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ABSTRACT

This paper discusses implementation of a sequential pro-

cedure to estimate the steady-state density of a stochastic

process. The procedure computes sample densities at cer-

tain points and uses Lagrange interpolation to estimate the

density f (x). Even though the proposed sequential proce-

dure is a heuristic, it does have strong basis. Our empirical

results show that the procedure gives density estimates that

satisfy a pre-specified precision requirement. An experi-

mental performance evaluation demonstrates the validity of

using the procedure to estimate densities.

1 INTRODUCTION

Simulation studies have been used to investigate the char-

acteristics of the system under study, for example the mean

and the variance of certain system performance. The prob-

ability density function f gives a natural description of the

distribution of the output random variable X produced by a

simulation. The density function associated with X satisfies

P(a < X < b) =

∫ b

a

f (x)dx for all a < b.

We investigate the performance of using the technique of

Chen and Kelton (2006) to estimate the density of a simu-

lation output random variable.

Density estimation is the construction of an estimate

of the density function from observed data. Silverman

(1986, p. 5) points out that “density estimates are ideal for

presentation of data to provide explanation and illustration

of conclusions, since they are fairly easily comprehensible to

non-mathematicians.” One approach to density estimation

is parametric, assuming that the data are drawn from a

known parametric family of distributions. Another approach

is nonparametric, where less rigid assumptions are made

about the distribution of the observed data. We consider the

nonparameteric approach. Furthermore, the procedure is a
3331-4244-0501-7/06/$20.00 ©2006 IEEE
data-based algorithm, i.e., the procedure can be embodied

in a software package whose input is the data (X1, . . . ,Xn)

and whose output is the density estimate. Several different

approaches have received extensive treatment; see Scott and

Factor (1981) and the references in the paper.

The most widely used density estimator is the histogram,

a graphical estimate of the underlying probability density

function and reveals all the essential distributional features

of an output random variable analyzed by simulation, such

as skewness and multimodality. Hence, a histogram is often

used in the informal investigation of the properties of a given

set of data. Given an origin g0 and a bin width w, the bins

of the histogram are the intervals [g0 +mw,g0 +(m+1)w]
for positive and negative integers m. Suppose that we have

any division of the real line into bins; then the histogram

density estimator is

f̂h(x) =
1

n
× (no. of Xi in same bin as x)

(width of bin containing x)
.

Hence, to construct the histogram, we need to choose both

an origin and a bin width. It is the bin width that, pri-

marily, controls the amount of smoothing inherent in the

procedure. Scott and Factor (1981) investigate the optimal

bin width given a sample size. They point out that the

optimal smoothing parameter can be computed if the true

underlying sampling density f is known.

A histogram can be constructed with a properly se-

lected set of quantiles. It is known that for both independent

and identically distributed (i.i.d.) and φ -mixing sequences

sample quantiles will be asymptotically unbiased if cer-

tain conditions are satisfied; see Sen (1972). Intuitively,

a stochastic process is φ -mixing if its distant future is es-

sentially independent of its present and past (Billingsley

1999).

In Section 2 we discuss some theoretical bases of density

estimation in the context of simulation output analysis. In

Section 3 we present our methodologies and the proposed

procedure for density estimation. In Section 4 we show
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our empirical-experimental results of density estimation. In

Section 5 we give concluding remarks.

2 THEORETICAL BASIS

From the definition of a probability density, if the random

variable X has density f , then

f (x) = lim
h→0

1

2h
P(x−h < X < x+h).

2.1 The Histogram Density Estimator

A natural estimator by histogram f̂h of the density is given

by choosing a small number h (h = w/2) and setting

f̂h(x)

=
1

2nh
[no. of X1, . . . ,Xn falling in (x−h,x+h)].

Let p = P(|x−X | < h) and

Ii =

{

1 if |x−Xi| < h,

0 otherwise.

The estimator f̂h(x) is based on a transformation of the

output sequence {Xi} to the sequence {Ii}, i = 1,2, . . . ,n:

f̂h(x) =
1

2nh

n
∑

i=1

Ii.

