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ABSTRACT

Outpatient surgery scheduling involves the coordination of

several activities in an uncertain environment. Due to the

very customized nature of surgical procedures there is sig-

nificant uncertainty in the duration of activities related to

the intake process, surgical procedure, and recovery pro-

cess. Furthermore, there are multiple criteria which must

be traded off when considering how to schedule surgical

procedures including patient waiting, operating room (OR)

team waiting, OR idling, and overtime for the surgical suite.

Uncertainty combined with the need to tradeoff many crite-

ria makes scheduling a complex task for OR managers. In

this article we present a simulation model for a multiple OR

surgical suite, describe some of the scheduling challenges,

and illustrate how the model can be used as a decisions

aid to improve strategic and operational decision making

relating to the delivery of surgical services. All results

presented are based on real data collected at Mayo Clinic

in Rochester, MN.

1 INTRODUCTION

According to the National Coalition on Health Care

(<www.nchc.org/facts/cost.shtml>) health care

spending in the United States was $1.6 trillion in 2003 which

represents 15.3 % of the Gross Domestic Product. More-

over, health care expenditures increased by 7.7 % in 2003,

which was four times the rate of inflation. A recent joint

study by the National Academy of Engineering and the

Institute of Medicine (NAE 2005) states that “[t]he $1.6

trillion health care sector is now mired in deep crises related

to safety, quality, cost, and access that pose serious threats

to the health and welfare of many Americans.” The report

also indicates that the health care system is riddled with

inefficiencies that significantly increase the cost of medical

care and health insurance for employers and workers.
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Operating rooms (ORs) have been estimated to account

for more than 40% of a hospital’s total revenues (HFMA

2005) and a similarly large proportion of their total ex-

penses, which makes them a hospital’s largest cost center

as well as its greatest revenue source. Furthermore, recent

studies indicate that OR efficiency metrics, such as utiliza-

tion, overtime, and on-time start performance are well off

of achievable targets at most hospitals (CAB 2001). There-

fore, surgical suite management is an area with significant

potential for realizing greater efficiencies within health care

organizations. More efficient management will result in

improvements to capacity utilization and therefore faster

patient access to surgical services. Improvements to capac-

ity utilization will also generate cost savings that can be

redirected to basic health care research or to provide wider

access to surgical services through new additional capacity

investments.

Improving OR efficiency is a computationally challeng-

ing problem for several reasons. First, finding a schedule

of patient arrival times that balances patient waiting with

resource utilization (e.g., OR, surgeon, nurses, etc.) is a

combinatorial problem, which includes decisions such as

arrivals’ sequencing, allocation of patients to ORs, and

matching of patients with surgical teams. Second, ORs are

not isolated resources, they are typically grouped as part of

a surgical suite which houses multiple ORs that share com-

mon resources involved in the patient intake and recovery

process. Therefore patient flow through the suite is driven

by up and downstream resources. Third, there is signifi-

cant uncertainty in several of the activities involved in the

delivery of surgical care, including the surgical procedure

itself, which makes advanced planning very difficult. This

uncertainty leads to unpredictable waiting time for surgeons,

nurses, anesthesiologists, patients, and critical auxiliary re-

sources (e.g., specialized diagnostic equipment), as well as

overtime staffing costs associated with late closure of the

surgical suit. It also creates the need to balance physician

demands (who are best served when an OR is dedicated for
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their exclusive use) against fiscal prudence (which demands

high utilization of OR resources).

The challenge of balancing competing criteria to im-

prove surgery scheduling is not new. (A review of pertinent

literature can be found in Section 3). However, the extant

literature deals largely with a single-OR and ignores con-

straints imposed by up and downstream resources. Figure

1 illustrates the flow of patients through a typical multi-

OR surgical suite. It illustrates three key activities: intake,

surgery, and recovery. All three activities have significant

uncertainty associated with them (as we demonstrate in

Section 7) which makes the multi-OR surgical suite much

complex to model.

