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ABSTRACT

Four algorithms, all variants of Simultaneous Perturbation

Stochastic Approximation (SPSA), are proposed. The origi-

nal one-measurement SPSA uses an estimate of the gradient

of objective function L containing an additional bias term not

seen in two-measurement SPSA. As a result, the asymptotic

covariance matrix of the iterate convergence process has a

bias term. We propose a one-measurement algorithm that

eliminates this bias, and has asymptotic convergence proper-

ties making for easier comparison with the two-measurement

SPSA. The algorithm, under certain conditions, outperforms

both forms of SPSA with the only overhead being the stor-

age of a single measurement. We also propose a similar

algorithm that uses perturbations obtained from normalized

Hadamard matrices. The convergence w.p. 1 of both al-

gorithms is established. We extend measurement reuse to

design two second-order SPSA algorithms and sketch the

convergence analysis. Finally, we present simulation results

on an illustrative minimization problem.

1 INTRODUCTION

Simultaneous Perturbation Stochastic Approximation

(SPSA) is an efficient parameter optimization method that

operates under the constraint that only noisy measurements

of the objective function L are available at each parameter

iterate θk. First proposed in Spall (1992), it involves making

only two measurements of L at each update epoch k that

are obtained by perturbing θk along random directions. A

plethora of applications and enhancements of this technique

can be found at Spall (2001). A variant of SPSA that re-

duces the number of function measurements made at each

iteration k from two to one and establishes the conditions

under which a net lower number of observations suffice

to attain the same Mean Square Error (MSE) is provided

in Spall (1997). However, an impediment in rapid con-

vergence to θ∗ is that the algorithm constructs a gradient

estimate of L at θk that contains an additional error term
3201-4244-0501-7/06/$20.00 ©2006 IEEE
over the scheme in Spall (1992) and that contributes heav-

ily to the bias in the estimate. A solution to this problem

was proposed in Bhatnagar et al. (2003) in the simulation

optimization setting, where the perturbation to θk in the

one-simulation case is generated in a deterministic manner.

While this algorithm performs considerably better in prac-

tice, the asymptotic convergence properties in the setting

of Spall (1992) and Spall (1997) were derived in Xiong,

Wang, and Fu (2002) and found to be on par with those of

one-measurement SPSA.

In this work, we first propose two first-order algorithms:

one using randomly generated perturbations (cf. Section 2)

and the other using deterministic perturbations (cf. Section

4). We show convergence w.p. 1 for both the algorithms.

For the first algorithm, we also derive the asymptotic conver-

gence properties and compare these with Spall (1992) (cf.

Section 3). Further, we design two second-order algorithms

based on the measurement-storage concept in Section 5.

A numerical example is used to justify our findings (cf.

Section 6).

The general structure of gradient descent algorithms is as

follows. Suppose θk
∆
=(θk,1, ...,θk,p)

T where θk,i, 1 ≤ i ≤ p,

are the p components of parameter θk. Let Gk,l be an

estimate of the l−th partial derivative of the cost L(θk),
l ∈ {1,2, ..., p}. Then,

θk+1,l = θk,l −akGk,l(θk),1 ≤ l ≤ p,k ≥ 0, (1)

where {ak} is a step-size sequence. In the following, we

refer to the one-measurement form of SPSA as SPSA2-1R

and the two-measurement form as SPSA2-2R following the

convention of Bhatnagar et al. (2003). In such a conven-

tion, the ‘R’ refers to perturbations which are randomly

obtained, in contrast to deterministic perturbations in Sec-

tion 4. The trailing ‘1’ in SPSA2-1R refers to the fact that at

each iteration, the algorithm makes one measurement. The

leading ‘2’ stands for a variant of the algorithm that makes

parameter updates at every epoch, in contrast to algorithms

like SPSA1-2R which update the parameter after an (in-
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creasingly large) number of epochs. The current parameter

estimate θk is perturbed with a vector ∆k = (∆k,1, ...,∆k,p)
T

to produce θ+
k = θk + ck∆k, where ck is a small step-size

parameter that satisfies Assumption 1 (below) together with

the step-size parameter ak in (1). The gradient estimates

Gk,l(θk) used in SPSA2-1R are:

