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ABSTRACT 

Verification and Validation (V&V) is a key process to 
guarantee that any model represents adequately a given 
system. Although no one can guarantee a 100% valid 
model, it is possible to increase model confidence by the 
utilization of V&V techniques. There are many V&V tech-
niques which have a descriptive nature (they tell us what to 
do but not how to do it). There are also prescriptive tech-
niques, that tell us how to do it, but in simulation practice 
they are underused. The main goal of this paper is based on 
Kleijnen (1999) procedure. It is to propose a prescriptive 
V&V technique that is simple enough for practical applica-
tion and, because of its procedural nature, it could be easily 
built into any simulation software, thus enabling the auto-
mation of the V&V process. This approach was also ap-
plied to some test problems confirming its feasibility. 

1 INTRODUCTION 

There are several V&V techniques proposed in the litera-
ture. These techniques can be divided into two groups: de-
scriptive V&V techniques and prescriptive V&V tech-
niques. The former is concerned about “what to do” and 
not “how to do it”. For instance, “Turing Test” is a V&V 
technique that tells the modeler: “show to an expert of the 
system being simulated both the results of the simulation 
model and the results of real system”. The way of how to 
do it is left up to the modeler. On the other hand, a tech-
nique called “Validation of Trace-Driven Simulation Mod-
els” (Kleijnen et. al 1996 and Kleijnen 1999) is a prescrip-
tive technique, because there is a clear procedure to 
perform it. For details on V&V techniques one can refer to 
Balci (1996), Sargent (2000) and Carson(2002). 

According to Balci (1996), in practice, under time 
pressure to complete a simulation, V&V process during a 
simulation study is sacrificed first. Sargent (2000) affirms 
that the costs of V&V could be significantly high, espe-
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cially when dealing with a high-level confidence model. 
The proposed technique has two main characteristics: 

 
1. It is a prescriptive technique. 
2. It is suitable for problems with no real data. 
 
Regarding point 1, the advantage of being prescriptive 

lies in the fact that could be easily automated and built into 
any simulation software; For a better understanding of 
point 2, let us refer to Kleijnen (1999) classification of the 
circumstances one needs to validate the model: 

 
1. No real-life data are available. 
2. There is only data on the real output. 
3. There are input and output data. 
 
By focusing our approach to case 1, we attack the 

worst case of validation because in cases 2 and 3 we have 
formal, clear and prescriptive procedures  for dealing with 
them (see Kleijnen 1999 for details). This paper will ex-
plore Kleijnen’s idea of comparing the results of simula-
tion with an expert opinion. This is made in a structured 
way by applying soft methodologies (like system dynamics 
causal loop diagrams)  and Design of Experiments as well.  

The remaining of the paper is organized as follows: 
section 2 makes a brief review of soft modeling techniques 
that inspired our V&V technique. Section 3 explains the 
proposed technique, while section 4 shows its application 
in some case studies. Finally, section 5 summarizes the 
work and provides the mains conclusions. 

2 FOUNDATIONS OF THE TECHNIQUE 

2.1 Soft x Hard Modeling Techniques. 

According to Pidd (1996), Management Science models 
can be divided into two categories: Soft and Hard Models. 
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Explaining briefly, hard modeling aims at the achievement 
of a model that is necessarily a representation of the real 
world and its outcome is a product or recommendation. On 
the other hand, the purpose of soft modeling is to generate 
debate and to gain more insight about the real world. Com-
plementing this vision, a Soft approach has a qualitative 
nature while a hard approach has a quantitative one.  

In systems dynamic models introduced by Forrester 
(1961), a soft approach is the construction of “causal loop 
diagrams” (Clark 1983). A hard approach is the Stock and 
Flow diagram. See Kirkwood (1998) for details. The model 
that is simulated is the hard one generating the system be-
havior. Figure 1 illustrates these two approaches. In this 
case this system dynamic model represents a manufactur-
ing facility with the physical flow of goods and the flow of 
orders and its interconnections. 
 In the arena of discrete event simulation (DES) there is 
still nothing like a “Soft Modeling Approach”. Simulation 
Models (either conceptually represented in any representa-
tion technique such as ACD, Event Graphs, Petri Nets, or 
computationally represented, for instance using some 
known simulation packages) represent the system under 
study and their aim is to generate a product or recommen-
dation. Clearly a Discrete Event Simulation model is  
quantitative. Indeed, it was exactly this lack of “soft meth-
odologies” that provided the origin of what we call “a soft 
model for Discrete Event Simulation”, shown in next sub-
section. 