The simulation model we describe in this article is part

of a long-term ongoing research study to simultaneously

improve patient access and surgical suite efficiency. As part

of this effort we are investigating answers to the following

important questions:

Strategic Questions:

• What is the appropriate number of operating rooms

and investment in mobile auxiliary equipment for

a surgical suite?

• What is the best ratio of surgeons to ORs?

• What is the optimal number and mix of surgery

types to be scheduled on a given day?

Operational Questions

• What is the optimal schedule of patient arrivals for

a given number and mix of surgeries?

• How should up and downstream activities be staffed

to balance patient flow and staff workload?

• What is the best scheduled time for an urgent

add-on case to an existing schedule?

In this article we illustrate our progress towards answer-

ing these questions. We describe the design and operation

of a general multi-OR surgical suite, discuss the details of

our monte-carlo simulation model, and present numerical

results based on real data to illustrate how the model can be

used to answer some of the important strategic and opera-

tional questions described above to improve the delivery of

surgical services. Our numerical results are based on real

data collected for the outpatient endoscopy suite at Mayo

Clinic, in Rochester MN.

2 SURGERY SCHEDULING PROCESS

Perioperative services encompass all stages of surgery

including preoperative, intraoperative, and postoperative

stages of patient care. Preoperative care begins with the

patients decision to have surgery, and ends with the trans-

fer of the patient to the OR bed. It can include a variety
415
of activities such as patient education, a patient visit to

an anesthesia outpatient clinic, preparation for the day of

surgery, and arrival at the designated location for surgery.

Intraoperative care is defined as the time between when

the patient reaches the OR bed, and the time when they

are admitted to the recovery area which may be a post-

anesthesia care unit (PACU), Intensive Care Unit (ICU), or

other post-procedure recovery area. Postoperative care is

the time between arrival in the recovery area and the time

that the surgeon terminates follow-up care with the patient.

Each of these stages are critical to the successful delivery

of surgical services to the patient.

There are different types of surgery delivery systems.

Hospitals provide many services, and are typically equipped

with a broad range of capabilities including an emergency

department for handling cases resulting from unpredictable

adverse events. More recently, a new delivery system called

Ambulatory Service Centers (ASCs) have emerged (Bow-

ers and Mould 2005). ASCs service elective (equivalently

deferrable and scheduled) surgeries that can be performed

safely in an outpatient setting with minimal supporting re-

source. At hospitals there are different degrees of urgency

associated with patient care. Often surgery can be performed

on an elective basis on an agreed upon future date. This

is true of many types of surgery in which there is not an

immediate need for intervention. Urgent or emergent cases,

on the other hand, are cases in which the timing is critical.

Urgent cases arise on short notice and speed of interven-

tion directly affects the patient’s safety and potential for

recovery. Emergent cases typically arrive at an emergency

department via ambulance or airlift in need of immediate at-

tention. Urgent and emergent cases are simultaneously high

priority and unpredictable, and therefore present difficult

challenges from a planning perspective.

Whether surgery is performed on an inpatient or out-

patient basis, at an ASC or hospital, or on an elective or

emergent basis, many aspects of the OR environment are the

same. From a facilities perspective ORs tend to be housed

in a suite, in which several individual ORs are located that

share central resources such as an equipment storage area,

sterilization resources, preoperative and recovery rooms.

From a staffing perspective the OR team is composed of

a variety of uniquely skilled individuals including the sur-

geon, one or more surgical assistants, an anesthesiologist,

nurse anesthetist, and a scrub person.

ORs have very high fixed costs, the large proportion

of which is associated with the labor cost of the OR team.

Typically ORs have a planned utilization time (e.g., 8 hours)

beyond which overtime costs for some members of the

OR Team begin to accrue. Therefore on-time surgery start

performance, to the extent it affects overtime, is an important

metric. Efficient surgery scheduling also affects the amount

of waiting for surgeons, anesthesiologists, OR Teams, and

other critical resources.
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Figure 1: Illustration of Inpatient Patient Flow Through a Multi-OR Surgical Suite from Arrival to Recovery.
There are two well known processes for advance

scheduling of surgeries known as block-booking and open-

booking. Under a block-booking system individual surgeons

or surgical groups are assigned times in a particular OR in

a periodic (e.g., weekly or monthly) schedule. Each period

surgeons book cases into their assigned block time. On the

other hand, in open-booking systems surgeons submit cases

up until the day of surgery and by-and-large all accepted

cases are scheduled. Individual surgeries are then allocated

to ORs to create a schedule immediately prior to the day

of surgery.