Gk,l(θk) =
L(θ+

k
)+ε+

k
ck∆k,l

= L(θk)
ck∆k,l

+gl(θk)+

p
∑

i=1,i 6=l

gi(θk)
∆k,i

∆k,l

+
c2

k
∆T

k
H(θk)∆k

2ck∆k,l
+

ε+
k

ck∆k,l

+
c3

k
L(3)(θ̄k)∆k⊗∆k⊗∆k

6ck∆k,l
. (2)

We assume here that L is twice continuously differen-

tiable with bounded third derivative. Note that H(θk) is

the Hessian evaluated at θk and L(3)(θ̄k)∆k ⊗∆k ⊗∆k =
∆T

k (L(3)(θ̄k)∆k)∆k where θ̄k = θk + λkck∆k for some

0≤ λk ≤ 1 and L(3) is the third derivative of objective func-

tion L(·), where ⊗ denotes the Kronecker product. Also, ε+
k

corresponds to additive observation noise. Thus, Gk,l is a ran-

dom variable, which we assume is measurable with respect

to (w.r.t.) the σ−algebra Fk = σ(θi,∆i,0 ≤ i ≤ k−1,θk).
In contrast, gl(θk) is the l−th component of the derivative

of L(·) at θk. The gradient of L(·) at θk is now defined

as g(θk) = (gl(θk), 1 ≤ l ≤ p)T . Although not the current

object of study, we observe that the estimate of SPSA2-2R

needs two measurements of L(·) about θk:

Gk,l(θk) =
L(θ+

k
)+ε+

k
−L(θ−

k
)−ε−

k
2ck∆k,l

.

Here Gk,l uses function measurements at both θ+
k and

θ−
k =θk − ck∆k and the measurement noise values at these

points are ε+
k and ε−

k , respectively.

We retain all assumptions of Spall (1997), most of which

are carried over from Spall (1992). As in Spall (1997), the

key assumption requires the measurement noise ε+
k to be

mean 0: E(ε+
k |θk,∆k) = 0, ∀k ≥ 1, and var(ε+

k ) → σ2
ε ,

where σ2
ε is some finite constant. The step-size sequences

used are of the form ak = ak−α and ck = ck−γ , respectively,

where k≥ 1, a,c > 0, are given constants and with constraints

on 0 < γ,α ≤ 1 such that the following assumption holds

Assumption 1
∑

k ak = ∞ and
∑

k

a2
k

c2
k

< ∞.

2 ALGORITHM SPSA2-1UR

The proposed algorithm also has a similar structure as

SPSA2-1R and we call this algorithm SPSA2-1UR, the

alphabet ‘U’ indicating ‘unbiased’. We utilize the noisy
321
measurement already made at θ+
k−1, the storage of which

results in unit space complexity.

Algorithm 1 (SPSA2-1UR)

θk+1,l := θk,l −ak

L(θ+
k

)+ε+
k
−L(θ+

k−1
)−ε+

k−1
ck∆k,l

,

where k ≥ 0, 1 ≤ l ≤ p. We have in the above,

Gk,l(θk) =
L(θk)−L(θk−1)

ck∆k,l
+gl(θk)

+

p
∑

i=1,i 6=l

gi(θk)
∆k,i

∆k,l

−

p
∑

i=1

ck−1
ck

gi(θk−1)
∆k−1,i

∆k,l

+
c2

k
∆T

k
H(θk)∆k−c2

k−1∆T
k−1H(θk−1)∆k−1

2ck∆k,l

+
c3

k
L(3)(θ̄k)∆k⊗∆k⊗∆k

6ck∆k,l

−
c3

k−1L(3)(θ̄k−1)∆k−1⊗∆k−1⊗∆k−1

6ck∆k,l

+
ε+

k
−ε+

k−1
ck∆k,l

.

Using a similar analysis as in Proposition 2 of (Spall 1992),

we identify below the order of convergence of the bias to

0:

Lemma 1 Suppose for each k > K for some K <

∞, {∆k,i} are i.i.d., symmetrically distributed about 0,

with ∆k,i independent of θ j, ε+
j , 1 ≤ j < k. Further let

|∆k,i| ≤ β0 a.s., E|∆−1
k,i | ≤ β1, and L be thrice continuously

differentiable with |L
(3)
i1,i2,i3

| ≤ β2, ∀i1, i2, i3 ∈ {1,2, ..., p},

for some constants β0, β1, and β2. Then, E{Gk,l(θk)|Fk}=
gl(θk)+O(c2

k ), 1 ≤ l ≤ p, a.s.