2.2 A Soft Model for Discrete Event Simulation (DES) 

Contrary to systems dynamics models, variables in a dis-
crete event simulation model rarely present feedback be-
havior. Thus, it is possible to create a “soft model” by mak-
ing a direct mapping between input and output variables, 
once the discrete event conceptual model has been created. 
For instance, let us take as an example a simulation model 
of airport check-in desks. What happens to the customers 
waiting time in the queue (output) if the customer’s time 
between arrivals is shorter (input)? In a model of a manu-
facturing system, what happens to the production (output) 
if the availability of machines is higher (input)? Very of-
ten, the general behavior of several input-output relation-
ship is usually known before the simulation model runs. If 
not known by the modeler, the system’s expert can infer it 
easily based on his experience. 

So one soft model for DES can be summarized as sim-
ply as a causal influence matrix (C), which is constructed 
by the following way: Given N input variables 
(I1,I2,I3,…,IN) and M output Variables (O1,O2,O3, …,OM) of 
the simulation model, the component CNM of the correla-
tion matrix can assume the values –1,0 and 1 (or simply 
 “-”, “+” and “0”) which indicates respectively a negative, 
neutral or positive correlation. As an example, Figure 2 
shows a causal influence matrix of 3 inputs and 2 outputs. 
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Figure 1: Differences between (a) “Soft” and (b) “Hard” 
Approaches to Systems Dynamics Modeling (Pidd 1996) 
 
 

 O1 O2 
I1 +1 -1 
I2 +1 0 
I3 -1 0 

Figure 2: Causal Influence Matrix Example 
 

In this case, observe that the correlation of I1 and O1 
is positive: this means that when I1 rises, O1 rises. How-
ever the correlation of I3 and O1 is negative: when I3 rises, 
O1 decreases or vice-versa. I2 and O2 possess a neutral 
correlation: in this case the variation of I2 will not affect 
O2. In the example of the airport check-in desks, the corre-
lation among customer’s time between arrivals and waiting 
time in the queue is negative (higher times between arrivals 
implies lower waiting times in the queue), while the corre-
lation between machine availability and production is posi-
tive (higher availability provides higher production). It is 
fundamental that this matrix be built by an experienced 
simulation analyst and/or system expert, and not through 
simulation runs. 

It is important to notice that this matrix is built upon 
two principles (or hypothesis):  



Chwif, Muniz and Shimada 

 

• Linearity of input / output: it will be assumed that 
the input x output assumes a fairly linear relation 
(at least the input x output relationship must be 
monotonic).  

• No crossed correlation between input variables 
(interdependencies): All input variables will form 
a “base” in the sense that one is practically inde-
pendent from another. 

 
That is why it is relatively simple to build it from 

scratch, since human thinking is linear and not correlated. 
However the variables in the model can express obviously 
a non-linear behavior and a correlation may exists between 
input variables. 

2.3 Limitations of the Soft Model 

As mentioned in the previous subsection, the soft model 
provides an insight of the system’s behavior at first glance 
regarding the I/O relationship within a discrete event simu-
lation model. Since humans generate it, two problems may 
arise. The first problem lies in the non-linearity of outputs 
and the other resides in the correlation of inputs (or inter-
dependency). Let us describe both briefly. 

To illustrate the problem of non-linearity, Figure 3 
shows the behavior of the productivity of one returnable 
pallets assembly line regarding the number of pallets. As 
can be seen from the graph, the productivity reaches its op-
timum point for a certain number of pallets and then rais-
ing the number of pallets beyond this point decreases pro-
ductivity. Therefore, depending on the range of the input 
value, the correlation can be negative, neutral or positive. 
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Figure 3: Productivity (Products/Shift x Number of Pallets) 

 
By taking a deeper look at this graph we can observe 

that from 1 up to about 10 pallets, we have a positive corre-
lation; from 10 up to 13 the correlation is null and from 13 
up to 19 we have a negative correlation between the num-
ber of pallets and productivity in terms of product/work 
shift. So, depending on what range the value of number of 
pallets lies we can be right or wrong. 