The simulation model we describe in this article is

motivated by the endoscopy suite at Mayo Clinic. The

suite is dedicated for colorectal screenings. It is located

in an outpatient setting and all procedures are scheduled

in advance of the day of surgery. Patients are scheduled

by allocating them to a slot which is associated with a

predefined arrival time on a particular day. As opposed to

the more complete perioperative process described above,

our focus in this article is on the delivery of the surgical

procedure itself, from patient check-in to discharge, since

this activity is simultaneously the most costly, the most

affected by uncertainty, and the most difficult to plan.

Figure 2 illustrates the typical process by which a patient

navigates the endoscopy suite on the day of surgery. Upon

arrival patients check-in and wait for a nurse to initiate the

intake process. Intake involves several activities including

pre-surgery consultation with a nurse, transfer to the change

room, change of dress, and transfer of the patient to an OR,

or a pre-operative waiting area. For our purposes we define

the start of the surgical procedure as the point at which the

OR Team arrives to begin preparation (e.g., administration
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of IV, monitoring). When the procedure is complete the

patient waits to be transferred by a nurse to the recovery area.

Transfer is contingent on a recovery bed being available,

and adequate nurse coverage (nurse to patient ratio) in the

recovery area. From the patient’s perspective recovery from

the affects of anesthesia begins immediately after surgery

is complete, whether they wait in the OR or are transferred

directly to the recovery area. However, if the patient waits

in the OR they must be monitored by the OR Team nurse,

which may delay the start of the next surgery. Thus the

smooth flow of patients to and from the OR may be affected

by uncertainty in the duration of the intake process, as well

as uncertainty in the duration of recovery which affects the

number of beds available.

3 LITERATURE REVIEW

More extensive reviews than the following can be found

in (Blake and Carter 1997; Goldman, Knappenberger, and

Shearson 1970; Magerlein and Martin 1978; Przasnyski

1986). In our brief review we separate the literature into

two areas that are relevant to the simulation model we

present, long range systems design decisions, and short

range advance scheduling decisions.

3.1 System Design

System design is concerned with long-term strategic deci-

sions such as the number of ORs to be located at a facility,

investment in equipment resources (e.g., diagnostic tools),

and decisions about the specialization of ORs for certain

types of surgery. The literature in this area considers policies
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Figure 2: Illustration of the Detailed Process for Patient Flow Through the Endoscopy Suite from Check-In to Discharge.
for how to organize surgical schedules (e.g., block-booking

or open-booking), and which types of surgeries to accom-

modate at a particular facility. For instance, in (Bowers

and Mould 2005) the authors consider the effects of intro-

ducing ASCs by reassigning elective cases from hospitals

to ASCs. They evaluate the combined effect on delivery

system efficiency resulting from the reallocation of specific

high volume procedure types from hospitals to ASCs. In

(Lovejoy and Li 2002) the authors present a multi-criteria

stochastic model for OR capacity expansion decisions. They

describe optimization models that reflect the goals of several

constituents involved in the decision making process. In

(Dexter, Ledolter, and Wachtel 2005) the authors discuss

models for evaluating OR expansion decisions and they pro-

vide examples based on real data. Their model considers

tactical decisions for how to allocate time among surgical

specialty areas based on demand estimates and financial

criteria.

3.2 Advance Scheduling

Advance scheduling involves allocating OR time among

surgical groups in advance of the day of surgery. Of the two

areas we describe this is the most developed. The single-OR

scheduling problem is the simplest version of the advance

scheduling problem. It concerns the setting of start times

in the presence of uncertainty in surgery durations. The

objective is to balance relevant metrics including surgeon

and OR Team waiting, patient waiting, idling of the OR, and

overtime costs for running later than the scheduled closing
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time. The evaluation of the expectations of these quantities

requires the evaluation of multidimensional integrals that

typically have no closed-form solutions. Accordingly, a

number of previous studies have used simulation to study the

performance of heuristic rules for setting start times. In (Ho

and Lau 1992) monte-carlo simulation is used to compare

the performance of many simple scheduling heuristics.

