parameter to evaluate a simulation. 

The parallel simulation with fine granularity did not 
perform well in the experiments reported in this paper. In 
this case, the sequential simulation is more appropriate. 
This occurs because logical processes spend more time be-
ing blocked than executing the simulation. 

5 CONCLUSIONS 

This paper shows that the performance of each logical 
process of the simulation can be analyzed and evaluated 
and that in the same simulation different logical processes 
can show different performances. 

The analysis was possible by adding software monitors 
to the simulation code. The monitors collected some values 
that were used to estimate each logical process perform-
ance in execution time. The values obtained were used to 
define some metrics that show the performance of the logi-
cal processes. 

These metrics demonstrate that logical processes have 
distinct characteristics that make them more suitable for a 
specific protocol. In the analyzed cases, one logical process 
performs well using the conservative approach, however 
the other could be more efficient using the optimist ap-
proach.  

On the other hand, the adoption of an optimistic proto-
col to the whole simulation is not a good solution because 
the occurrence of rollbacks could degrade the simulation 
performance. Taking  this into account, our results lead us 
to conclude that each one of the logical processes has a dif-
ferent behavior which makes it more suitable for a differ-
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ent protocol. If the same simulation with different proto-
cols can be executed, a better performance can be obtained. 

In further work, we plan to evaluate complex models 
with ParSMPLX and investigate the performance of the 
optimistic protocol.  
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