For data that are i.i.d., the following properties of Ii are well

known (Hogg and Craig 1995, pp. 116-117): E(Ii) = p and

Var(Ii) = p(1− p). Chen (2001) has developed a procedure

to estimate proportion of simulation output sequences based

on these properties. Since f̂h(x) is based on the mean of the

random variable Ii, we can use any method developed for

estimating the variance of the mean to estimate Var( f̂h(x)).
Let I(·) denote the indicator function for the interval (x−
h,x+h). It can be shown that

E( f̂h(x)) =
1

2h

∫

I (y) f (y)dy,

and Var( f̂h(x)) = p(1− p)/(4nh2).
Note that f̂h(x) has a binomial distribution. It follows

from the definition that f̂h is not a continuous function,

but has jumps at the points Xi ±h and has zero derivative

everywhere else. This gives the estimate a somewhat ragged

character.
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2.2 The Kernel Density Estimator

To overcome the difficulties of ragged character, one can

use a kernel function K, which satisfies the condition

∫ ∞

−∞

K(x)dx = 1.

For simplicity, the kernel K usually is a symmetric function

satisfying
∫

K(x)dx = 1,
∫

xK(x)dx = 0, and
∫

x2K(x)dx =
k2 6= 0; an example is the normal density. The kernel

estimator with kernel K is defined by

f̂k(x) =
1

nh

n
∑

i=1

K

(

x−Xi

h

)

.

Silverman (1986, pp. 15-17) points out that “ f̂k will inherit

all the continuity and differentiability properties of the kernel

K, so that if K is the normal density function, then f̂k will be

a smooth curve having derivatives of all orders.” However,

the kernel method often underestimates the density at the

boundary when the domain of the density being estimated

is not the whole real line but an interval bounded on one

or both sides; see Silverman (1986, p. 29).

It can be shown that

E( f̂k(x)) =
1

h

∫

K

(

x− y

h

)

f (y)dy; (1)

Var( f̂k(x))

=
1

n

[

1

h2

∫

K

(

x− y

h

)2

f (y)dy−E( f̂k(x))
2

]

≈ 1

nh
f (x)

∫

K(y)2dy,

and

biash(x) = E( f̂k(x)− f (x))

=
1

2
h2 f ′′(x)k2 + higher-order terms in h.

See Silverman (1986, pp. 37-40) for details.

The approximation of bias and variance indicates one

of the fundamental difficulties of density estimation. To

eliminate the bias, a small value of h should be used, but

then the variance will become large. On the other hand, a

large value of h will reduce the variance, but will increase

the bias. Nevertheless, the ideal window width h should

satisfy:

lim
n→∞

h = 0, lim
n→∞

nh = ∞. (2)
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That is, h should converge to zero as the sample size increases

but at a slower rate than n. Furthermore, smaller values of

h will be appropriate for more rapidly fluctuating densities.

Let Jn =
∫

| f̂n − f |, where f̂n(x) = fn(x;X1, . . . ,Xn) is a

real-valued Borel measurable function of its arguments.

Conditions (2) imply that there exists r ∈ R such that P(Jn ≥
ε)≤ e−rnε2

for all ε ∈ (0,1) and all n≥ n f , where n f depends

upon f and ε; see Devroye and Györfi (1985).

Since the shape of the true density is of most interest,

a relevant criterion is the integrated mean squared error

(IMSE) (Rosenblatt 1971) defined as

IMSE =

∫

E[ f̂ (x)− f (x)]2dx = E

∫

[ f̂ (x)− f (x)]2dx.

There exists extensive research on the selection of an optimal

kernel function to minimize the IMSE. Scott and Factor

(1981) point out that many symmetric uni-modal kernel

functions are nearly optimal. We use the Gaussian kernel in

this paper. Moreover, it can be shown that the asymptotically

optimal smoothing parameter is

h = α(K)β ( f )n−1/5

where

α(K) =

[
∫

K(y)2dy

]1/5 [
∫

K(y)y2dy

]−2/5

and

β ( f ) =

[
∫

f ′′(x)2dx

]−1/5

.