The single-OR scheduling problem also arises in many

other contexts in which appointment decisions are econom-

ically significant. In Sabria and Daganzo (1989) the authors

consider scheduling the arrival of cargo ships at a seaport. In

their treatment of the problem the costs of underutilization of

a seaport are traded off against the cost of cargo ship waiting.

On the other hand, Wang (1993) discusses the problem in a

manufacturing setting where the objective is to schedule the

arrival of parts on the shop floor such that work-in-process

inventory and machine idling are minimized. There have

been numerous other simulation and queuing based stud-

ies presented in operations research, statistics, and health

care journals over the past three decades on the problem

of assigning start time for surgeries and outpatient clinic

appointments (for example, Bailey 1952, Charnetski 1984,

Dexter et al. 1999, Ho and Lau 1992, Jansson 1966, Mer-

cer 1973, Rohleder and Klassen 2002, Soriano 1966, Welch

1964, and references therein).

Another avenue of research for single-OR scheduling

is the study of optimization models. In Weiss (1990) and

Robinson, Gerchak, and Gupta (1996) the authors solve

two and three surgery problems, respectively, which can be

solved relatively easily owing to the low dimensionality.
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Special cases for n > 3 are considered in Wang (1993)

in which job durations are exponentially distributed and

computational advantages of phase-type distributions can be

exploited. In Vanden Bosch and Dietz (2000) the authors

present an algorithm for a similar problem for the case

of phase-type distributions in which appointment slots are

integer multiples of a discrete slot parameter. Denton and

Gupta (2003) study a general two-stage stochastic linear

programming formulation of the OR scheduling problem

and provide efficient methods for solving larger instances

of the problem.

The literature on advance planning in the context of

multiple ORs is very sparse. Notable references include the

following. Blake and Donald (2002) present a deterministic

integer programming formulation of a model for setting

block-booking schedules for multiple ORs. Dexter, Epstein,

and Marcon (2005) consider policies under a block-booking

schedule in which unutilized OR time is released prior to

the day of surgery. They consider the trade-offs regarding

the timing of release, where such problems are analogous

to those found in the revenue management literature.

In contrast to the above referenced literature, our goal is

to use a simulation model to study the impact of uncertainty

on strategic design and operational scheduling decisions in

the multi-OR context. In addition to considering multiple

ORs we also explicitly model the dependency of perfor-

mance metrics on up and downstream resource availability.

Therefore our model incorporates many of the criteria de-

scribed in the referenced articles, while allowing a deeper

analysis of the broader delivery system.

4 SINGLE-OR OPTIMIZATION MODEL

The single-OR scheduling problem is similar to the S(n)/G/1

queuing model in which n customers arrive at a server

according to a deterministic schedule of arrival times,

{ai, i = 1, ...,n}), to receive service of uncertain duration

with probability distribution G(·). To define the model for

this problem we let Zi denote the random surgery duration

for surgery i, and let Wi and Si denote the waiting and idling

times associated with surgery i respectively. To simplify the

articulation of our model we let xi denote the time allocated

for surgical procedure i (note that specifying xi is equiva-

lent to specifying ai). In our model expected waiting and

idling times represent performance metrics. The waiting

and idling times can be written as the following recursive

equations.

Wi(ω) = max(Wi−1(ω)+Zi−1(ω)− xi−1,0),∀i,

Si(ω) = max(−Wi−1(ω)−Zi−1(ω)+ xi−1,0),∀i.

It is assumed that waiting and idling associated with the

first surgery are zero, W1(ω) = S1(ω) = 0. Uncertainty is

denoted by a scenario ω that defines the collective outcomes
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of the random surgery durations, Z, having support Ξ⊆<n

and probability distribution P on Ξ. In addition to waiting

and idling another important performance metric is the

overtime with respect to an established length-of-day, which

we denote by L and d respectively. Overtime can be written

as

L = max(Wn(ω)+Zn(ω)+

n−1
∑

i=1

xi −d,0).