Another aspect that is difficult to capture using the in-
fluence matrix is the result of the interaction of several in-
put variables over a given output variable. Consider a 
manufacturing line with returnable pallets (this example 
was taken from Robinson 2004). Consider that we also 
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want to change the number of buffers (capacity of pallets 
within a line) in a simulation model. Therefore, we are 
dealing with two input variables (I1-number of pallets and 
I2-Buffer Size). Let us suppose that we are interested in 
evaluating the total daily production that we may call O1. 
If we run this model and make a I1 x O1 plot, fixing the 
value I2 to the existing buffer quantity, and then do another 
run and plot I1 x O1, fixing the value I2 to the double of 
the original value, we can obtain the graphs (a) and (b) 
shown by Figure 4. 
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Figure 4: Plotting Showing Correlated Inputs 
 
Figure 4 shows that: if I2 is set to the default (actual 

values), then we have a negative correlation between I1 
and O1; on the other hand, if we double I2, the behavior is 
completely different and I1 is positively correlated to O1.  

Despite these limitations, our soft model will be used 
as the main tool for our V&V technique, and these limita-
tions will be also taken into account in our proposed V&V 
methodology, which is described in the next section. 

3 PROPOSED V&V TECHNIQUE 

The proposed V&V technique for DES starts by building 
the causal influence matrix (soft model). This activity takes 
place after the definition of the conceptual model or the 
computerized model, since the input and output variables 
must be chosen. After the implementation of the model, we 
must confront the values obtained from the matrix against 
the values in the results of the simulation runs. One rela-
tively simple way to do this is doing a 2k factorial experi-
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mental design (for a detailed description of this technique 
refer to Montgomery 1984). Now let us suppose that we 
have done the 2k factorial design with the same Input and 
Output of the causal influence matrix as depicted in Figure 
2. If we take into account only the main effects, we could 
obtain the results shown in Figure 5. 

 
 
 O1 O2 
I1 + 40,8 -12,9 
I2 + 15,27 0,002 
I3 - 16,18 -0,012 

 
Figure 5: 2k Factorial Experimental Design 

 
By looking at the design of experiments (DOE) re-

sults, we know that a high positive value means a positive 
correlation, a high negative value means a negative correla-
tion and a value near 0 means that the given input has a 
negligible effect over the output variable. So, if we com-
pare directly the 2k factorial design with the causal influ-
ence matrix shown in Figure 2, we see no discrepancies. If 
this is true, the process finishes. 

Now, suppose that we have some kind of discrepancy. 
For instance, in the causal influence matrix we have a posi-
tive correlation but when we do the factorial design it 
shows a null or negative correlation. Therefore, we have to 
look deeper for the source of this discrepancy. Discrepan-
cies may occur due to three distinct factors (for brevity we 
will call soft model the causal influence matrix and hard 
model the computerized simulation model):  

 
1. The soft model is “correct” but there is some 

problem with the hard model (computerized 
model). 

2. The computerized model is “correct” but the be-
havior addressed by the soft model is erroneous. 

3. The soft model does not match the hard model be-
cause of the inherent limitations of the soft model 
as mentioned before (non-linearity and correlated 
inputs). 

 
The discrepancies generated by the factors 1 or 2 will 

cease if either we understand the behavior of the hard 
model and fix the soft model or if we alter the computer-
ized model to match the pattern predicted by the soft 
model. In this latter case we will have to modify the model 
and redo the design of the experiments. In case of the third 
factor, the modeler should make plots to look for non-
linearities and verify the values of the 2nd and higher order 
interactions that stems from 2k analyses, to verify the inter-
actions between variables. In the former case, if a non-
linearity is detected, the modeler can correct either the soft 
model to address the real correlation or change the factorial 
levels. For instance, let us suppose that the soft model 
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showed that the number of pallets has a positive correlation 
to the productivity. But, on the contrary, from Figure 3, we 
know that this is true only for a certain range of the number 
of pallets. So we can either alter the soft model or alter the 
factorial levels to match the same range of input variable.  