Proof: The bias vector represented by bk(θ) =
(bk,1(θ),bk,2(θ), . . . ,bk,p(θ))T is defined as:

bk(θk) = E{Gk(θk)−g(θk)|θk}, (3)

where Gk(θk) = (Gk,1(θk),Gk,2(θk), ...,Gk,p(θk))
T

. Due to

the mean-zero assumption on ε+
k and ∆−1

k w.r.t. Fk, we

have

E{
ε+

k
−ε+

k−1
∆k,l

|Fk} = 0.

It is crucial here to note that, despite the previous equality,

E{ε+
k − ε+

k−1|Fk,∆k} 6= 0. Further, using the properties

of independence, symmetry and finite inverse moments of

perturbation vector elements (i.e., ∆k,l , ∆k,i, and ∆k−1,i),

observe that terms on the RHS of (3) have zero mean, with
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the exception of

bk,l(θk) = E

{

c3
k

L(3)(θ̄k)∆k⊗∆k⊗∆k

6ck∆k,l
|Fk

}

.

Observe that the bias term here is the same as for SPSA2-

1R. The claim is now obtained by the arguments following

Equation (3.1) in Lemma 1 of Spall (1992). In particular,

note that

|bk,l(θk)| ≤
β2c2

k
6

∑

i1

∑

i2

∑

i3

E

∣

∣

∣

∆k,i1
∆k,i2

∆k,i3
∆k,l

∣

∣

∣

≤
β2c2

k
6

(

[p3− (p−1)
3
]β 2

0 +(p−1)
3
β1β 3

0

)

2

The relation in Lemma 1 is of value in establishing a

form of asymptotic normality of the scaled iterate conver-

gence process, see Section 3. Note that Lemma 1 will not

hold if normalized Hadamard matrix-based {±1}p−valued

perturbations ∆k that were first introduced in Bhatnagar

et al. (2003) (Section 4 below explains this determinis-

tic perturbation method in some detail). This is because

there is no assurance that the term
∑p

i=1
ck−1

ck
gi(θk−1)

∆k−1,i

∆k,l

will average to 0 as k → ∞, unlike the previous term
∑p

i=1,i 6=l gi(θk)
∆k,i

∆k,l
. In such a case, a different method for

unbiasing that does not use the immediate past measure-

ment, in the spirit of Section 4 later, would be appropriate.

A consequence of the a.s. convergence of the bias bk(θk) is

the strong convergence of the iterates θk to a local minimum

θ∗. We now state Assumption A2 of Spall (1992) (that is

also applicable to the setting of Spall (1997)):

Assumption 2 ∃α0,α1,α2 > 0 and ∀k, Eε+
k

2
≤α0,

EL2(θ+
k ) ≤ α1, and ∆−2

k,l ≤ α2 a.s., for 1 ≤ l ≤ p.

While this does not entail any difference, observe that

we use ∆−2
k,l ≤ α2 a.s. instead of the original E{∆−2

k,l } ≤ α2

in Spall (1992).

Lemma 2 Under assumptions of Spall (1997), as

k →∞: θk → θ∗ a.s.

Proof : Follows almost verbatim as Proposition 1 of

Spall (1992). The only modifications are due to a different

error process ek, defined as ek(θk) = Gk(θk)−E(Gk(θk)|θk).
We can thus rewrite recursion (1) as: θk+1 = θk−ak(g(θk)+
bk(θk) + ek(θk)). The claim is obtained if the following

conditions are satisfied:

(a) ‖bk(θk)‖ < ∞, ∀k and bk(θk) → 0 a.s.

(b) limk→∞ P(supm≥k ‖
∑m

i=k aiei(θi)‖ ≥ η) = 0, for

any η > 0.

where ‖ · ‖ represents the Euclidean norm in parameter

space Rp. Lemma 1 establishes (a) whilst for (b), no-

tice that {
∑m

i=k aiei}m≥k is a martingale sequence (since
32
E(ei+1|Fi) = 0) and the martingale inequality gives:

P(sup
m≥k

‖

m
∑

i=k

aiei(θi)‖ ≥ η) ≤ η−2E‖

∞
∑

i=k

aiei‖

2

.