The above equations illustrate the dependency of the per-

formance metrics on the selection of arrival times. For

instance, if arrivals are spaced out (i.e., xi’s are increased)

patients tend to wait less but at the expense of greater idle

times and overtime. On the other hand, compressing the

schedule results in lower idling and overtime at the expense

of greater patient waiting. (See Denton and Gupta 2003 for

a thorough treatment of the single-OR model.)

Assuming linear costs for waiting, idling and tardiness,

this tradeoff can be modeled explicitly as the following

optimization problem:

Z = min
x

{

n
∑

i=1

cw
i E[Wi]+

n
∑

i=1

cs
i E[Si]+ c`E[L]

}

.

This unconstrained non-linear optimization problem can

be re-formulated as a two-stage stochastic linear program.

The structure of this problem was leveraged to develop

fast solution methods in Denton and Gupta (2003). In

Denton and Vogl (2006) we have investigated potential

improvements from the application of the single-OR model

using real data, and comparing optimal schedules to actual

schedules for an OR at a large urban hospital. The significant

improvements we observed for the single operating room

problem encouraged our further investigation of the more

complex multi-OR surgical suite model to optimize the

strategic design and operational scheduling decisions.

5 MULTI-OR SIMULATION MODEL

The full multi-OR surgical suite is much more complex

than the single-OR model described above, which makes

an optimization model is more difficult. Therefore our initial

investigation has been a discrete event simulation model.

In Section 6 we describe how this simulation can be used

as the basis for a simulated annealing algorithm to com-

pute improved schedules. Figure 2 of Section 1 illustrates

the complete set of activities for patients, and Figure 1

represents the flow for our simulation model. On a given

day patients arrive according to their assigned appointment

times. Patients nearly always arrive on time for their surgery,

and therefore the arrival process is reasonably treated as

deterministic. Appointments are assigned in advance of the
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day of surgery according to a predefined set of slots, and

the same schedule is used each day of the week. The pro-

cess begins with patients waiting for a nurse to initiate the

intake process. The intake process can be viewed as a set of

parallel servers which represent a combination of resources

necessary for intake (e.g., nurse, consultation room, change

room).

After the intake process patients are taken to the first

available OR if an OR is available. Otherwise, they wait in

a pre-operative area for an OR to become available. After

being taken to the first available OR the patient waits for the

OR Team to arrive to begin the procedure. Each OR Team

has one or more ORs in the suite pre-assigned for their use

on the day of surgery. An OR Team’s first surgery of the

day commences in any of the available ORs (all ORs are

clean and ready for use at the beginning of the day). Once

surgery is complete in an OR there is a setup time to prepare

the OR for the next patient (e.g., cleaning). If the OR Team

has been allocated multiple ORs then the team may move

to the next available OR and start surgery immediately,

provided the OR has been cleaned and the next patient has

been transferred to the room. By and large patients in the

endoscopy suite are not pre-assigned a specific OR Team,

therefore the first available OR Team treats the first available

patient (our model easily accommodates the more general

case of pre-assignment of patients to OR Teams as well).

Surgery for a patient that has completed the intake

process begins at the later of the following three times

(a) their arrival time at the OR (b) the time that an OR

becomes available and (c) the time that an OR Team becomes

available. Figure 3 illustrates the rotation of OR Teams

among ORs based on two different scenarios for the case of

a four-OR suite. In Scenario 1 a single OR Team is allocated

each of the four ORs, and utilizes each sequentially as the

day of surgery progresses. In Scenario 2 two OR Teams

share the suite, each having access to two ORs which they

circulate through independently.