In the case of correlation of inputs (or interactions), if 
higher order interactions are not negligible (this is easily 
seen by the 2k experiments), it is advisable to drop the 
variables that causes the interactions and consider others 
that are independent from each other. This is because a 
human mind is not able to cope with complex interactions 
and the soft model presupposes initially that any interac-
tion between input variables does not exist. However, if the 
interaction is well understood, the modeler could gain a 
valuable insight about the behavior of the computerized 
model.  

This approach can be summarized in Figure 6. 
 
 

Choose Intput and Output Variables

Build Causal Influence Matrix (soft model)

Build Discrete Event Model (hard model)

Build Design of Experiments &
Make Simulation Runs

Discrepancies?
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N
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Compare Soft x Hard Model

 
 

Figure 6: The Proposed V&V Technique 
 

Note that, by this approach, we are supposing that if 
no more discrepancies exist, the model deserves higher 
confidence. Nevertheless, both the correlation matrix and 
the model could be wrong. Since this sort of thing has a 
very low probability to occur, we argue that the V&V 
technique finishes when no discrepancies are found. An-
other issue is related with the input and output variables 
chosen. For a given set of data chosen, in order to apply the 
proposed V & V Method, no discrepancies may occur, but 
for other sets this technique could generate discrepancies. 
If the model tried to cover 100% of the variables, this pro-
cedure becomes unfeasible in practice, loosing its principle 
of simplicity. We advise, according to Miller (1956), that a 
good number of input and output variables be seven plus or 
minus two. Another issue is that in this methodology the 2k 
factorial design was chosen because it is relatively easy to 
apply. Other design can be chosen depending on the pref-
erence of the modeler. 
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4 EXPERIMENTAL RESULTS 

This method was applied to some test problems proposed 
in the literature. The first two were taken from Robinson 
(2004) and the last one was modified from Chisman 
(1996). 

4.1 Wardeon Cinema 

This simulation study was conducted to assure that the 
telephone system for Wardeon Cinema provides a satisfac-
tory level of service. Calls enter the system via an ACD 
(Automatic Call Distributor) and are routed to the appro-
priate service (information, customer service representative 
or tickets sales lines). Details can be found in Robinson 
(2004). 

Following the methodology, the first step is to choose 
the inputs and outputs variables. In this case we chose the 
following: 

 
• Inputs: Number of information lines and number 

of ticket sales lines. 
• Outputs: Percentage of Lost Calls, Percentage of 

Calls completed within 2 minutes and Total mean 
Waiting Time. 

 
 

 % Lost 
Calls 

% Calls 
Complete 
in 2 min 

Mean 
Waiting 
Times 

#Info Lines - + - 
#Ticket 
Sales Lines 

- + - 
(a) 

 
 % Lost 

Calls 
% Calls 

Complete 
in 2 min 

Mean 
Waiting 
Times (s) 

#Info Lines -9.99 14.83 -30.30 
#Ticket 
Sales Lines 

-8.90 12.58 -26.30 

(b) 
 

Figure 6: Comparison between (a) Soft Model and (b) 
DOE Analysis for the Wardeon Cinema 

 
The next step is to build the soft model (correlation 

matrix). In this case there is a negative correlation between 
all inputs with the percentage of Lost Calls and with Total 
Mean Waiting time. This is something that is easy to infer 
since the increase of lines will provide better service levels. 
By the same reasoning, the inputs correlate positively with 
Percentage of calls completed within 2 minutes. Figure 6a 
shows the causal influence matrix for this example. The 
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next step is to build the simulation model and run it. After 
running it, a full 2k factorial design was performed. Four 
were the number of lines chosen for “low level” and eight 
for “high level”. Figure 6b provides the DOE results for the 
main effects. Since there are no discrepancies between the 
soft and the hard model the V&V procedure finishes. It is 
also important to pinpoint that by the factorial design, the 
influence of second order interactions are negligible to the 
selected responses. 