With this choice, the IMSE decreases in proportion to n−4/5;

see Scott and Factor (1981).

3 METHODOLOGIES

This section presents the methodologies we will use for

our density estimation. A flow chart of the procedure is

depicted in Figure 1. An imbedded pilot run is executed

to set up the grid points. On each iteration, the algorithm

operates as follows. The simulation outputs are funnelled

into grids. The number of observations in each grid is

updated as the observation is processed. The systematic

samples are obtained through lag-l observations and are

stored in a buffer. The initial value of l is 1. If lag-l′

systematic samples appear to be dependent, then the lag l

is doubled every other iteration and the process is repeated

until the lag-l′ systematic samples appear to be independent.

The initial value of l′ is 0 and will be updated each iteration

by the following rule: “if l′ < 3, then l′ = l′+1; else l′ = 2.”
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3.1 Determine the Window Width

Scott and Factor (1981) point out that “the great potential of

nonparametric density estimators in data analysis is not being

fully realized, primarily because of the practical difficulty

associated with choosing the smoothing parameter given

only data X1,X2, . . . ,Xn.” Silverman (1986, p. 47) suggests

that the window width of the kernel estimator be

h = 0.9An−1/5,

where

A = min(standard deviation, interquartile range/1.34).

For many purposes this will be an adequate choice of window

width in terms of minimizing the IMSE. For others, it will

be a good starting point for subsequent fine tuning. Let xp

be the p sample quantile. In our procedure, we set

A = min(standard error,(x0.75− x0.25)/2.68).

Let x[1] and x[n], respectively, denote the minimum and

maximum of the initial n0, 2n0, or 3n0 observations, de-

pending on the correlation of the output sequences. If

(x[n]− x[1])/(2h) < 25, then h will be halved. This adjust-

ment is needed for distributions that have relatively large

variance with a small range of the initial observations, so

too large a window width. For example, if the estimated

number of bins is 10, the procedure increases the number

of bins to 20 and reduces the window width by half.

We use the following strategy to determine the grid

points. The are two categories of grids: main grids and

auxiliary grids. Main grids are constructed based on the

initial observations that “anchor” the grid of the simulation-

generated histogram, while auxiliary grids are extensions of

main grids to ensure that the grids cover future observations.

The number of main grid points is Gm = d(x[n]−x[1])/(2h)e,

and the number of auxiliary grid points is Ga = 2dδGme,

where 0 < δ < 1. The total number of grid points is thus

G = Gm +Ga +1. Let the beginning indices of the main grid

point (i.e., the origin) be b = dδGme+1. The procedure

sets gb+i = x[1] +2ih, for i = 0,1, . . . ,Gm + Ga/2− 1, and

gb−i = x[1] − 2ih, for i = 1,2, . . . ,Ga/2− 1. Grid point g1

is set to −∞ and gG is set to ∞.

It is straightforward to compute the histogram density

estimator. The array ni, i = 2,3, . . . ,G stores the number

of observations between grid points gi−1 and gi, so the

density of xi = (gi−1 + gi)/2 can be estimated by f̂ (xi) =

ni/(n(gi−gi−1)), where n =
∑G

i=2 ni is the total number of

observations. To obtain the kernel estimator, the procedure

needs to read through the output sequence again.

In some sense, a simulation is just a function, which

may be vector-valued or stochastic. The explicit form of this
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Figure 1: Flow Chart of the Procedure
function is unknown. These plots (histograms) numerically

characterize the distribution of the output sequence, even

though we do not have an algebraic formula with which

to characterize it. The procedure then computes the point

density estimator via the histogram by (four-point) Lagrange

interpolation (Knuth 1998). That is, for some k such that

xk−1 < x≤ xk, the x density point estimator can be computed

as follows. Let

w j =

4
∏

j′=1, j′ 6= j

x− xk+ j′−3

xk+ j−3− xk+ j′−3
, for j = 1,2,3,4,

then

f̂ (x) =

4
∑

j=1

w j f̂ (xk+ j−3).