Upon completion of the surgical procedure the patients

recovery process begins. The time for recovery is a random

variable which depends on each patients response to the

anaesthetic. The process begins upon completion of the

surgical procedure independent of whether they are located

in the OR or the recovery area. However, until the patient

is transferred from the OR to the recovery area preparation

of the OR for the next patient can not begin. Furthermore, a

nurse from the OR Team must monitor the patient until they

are admitted to the recovery area. Therefore, dependence

on the availability of a recovery bed downstream may result

patients waiting upstream in the preopertive waiting area

for a room and/or OR Team to become available.
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5.1 Scenario Generation

Each day a predefined number of patients are assigned ar-

rival times to the endoscopy suite. Our model assumes each

patient involves three main activities with uncertain dura-

tions: intake, surgery, and recovery. Detailed collection of

patient flow data through the endoscopy suite began in 2004

and a large database of event timings is now available. The

timings include a larger number of activities (see Figure 2)

which we have isolated and aggregated into intake, surgery,

and recovery. Our simulation model generates a scenario

by randomly selecting elements from a list of historical

samples for each of these three activities, and for each pa-

tient scheduled on a particular day. Scenarios are generated

by sampling with replacement, with a sample size of 2376
corresponding to each of the three activity durations for

endoscopy patients seen in 2005. For the simulations that

we report on in Section 7 we use a sample size of 10,000
scenarios. Our numerical experimentation indicates that this

is typically sufficient to achieve a 95% confidence interval

that is less than 1% of the mean.

5.2 Performance Measures

Performance measures for the operation of the endoscopy

suite fall into two main categories: patient waiting time

and overtime of the endoscopy suite. Patient waiting is

associated with the first two activities, i.e., patients wait

for intake, and wait for surgery. There is no waiting time

in the recovery process since recovery begins immediately

after surgery, whether the patient is in a recovery bed, or in

the OR waiting for a recovery bed. Waiting for intake and

surgery is viewed negatively since it increases the total time

the patient waits in anticipation of the surgical procedure,

which increases total flow time through the suite and is a

source of stress for patients. Overtime in the endoscopy

suite occurs when the discharge of the last patient occurs

after the planned closure time of the suite. Late closure

results in overtime costs for nurses and other staff members

involved in the operation of the suite. Output from our

simulation model includes expected waiting time for each

patient for intake and surgery as well as expected overtime.

We let W I
i and W S

i denote waiting for intake and surgery

respectively, and (similar to the single-OR model) we use

L to denote overtime. In the numerical examples of the

next section we report the following aggregate estimators
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Figure 3: Illustration of the Rotation of OR Teams Among Allocated ORs, where in Scenario 1 (Top) One OR Team Uses

4 ORs, and in Scenario 2 (Bottom) Two OR Teams Use Two ORs Each.
for total waiting time, and overtime.

E[W I ] =

n
∑

i=1

K
∑

k=1

W I
i (ωk)

K
(1)

E[W S] =
n

∑

i=1

K
∑

k=1

W S
i (ωk)

K
(2)

E[L] =

n
∑

i=1

K
∑

k=1

L(ωk)

K
(3)

where ωk denotes the discrete set of K sampled scenarios

(K = 10000 in the result presented in Section 7).

6 MULTI-OR OPTIMIZATION MODEL

In this section we briefly describe an implementation of an

optimization model that utilizes the monte-carlo simulation

model to evaluate schedules. The goal of the model is

to minimize an objective function that considers the dual

criteria of waiting time and overtime. The optimization

problem can be written as

Z = min
x

{

cIE[W I ]+ cSE[W S]+ cLE[L]
}

(4)

where x represents the schedule, and cI , cS, and cL, denote

cost coefficients associated with expected waiting and intake,

waiting at surgery, and overtime.

We use a simple simulated annealing (SA) algorithm to

search for improved patient arrival schedules (the reader is

referred to a detailed description of SA algorithms in Glover

and Kochenberger 2003). Our implementation leverages

the intuition of decision makers by starting with the actual

schedule used in practice. We consider an initial population
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of multiple schedules (e.g., 5000) which are generated by

progressively perturbing the initial solution by randomly

moving arrival times earlier or later in the schedule, with a

random step size of 5, 10, or 15 minutes. At each iteration

all initial schedules in the population are evaluated using

the monte-carlo simulation model. Schedules are retained

in the population at each iteration of the algorithm with

an annealing probability of exp(−δ/k). The parameter k

(referred to as the temperature) is selected a priori as an

input into the algorithm, and parameter δ is the difference

between the current objective function value and the candi-

date objective function. The algorithm proceeds iteratively

with the parameter k becoming progressively lower at rate

α per iteration. Accepted schedules at each iteration are

further perturbed until k drops to some predetermined value,

ε , and the best solution in each iteration is retained.