This upper bound equals η−2
∑∞

i=k a2
i E‖ei‖

2
since

E(eT
i e j) = E(eT

i E(e j|θ j)) = 0, ∀ j ≥ i+1.

Further, for 1 ≤ l ≤ p using Hölder’s inequality:

E
(

G2
i,l(θi)

)

≤ E(L(θ+
i )−L(θ+

i−1)+ ε+
i − ε+

i−1)
2 ·

‖∆−2
i,l

(ω)‖
∞

c2
i

≤ 2(α1+α0)α2c−2
i .

Due to the mean-zero property of ei,l(θi), we have

E
(

G2
i,l(θi)

)

=
(

gl(θi)+bi,l(θi)
)2

+ E(e2
i,l(θi)), thus hav-

ing E(e2
i,l(θi)) ≤ E(G2

i,l(θi)), and resulting in E‖ei‖
2
≤

2p(α1+α0)α2c−2
i . The square summability of

ak
ck

, from

Assumption 1, now establishes (b). 2

3 ASYMPTOTIC NORMALITY AND

COMPARISON

The results obtained so far aid us in establishing the asymp-

totic normality of a scaled iterate convergence process. We

show that

k
β
2 (θk −θ∗)

D
−→N(µ ,PM̃1PT )

as k →∞ where the indicated convergence is in distribu-

tion, β = α −2γ > 0 (given 3γ − α
2 ≥ 0), and the mean µ

is the same as in SPSA2-2R (Spall 1992, Proposition 2)

and SPSA2-1R. The orthogonal matrix P above satisfies

PT aH(θ∗)P = Diag({λl}
p
l=1), λ1, ...,λp being the p eigen-

values of aH(θ∗). Unlike Spall (1997), M̃1 above does not

have an L2(θ∗) bias; however, it is scaled by a factor of

2. This factor arises due to the use of the additional noisy

measurement L(θ+
k−1)+ ε+

k in (3). In particular,

M̃1 = 2a2c−2ρ2σ2
ε Diag({(2λl −β+)−1}p

l=1),

where β+ = β if α = 1 and 0 otherwise, and E∆−2
k,l → ρ2.

However, as confirmed by Spall (2005), the M1 in (5) of

Spall (1997) should be

M1 = a2c−2ρ2(σ2
ε +L2(θ∗))Diag({(2λl −β+)−1}p

l=1),
(4)

and not a2c−2ρ2(σ2
ε Diag({(2λl −β+)−1}p

l=1)+ L2(θ∗)I)
as printed (see Appendix 1 of Abdulla and Bhatnagar 2006

for derivation of M1). Similarly, Appendix 2 there estab-

lishes the form of M̃1 and mean µ that we claim.
2
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We compare the proposed SPSA2-1UR with SPSA2-

2R in the number of measurements of cost function L

using variables ñ1 and n2, respectively. As in Spall

(1997), we consider the case α = 1 and γ = 1
6 (giv-

ing β = 2
3 ) and E((ε+

k − ε−
k )

2
|θk,∆k) = 2σ2

ε , resulting

in M2 = 1
2a2c−2ρ2σ2

ε Diag({(2λl −β+)−1}p
l=1) and M̃1 =

4M2. This gives us:

ñ1
n2

→ 1
2

(

4trPM2PT +µT µ
trPM2PT +µT µ

)

3
2
, (5)

where tr stands for the trace of the matrix. The ratio above

depends upon quantity µ and to achieve ñ1 < n2 we need

that

µT µ >

(

4−2
2
3

2
2
3 −1

)

trPM2PT ≈ 4.11trPM2PT
.

We use n1 to denote the number of measurements of L

made by SPSA2-1R. In the special case L(θ∗) = 0, it is

shown in Equation (8) of Spall (1997) that n1 < n2 when

µT µ > 0.7024trPM2PT . While our result does not compare

favorably, the advantage is that (5) holds for all values of

L(θ∗).
The comparison with SPSA2-1R yields an interesting

rule of thumb. Using Dλ to represent the diagonal matrix

Diag({2λl −β+}
p
l=1), we have:

ñ1
n1

→
(

trPM̃1PT +µT µ
trPM1PT +µT µ

)

3
2

=
(

2a2c−2ρ2σ2
ε trPDλ PT +µT µ

a2c−2ρ2(σ2
ε +L2(θ∗))trPDλ PT +µT µ

)

3
2

.