In two extreme cases, x1 < x ≤ x2 or xG−1 < x ≤ xG, linear

interpolation will be used.

Since the procedure uses interpolation to obtain point

estimates, it eliminates the ragged character of the histogram.

Hence, the density estimates for different points within the

same bin can have different values.
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3.2 Determine the Sample Size

The asymptotic validity of the density estimate is reached as

the sample size or simulation run length gets large. However,

in practical situations simulation experiments are restricted

in time and it is not known in advance what is the required

simulation run length for the estimator to become unbiased.

Moreover, estimating the variance of the density estimator

is needed to evaluate its precision. Therefore, a workable

finite sample size must be determined dynamically for the

precision required.

We use an initial sample size of n0 = 600, which is

somewhat arbitrary. If the underlying sequence is only

slightly correlated and high precision is desired, a larger

initial sample size should be used. For correlated sequences,

the sample size n will be replaced with N = nl. Here l will

be chosen sufficiently large so that systematic samples that

are lag-l observations apart are statistically independent;

see Chen and Kelton (2003). This is possible because we

assume the underlying process satisfies the property that

the autocorrelation approaches zero as the lag approaches

infinity. Consequently, the final sample size N increases

as the auto-correlation increases. In this procedure, we



Chen and Kelton
use the von Neumann (1941) test of independence instead

of the runs test. We can apply the von Neumann test of

independence with a smaller sample size, but it has less

power. Nevertheless, it serves the purpose well.

Since we need to process the sequence again to obtain

the kernel estimator, we re-compute the window width

h with the final sample size N and the number of grid

points with the new sample range. We only need to allocate

main grids because the minimum and maximum are known.

Furthermore, the sample error and the quantiles x0.25 and

x0.75 will be estimated through the histogram constructed

while calculating the natural estimator. That is, the variance

is conservatively estimated by

S2
H =

G
∑

i=2

max((gi−1− X̄(N))
2
,(g j − X̄(N))

2
)Pi.

Note that N = nl =
∑G

i=2 ni, X̄(N) =
∑N

j=1 X j, and Pi =
ni/N.

To estimate the error, the IMSE is approximated by

IMSE = 2

Γ
∑

r=1

G−1
∑

i=2

[ f̂ (gi)− f (gi)]
2h/Γ,

where Γ is the number of density estimates. The density

of g1 and gG is not included in the calculation because

they could be −∞ and ∞, respectively. Furthermore, if the

true minimum (ω) or the true maximum (Ω) are known,

the values gi < ω or Ω < gi will not be included in the

calculation.

3.3 Density Confidence Interval

An approximate pointwise confidence interval (c.i.) for the

density f (x) can be obtained using the binomial distribution

from the histogram density estimate. The usual unbiased

estimator of the variance of f̂h(x) is S2
b = Var( f̂h(x)) =

p(1− p)/(4h2N). This would then lead to the 100(1−α)%
c.i., for f (x),

f̂h(x)± z1−α/2Sb,

where z1−α/2 is the 1−α/2 quantile for the standard normal

distribution. On the other hand, the distribution of f̂k(x) is

unknown, hence, a c.i. cannot be constructed through one

replication of f̂k(x).
Let f̂r(x) denote the (histogram or kernel) estimator of

f (x) in the rth replication. We use

f̄ (x) =
1

R

R
∑

r=1

f̂r(x)
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as a point estimator of f (x). Assuming f̄ (x) has a limiting

normal distribution, by the central limit theorem a c.i. for

f (x) using the i.i.d. f̂r(x)’s can be approximated using

standard statistical procedures. That is, the ratio

T =
f̄ (x)− f (x)

S/
√

R

would have an approximate t distribution with R− 1 d.f.

(degrees of freedom), where

S2 =
1

(R−1)

R
∑

r=1

( f̂r(x)− f̄ (x))
2

is the usual unbiased estimator of the variance of f (x). This

would then lead to the 100(1−α)% c.i., for f (x),

f̄ (x)± tR−1,1−α/2
S√
R

, (3)

where tR−1,1−α/2 is the 1−α/2 quantile for the t distribution

with R−1 d.f. (R ≥ 2).