7 NUMERICAL RESULTS

In this section we provide some summary statistics about the

uncertain activities involved in the surgery delivery process

and two specific examples to illustrate the types of questions

that can be investigated using the simulation model we have

developed. The first (strategic planning) example involves

the evaluation of alternative staffing models, and the second

(operational scheduling) example illustrates the use of the

model to improve the assignment of patient arrival times to

balance patient waiting with overtime.

7.1 Model Implementation

Our simulation model was implemented in C/C++ on a

SUN Unix platform. An open source pseudo-random num-

ber generator was used to generate random deviates between

0.0 and 1.0 which were subsequently converted to integers
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corresponding to elements of an array containing the histor-

ical sample time for intake, surgery, and recovery activities.

Input data for the simulator includes (a) three files con-

taining sample points for the intake, surgery, and recovery

activities (b) a file containing a user defined schedule of pa-

tient arrival times (e.g., 7:30am, 8:00am, 8:40am, etc.) and

(c) a model configuration file that defines several elements

for a particular instance of the simulation including: sample

size, length of day for the endoscopy suite, turn-over time

to clean an OR after surgery, number of servers for each

activity, number of ORs per OR Team, and the pseudo-

random number generator seed. Output data includes a list

of expected waiting times for patients at intake, surgery,

and recovery, as well as expected overtime based on the

difference between the discharge time of the last patient and

the planned length of day (if it is nonzero). Computation

time for typical instances of the model are a few seconds

with a sample size of 10,000 on a SUN V440 with CPU

speed of 1GHz and 8GB of RAM.

7.2 Summary Statistics

Figure 4 depicts the probability distribution associated with

intake, surgery, and recovery. The probability distributions

are based on the frequency of observations in 5 minute

increments. All activities have a fairly large probability

mass in a relatively small interval with a long tail. Such a

tail has been noted for many types of surgeries, and results

from unexpected or unanticipated events during the surgical

procedure which occur with low but finite probability. In

the intake process a long tail denotes additional waiting that

may be necessary for patients that have not followed pre-

surgery directions (e.g., fasting), and long recovery times

occur for patients that recover more slowly because of

natural variation in patients ability to process the anesthetic

after surgery. Summary statistics for the three activities are

illustrated in Table 1.

Table 1: Summary Statistics for Intake, Surgery, and Re-

cover.

Activity Mean Std. Dev. Min. Max.

Intake 14.2 7.8 0 115

Surgery 28.4 14.0 3 114

Recovery 50.9 15.3 1 131

7.3 Staffing Example

The allocation ratio of ORs to OR Teams is an important

strategic decision that affects long term staffing and capacity

investment. Allocating a single OR causes OR Teams to

wait between surgeries for their OR to be cleaned, while

allocating multiple ORs means the OR Team can move on
421
to the next available OR immediately. However, allocating

many ORs to one OR Team may result in some ORs sitting

idle between surgeries. Due to uncertainty in the intake,

surgery, and recovery processes it is difficult to evaluate

the best allocation. We illustrate the use of our simulation

model to consider two scenarios (a) a single OR Team

utilizing all four ORs and (b) two OR Teams using two

ORs each (Figure 2 is an illustration of the two different

scenarios). In both cases we assume two intake servers and

four recovery beds, which is typical of the actual staffing

of a four-OR endoscopy suite. Also, consistent with actual

operating procedure, we assume that the planned length of

day for the suite is five hours. The schedule for Scenario

2 is based on the actual schedule in use at the endoscopy

suite, and that of Scenario 1 is based on the best judgment

of the endoscopy suite manager (without the aid of our

simulation model).