 
 

 Daily 
Production 

  Daily  
Production 

# Pallets +  # Pallets -221,7 

Buffers 
Size 

+  Buffers 
Size 

239,9 

(a)       (b) 
 
Figure 7: Comparison between (a) Soft Model and (b) 
DOE Analysis (b) for the Panorama Televisions (First It-
eration) 

4.2 Panorama Televisions 

Panorama Television simulation study was conducted with 
the aim of dimensioning a manufacture line to meet the 
daily production requirements. This case is also found in 
Robinson(2004). Basically, the Panorama facility under 
study consists of a returnable pallet assembly line that as-
sembles televisions upon the reception of the CRT, televi-
sion boxes and other input materials. There are several op-
erations on this line (e.g., CRT assembly, coil assembly, 
electrical assembly, test, reworks, etc), and the solution to 
the problem is directly related with two factors: (a) the to-
tal number of pallets in the line and (b) the buffering be-
tween operations, since its increase would dampen the ef-
fects of stoppages (Robinson, 2004). The main response or 
output in this case is the overall daily productivity. Figure 
7a shows the correlation matrix to this problem. In this 
case both the number of pallets and buffers were supposed 
to correlate positively to the daily production. By con-
structing the model and doing the 2k factorial design with 
50 and 100 as the low and high level for the number of pal-
lets, and 0% (actual) and 100% buffer size increase as the 
low and high level, respectively, we obtained the results 
shown in figure 7b. Although the Buffer Size signal in the 
soft model matches with the DOE, the number of pallets 
does not. In fact, when the number of pallets is set to 100, 
with a 0% buffer increase, the total production is zero be-
cause the excessive number of pallets blocks the produc-
tion. This suggests that the behavior of the number of pal-
lets is not linear. By making some further analysis, it was 
discovered that, with an increase of 0% (actual buffer size), 
the maximum production occurs at approximately 75 pal-
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lets and after this point the production decreases with the 
number of pallets (negative correlation). 

According to the proposed methodology, in such a 
case it is advisable to shift the variable range in order to 
match the correlation. Since we would like to match a posi-
tive correlation, then the low and high number of pallets 
was modified to 50 and 75, respectively. However, in this 
case, the DOE analysis must be recalculated. Figure 8 
shows this new iteration. 

In the case of Figure 8, a match between the soft 
model and the results from the DOE occurred although the 
number of pallets has a lower influence on the response. 
By making an Analysis of Variance, it was found that the 
2-way interaction between the number of pallets and the 
number of buffers explains 45% of the response, and thus 
is not negligible. This means that the two input variables 
have interaction and so the soft model was not too robust (a 
robust soft model must have no interaction between vari-
ables). Therefore, despite the matching, it is advisable to 
choose another independent input variable and start the 
procedure over again. 

 
 

 Daily 
Production 

  Daily  
Production 

# Pallets +  # Pallets 1,835 

Buffers 
Size 

+  Buffers 
Size 

16,035 

(a)       (b) 
 
Figure 8: Comparison between (a) Soft Model and (b) 
DOE Analysis for Panorama Televisions (Second Iteration) 

4.3 The Barbershop 

This case was taken and adapted from Chisman (1996). In 
a barbershop there are the owner (which is also a barber) 
and more two barbers A and B. The objective of this model 
is to dimension the correct number of staff to achieve bet-
ter service levels. The chosen input and output variables 
for the construction of the soft model were the following: 

 
• Inputs: Time Between Arrivals (the arrivals will 

be considered exponentially distributed), Prob-
ability of the absence of a given barber, Mean 
Barbering Time, Percentage of Client who prefers 
barber A. 

• Output: Number of unsatisfied clients during one 
day (that represents the number of clients who 
abandoned the barbershop either because the 
queue size is more than 6 people or because the 
absence of his preferred barber), and Maximum 
Time in queue. 
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 Unsatisfied 
clients 

Maximum
Queuing 

Time 
Time Between Arrivals - - 
Probability of barber ab-
sence 

+ + 
Mean Barber Time + + 
Percentage of Client who 
prefers barber A. 

+ + 
(a) 

 
 Unsatisfied 

clients 
Maximum
Queuing 

Time 
Time Between Arrivals -184,71 -32,23 
Probability of barber ab-
sence 

75,71 No signf 

Mean Barber Time 68,21 59,06 
Percentage of Client who 
prefers barber A. 