Let the half-width H be tR−1,1−α/2S/
√

R. The final

step in the procedure is to determine whether the c.i. meets

the user’s half-width requirement, a maximum absolute half-

width ε ′ or a maximum relative fraction γ of the magnitude

of the final point density estimator f̄ (x). If the relevant

requirement H ≤ ε ′ or H ≤ γ| f̂ (x)| for the precision of the

confidence interval is satisfied, then the procedure termi-

nates, returns the point density estimator f̂ (x), and the c.i.

with half-width H. If the precision requirement is not sat-

isfied with R replications, then the procedure will increase

the number of replications by one. This iterates until the

pre-specified half-width is achieved.

4 EMPIRICAL EXPERIMENTS

We tested the proposed procedure with several i.i.d. and

correlated sequences. In these experiments, we used R = 3
independent replications to construct c.i.’s. We constructed

density c.i.’s at four points for each distribution. The con-

fidence level 1−α of the density c.i.— i.e., (3)—is set to

0.90. Moreover, the confidence level of the von Neumann

test of independence is set to 0.90 as well.

We tested the following independent sequences:

• Observations are i.i.d. from the tri-modal density

f (x) =

1

3
√

2π
(e−x2/2 +

1

2
e−(x−5)2/8 + e−(x−10)2/2).
7
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• Observations are i.i.d. from the exponential density

f (x) =

{

e−x if x ≥ 0
0 otherwise.

Tables 1 and 2 list the experimental results using the

tri-modal and exponential distributions, respectively. Each

design point was based on 1000 replications. The avg N

row lists the average of the sample size of each independent

run. The stdev N row lists the standard deviation of the

sample size. The x row lists the point where we want to

estimate density. The f (x) row lists the true density. The

values after each the estimate method are the IMSE and the

standard error of integrated squared error. The f̂ (x) row

lists the grand mean of all density estimator from these 1000

replications. The coverage row lists the percentage of the

c.i.’s that cover the true f (x). The avg γ row lists the average

of the relative precision of the density estimators. Here,

the relative precision is defined as γ = | f̂ (x)− f (x)|/ f (x).
The stdev γ row lists the standard deviation of the relative

precision of the density estimators. The avg hw row lists

the average of the c.i. half-width. The stdev hw row lists

the standard deviation of the c.i. half-width.

As expected, the IMSE from the kernel estimator is bet-

ter than from the histogram estimator. However, the kernel

estimator requires more computation. In these experiments,

no relative or absolute precisions were specified, so the

half-width of the c.i. is the result of the default precision.

In general, the histogram estimator has larger variance, so

better c.i. coverage. However, the histogram estimators are

biased high around the tail area. This is because the his-

togram estimators often result in a bounded distribution,

i.e., the tail of the distribution is truncated. With α = 0.10,

the independent sequences will fail the test of independence

10% of the times. The average sample sizes, 666 and 667,

are close to the theoretical value, i.e.,
∑∞

i=0 n0α i, where

n0 = 600.

Figures 2 and 3, respectively, show the empirical and

true densities of the tri-modal and exponential distributions,

generated from the first run of our experiments. The ex-

ponential distribution has a steep slope, so has a smaller

window width h and has a more ragged empirical distribution

curve.

We tested the following correlated sequences:

• Observations are from the AR1 (first-order auto-

regressive) process:

Xi = µ +ϕ(Xi−1−µ)+ εi for i = 1,2, . . . ,

where

E(εi) = 0, E(εiε j) =

{

σ2 if i = j ,
0 otherwise
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Table 1: Coverage of 90% Confidence Density Estimators

for the Tri-modal Distribution

avg N 666

stdev N 119

x 0.5 5 7.5 10

f (x) 0.1226 0.0665 0.0363 0.1360

Histogram Estimator (0.001856, 0.000756)