Since detailed data collection for OR setup times has

not been collected, in this example we have used an estimate

of 15 minutes for OR setup time based on the informed

judgment of the endoscopy suite director. Increasing setup

time tends to improve the results for Scenario 1 (since the

OR Team is less likely to be delayed by setup time when

additional ORs are available) whereas decreasing setup time

tends to favor Scenario 2. Based on the results in Table 2 the

waiting times for intake and surgery are quite different, with

Scenario 2 exhibiting much higher waiting at the surgery

stage and lower expected waiting at the intake stage. Total

waiting for Scenarios 1 and 2 is 725.5 and 222.8 respectively.

Expected overtime for Scenario 1 and 2 is 40.79 and 110.4

respectively. From an OR Team utilization perspective

Scenarios 1 and 2 are quite different since Scenario 1 has

16 patients scheduled and Scenario 2 has only 12. Therefore

the number of patients seen per OR Team is 1/3 higher

under Scenario 1.

Table 2: Numerical Example Contrasting the Performance

Measures Under Two Different OR Allocation Scenarios.

E[W I ] E[W S] E[L]
Scenario 1 36.4 689.1 40.8

Scenario 2 18.0 204.8 110.4

7.4 Schedule Optimization Example

Selecting arrival times for patients is an important and dif-

ficult operational decision. Uncertainty in service durations

makes scheduling difficult even in the single-OR case de-

scribed in Section 4, let alone a multi-OR suite. In this

example we use simulated annealing (SA) to find a sched-

ule that simultaneously improves waiting and overtime for

Scenario 1. Both criteria were weighted equally in our

objective function and the results are presented in Figure 5.
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Figure 4: Illustration of the Empirical Probability Distribution for Intake, Surgery, and Recovery Based on Historical Data

for 2005
Figure 5: The Total Waiting and Overtime with Respect to Iterations of the Simulated Annealing Algorithm.
The SA algorithm starts with the actual schedule used in

practice, and populates an initial solution set by progressively

perturbing this schedule. Each generated schedule is used

as the seed to generate the next perturbed schedule. A

total of 5,000 first generation schedules are created for the

first iteration of the algorithm. Each schedule is evaluated

via the monte-carlo simulation model using a sample size

of 10,000. The initial temperature is k = 100 which is

reduced iteratively at a cooling rate of α = 1 per iteration

to k = 85 for a total of 15 iterations. Based on Figure 5 the

SA algorithm achieves substantial improvements in early

iterations, followed by much slower convergence. Such slow
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convergence in later iterations is a common characteristic

of SA algorithms. In spite of the slow convergence the

total improvement with respect to the schedule used in

practice is approximately 50%. Therefore the Scenario

1 schedule can be significantly improved using a simple

SA algorithm. These promising results encourage future

investigation of other more advanced metaheuristics such

as genetic algorithms.
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8 CONCLUSIONS

This article illustrates the application of a monte-carlo sim-

ulation model and simulated annealing to multi-OR surgical

suite scheduling based on real data from an outpatient sur-

gical suite. We demonstrate how the model can be used

to evaluate multiple competing criteria for different staffing

scenarios. Our analysis indicates that even a simple schedul-

ing heuristic based on scheduling of the bottleneck (surgery)

activity can lead to simultaneous improvements in expected

patient waiting time and overtime. This encourages further

future investigation of scheduling decisions via simulation

based optimization.

The use of simulation and optimization models for

manufacturing systems and other types of service systems

are very well established. However, research into the use of

such models for surgery scheduling and other service systems

is less mature. Using a specific example we have illustrated

the use of simulation models to answer open questions

about the design and operation of surgical suites. Our

initial optimization results encourage future investigation of

methods to improve surgical suite schedules. Furthermore,

surgical suites are typically part of an even more complex

system in hospitals that has dependency on admissions via

emergency rooms, outpatient clinic scheduling, and hospital

bed resources. Therefore, significant opportunities for future

research exist, including expansion of the scope of our model

to the broader hospital delivery system.
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