218,21 88,78 

(b) 
 
Figure 9: Comparison between (a) Soft Model and (b) 
DOE Analysis for the Barbershop (First Iteration) 

 
Figure 9a shows the causal influence matrix for this 

example. Observe that there are negative correlations be-
tween the time between arrivals and both the number of 
unsatisfied clients and maximum time in queue. On the 
other hand, if we raise the preference for barber A, by the 
loss of flexibility we would have a higher time in queue, 
therefore the positive correlation. By constructing the 
model and making the DOE analysis we generated figure 
9b. Contrary to the soft model forecast, there was no sig-
nificant influence of the input “probability of the absence” 
on “Maximum time in queue”, since P-value was higher 
than 0,05. This is one discrepancy between the soft and 
hard model. By revising the model, it was observed that the 
one routing logic was wrong: a client was never addressed 
to the main barber (the owner). This error was not inten-
tional but it served to demonstrate in this case that there 
was something going wrong with the model. After the cor-
rection of the wrong logic, another DOE was performed, 
resulting the data shown in figure 10.  

In this case all results were significant, but still one 
discrepancy was found: the relation between Probability of 
absence and Maximum time in the queue. This suggests a 
better verification of the relation. Figure 11 shows a sensi-
tivity analysis for both responses and, as can be seen, there 
is really a negative correlation between the probability of 
absence and Maximum time in the queue. This may be odd 
at a first glance, but it must be kept in mind that when a 
barber is absent there is an increase of unsatisfied cus-
tomer, since they go out without being served. If customers 
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leave the queue, the maximum waiting time of the client 
that remains in the queue will tend to drop. Therefore, al-
though this is contrary to common sense, this is a correct 
behavior in a queue system with desistance. Hence the 
causal influence matrix should be corrected to match the 
DOE analysis. After this correction the procedure finishes. 

 
 

 Unsatisfied 
clients 

Maximum
Queuing 

Time 
Time Between Arrivals -561,5 -67,78 
Probability of barber absence 43,7 -12,42 
Mean Barbering Time 182,7 72,28 
Percentage of Client who 
prefers barber A. 

113,2 56,13 

 
Figure 10: DOE Analysis for the Barbershop (Second It-
eration) 

 
 

Prob. Absence 5% 9% 13% 17% 21% 25%
Max Queuing Time 211 203 198 198 199 186 

Unsatisfied Customer 502 518 547 568 593 618 
 
Figure 11: Sensitivity Analysis for “Probability of Barber’s 
Absence” 

 

5 CONCLUSIONS AND FUTURE WORK 

The main objective of this paper is to propose a prescrip-
tive V&V technique that is simple enough for daily simula-
tion studies applications and, at the same time, is feasible 
to be built in any simulation software in order to automate 
the V&V procedure. This procedure is based  on Kleijnen´s 
idea (Kleijnen 1999) and was complemented by the field of 
System Dynamics. This feature according to Balci (1994) 
is crucial since the time available in practice that is dedi-
cated to the V&V process is very low. 

The main rationale behind this technique lies in the 
fact that a human being is at least capable of knowing the 
primary relations (tendency) of Input-Output variables in a 
given system (at least if the inputs are non-correlated to 
each other). This allows the construction of a “soft model” 
in discrete event simulation that we called “Causal Influ-
ence Matrix”. Once we have a computerized simulation 
model, these input-output main relationships can be de-
rived via well-established statistical methods such full fac-
torial design of experiments. So, the essence of this tech-
nique is to compare the soft to the hard discrete event 
model to find discrepancies. If we find no discrepancies the 
process reaches an end. 
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By applying this procedure to some problems found in 
the literature, it was shown that it is feasible at least to 
small to small-medium real life problems. Besides that, it 
can be equally applied either to real or even inexistent sys-
tems. We argue that it has a very good cost benefit since 
the time spent to apply it was a little fraction of the overall 
simulation study time. The main drawback of this method, 
like any V&V technique, is that it does not guarantee a 
valid model (it is only possible to increase the model’s 
confidence). Despite that, we believe that within the proc-
ess of applying it, it will force the modeler to better reason 
about the simulation study he is conducting, providing him 
valuable insights into the behavior of the model and the 
system under study. We intend to do further studies to see 
if this method also works for mid to large sized real life 
problems. 
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