f̂ (x) 0.1193 0.0661 0.0373 0.1308

coverage 88.1% 91.5% 91.0% 84.3%

avg γ 0.0515 0.0677 0.1007 0.0536

stdev γ 0.0389 0.0503 0.0749 0.0391

avg hw 0.0186 0.0150 0.0115 0.0192

stdev hw 0.0098 0.0078 0.0061 0.0106

Kernel Estimator (0.001207,0.000530)

f̂ (x) 0.1155 0.0651 0.0392 0.1252

coverage 78.7% 88.7% 86.6% 63.3%

avg γ 0.0621 0.0574 0.1003 0.0808

stdev γ 0.0395 0.0418 0.0731 0.0442

avg hw 0.0147 0.0118 0.0090 0.0151

stdev hw 0.0076 0.0060 0.0048 0.0117

Table 2: Coverage of 90% Confidence Density Estimators

for the Expon(1) Distribution

avg N 667

stdev N 124

x 0.5 2.0 3.0 5.0

f (x) 0.6065 0.1353 0.0498 0.0067

Histogram Estimator (0.007100, 0.003581)

f̂ (x) 0.6085 0.1359 0.0498 0.0088

coverage 90.4% 91.5% 90.0% 73.2%

avg γ 0.0443 0.0950 0.1643 0.3612

stdev γ 0.0340 0.0699 0.1240 0.7372

avg hw 0.0885 0.0426 0.0263 0.0057

stdev hw 0.0491 0.0226 0.0137 0.0141

Kernel Estimator (0.003114, 0.001654)

f̂ (x) 0.6116 0.1363 0.0502 0.0076

coverage 88.7% 90.4% 89.1% 86.5%

avg γ 0.0316 0.0759 0.1304 0.4824

stdev γ 0.0248 0.0563 0.0989 2.9082

avg hw 0.0627 0.0339 0.0207 0.0100

stdev hw 0.0343 0.0182 0.0109 0.0572

−1 < ϕ < 1.

The εi’s are commonly called error terms.

• Observations are from the M/M/1 queueing model.

The AR1 process shares many characteristics observed

in simulation output processes, including asymptotic first-

and second-order stationarity, and autocorrelations that de-

cline exponentially with increasing lag. If we make the

additional assumption that the εi’s are normally distributed,

since we have already assumed that they are uncorrelated,
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Figure 2: Empirical Density of the Tri-modal Distribution

Figure 3: Empirical Density of the Exponential Distribution

they will now be independent as well, i.e., the εi’s are i.i.d.

N (0,1), where N (µ ,σ2) denotes a normal distribution

with mean µ and variance σ2. It can be shown that X has

asymptotically a N (0, 1
1−ϕ2 ) distribution, and the steady-

state variance constant of the AR(1) process is 1/(1−ϕ)2.

We set ϕ to 0.90 and set µ to zero for this experiment.

In order to eliminate the initial bias, X0 is set to a random

variate drawn from the steady-state distribution.

Table 3 lists the experimental results of the AR1 process.

The c.i. coverage of these four design points are around

the specified 90% confidence level for both estimators. The

simulation run length generally increases as the correlation

coefficient ϕ of the AR(1) process increases. The run

length of the AR1 process with ϕ = 0.9 is much larger

than independent sequences and consequently much smaller

IMSE.

The waiting-time density of the stationary M/M/1 delay

in queue is f (x) = (ν − λ )λ
ν e−(ν−λ)x for x ≥ 0 and is

discontinuous at x = 0, where λ is the arrival rate and ν
is the service rate. Summary of our experimental results

of the M/M/1 delay-in-queue process is in Table 4. Except
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for the kernel density estimate of x = 0.5, the c.i. coverages

are above or close to the specified 90%. The kernel method

encounters difficulty when estimating f (0.5) for the M/M/1

queueing process, because the value 0.5 is close to the

discontinuity point 0. To deal with this difficulty, various

adaptive methods have been proposed; see Silverman (1986,

pp. 19-29).

Figures 4 and 5, respectively, show the empirical dis-

tributions of the AR1 process with φ = 0.9 and the M/M/1

delay-in-queue process with ρ = 0.90, generated from the

first run of our experiments. The theoretical steady-state

distribution of this AR1 process and this M/M/1 queueing

process are, respectively, N(0,1/0.18) and 1− 0.9e−0.1x,

where x ≥ 0. Again, our experimental results show that

these density estimates provide an excellent approxima-

tion of the underlying steady-state distributions. However,

the kernel estimator over-smoothes the density around the

discontinuity point.

5 CONCLUSIONS

We have presented two algorithms for estimating the density

f (x) of a stationary process. Since, to obtain the kernel

estimator, the procedure needs to compute the histogram

estimator, a prudent course is to choose any reasonable

estimate based on these two estimates that are consistent with

prior belief about the true sampling density. However, the

histogram procedure is more suitable as a generic density-

estimation procedure since it requires less computation,

delivers a valid c.i., and has no difficulty estimating the

density around a bounded tail or discontinuity point, though

the IMSE is generally larger.

Some density estimates require more observations than

others before the asymptotics necessary for density estimates

become valid. Our algorithm works well in determining the

required simulation run length for the asymptotic approx-

imation to become valid. The results from our empirical

experiments show that the procedure is excellent in achiev-

ing the pre-specified accuracy. Our proposed histogram-

approximation algorithm computes quantiles only at grid

points and uses Lagrange interpolation to estimate the den-

sity at certain points. The algorithm also generates an

empirical distribution (histogram) of the output sequence,

which can provide insights into the underlying stochastic

process.

Our approach has the desirable properties that it is a

sequential procedure and it does not require users to have

a priori knowledge of values that the data might assume.

This allows the user to apply this method without having

to execute a separate pilot run to determine the range of

values to be expected, or guess and risk having to re-run the

simulation. The main advantage of our approach is that by

using a straightforward test of independence to determine

the simulation run length and obtain quantiles at grid points,
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not require more advanced statistical theory, thus making

it easy to understand, and simple to implement.

Table 3: Coverage of 90% Confidence Density Estimators

for the AR1(0.9) Process

avg N 20965

stdev N 3836

x -0.5 0.0 1.0 2.0

f (x) 0.1698 0.1739 0.1581 0.1189

Histogram Estimator (0.000221, 0.000133)

f̂ (x) 0.1697 0.1737 0.1579 0.1190

coverage 89.6% 89.7% 89.1% 90.4%

avg γ 0.0138 0.0132 0.0147 0.0192

stdev γ 0.0107 0.0105 0.0111 0.0148

avg hw 0.0075 0.0076 0.0077 0.0074

stdev hw 0.0041 0.0042 0.0041 0.0038

Kernel Estimator (0.000209, 0.000128)

f̂ (x) 0.1696 0.1737 0.1578 0.1189

coverage 88.7% 88.9% 90.7% 90.4%

avg γ 0.0142 0.0133 0.0151 0.0190

stdev γ 0.0107 0.0103 0.0110 0.0142

avg hw 0.0074 0.0076 0.0077 0.0074

stdev hw 0.0041 0.0042 0.0041 0.0038

Table 4: Coverage of 90% Confidence Density Estimators

for the MM1(0.9) Process

avg N 418496

stdev N 92729

x 0.5 2.5 5.0 10.0

f (x) 0.0856 0.0701 0.0546 0.0331

Histogram Estimator (0.000021, 0.000020)

f̂ (x) 0.0833 0.0704 0.0547 0.0331

coverage 85.0% 90.8% 92.6% 91.2%

avg γ 0.0295 0.0102 0.0082 0.0093

stdev γ 0.0232 0.0083 0.0064 0.0070

avg hw 0.0050 0.0023 0.0015 0.0010

stdev hw 0.0034 0.0013 0.0008 0.0006

Kernel Estimator (0.0000021, 0.000017)

f̂ (x) 0.1657 0.0701 0.05460 0.0331

coverage 0.0% 91.2% 91.3% 90.4%

avg γ 0.9355 0.0086 0.0082 0.0096

stdev γ 0.0291 0.0063 0.0063 0.0076

avg hw 0.0066 0.0020 0.0015 0.0010

stdev hw 0.0037 0.0011 0.0008 0.0006
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