Irrespective of µ , Dλ , and P (quantities that may require

substantial knowledge of the system), it suffices to have

L2(θ∗) > σ2
ε to ensure that

ñ1
n1

≤ 1. The experimental

results in Section 6 provide verification of these claims.

4 ALGORITHM SPSA2-1UH

We now propose a fast convergence algorithm by modifying

SPSA2-1H from §3 of Bhatnagar et al. (2003). The key de-

parture in SPSA2-1H from gradient estimate (2) of SPSA2-

1R is that perturbation vectors ∆k are now deterministically

obtained from normalized Hadamard matrices. The kind of

matrices considered are the following: Let H2 be a 2× 2
matrix with elements H2(1,1) = H2(1,2) = H2(2,1) = 1
and H2(2,2) = −1. Likewise for any q > 1, let the block

matrices H2q(1,1), H2q(1,2), and H2q(2,1) equal H2q−1 .

Also, let H2q(2,2) = −H2q−1 . For a parameter of dimen-

sion p, the dimension of the Hadamard matrix needed is 2q

where q = dlog2 (p+1)e. Next, p columns from the above

matrix Hq are arbitrarily chosen from the q− 1 columns

that remain after the first column is removed. The latter

column is removed as it does not satisfy a key property
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of the perturbation sequence. Each row of the resulting

q× p matrix Ĥ is now used for the perturbation vector

∆k in a cyclic manner, i.e., ∆k = Ĥ(k%q +1), where %
indicates the modulo operator. Though not shown here, the

convergence of SPSA2-1H can be shown as a special case

of Proposition 2.5 of Xiong, Wang, and Fu (2002). The

proposed algorithm, which we call SPSA2-1UH, has two

steps:

Algorithm 2 (SPSA2-1UH) 1. For k ≥ 0,

1 ≤ l ≤ p,

θk+1,l := θk,l −ak
L(θ+

k
)+ε+

k
−L̄k

ck∆k,l
.

2. If k%q = 0, L̄k := L(θ+
k )+ ε+

k else L̄k+1 := L̄k.

In the above, L̄k changes only periodically in epochs

of size q and the algorithm has a unit space requirement.

Given index k, define k̄ = max{m : m < k,m%q = 0}. For

SPSA2-1UH, (2) is now modified to:

Gk,l(θk) =
L(θk)−L(θk̄)

ck∆k,l
+gl(θk)

+

p
∑

i=1,i 6=l

∆k,i

∆k,l
gi(θk)−

p
∑

i=1

ck̄
ck

∆k̄,i

∆k,l
gi(θk̄)

+O(ck)+
ε+

k
−ε+

k̄
ck∆k,l

,

where O(ck) contains higher order terms. Since ∆k̄ = 1
¯
,

we have
∆k̄,i

∆k,l
= 1

∆k,l
, ∀1 ≤ i, l ≤ p and ∀k. Therefore, it can

be shown as in Lemma 3.5 of Bhatnagar et al. (2003) that

the fourth term above averages to 0 over q steps as k →∞,

thus settling the problem posed in §2. In passing, we also

note that step 2 can be written as k%q = m for any given

m for 0 ≤ m ≤ q−1.

4.1 Convergence Analysis

We can now formally establish convergence w.p. 1 of

θk. The original SPSA2-1H algorithm can be expanded as

follows

θk+1 = θk −ak∆
−1
k ∆T

k g(θk +λkck∆k)

− ak
ck

L(θk)∆
−1
k − ak

ck
ε+

k ∆−1
k , (6)

where 0 ≤ λk ≤ 1. Here ∆−1
k is the vector ∆−1

k =

( 1
∆k,1

, ...,
1

∆k,p
)

T
. This recursion is now presented in the

manner of Equation 6 of Xiong, Wang, and Fu (2002),

with rk, dk and e+
k there replaced by ∆−1

k , ∆k and ε+
k ,

respectively:

θk+1 = θk −akg(θk)

−ak∆
−1
k ∆T

k {g(θk +λkck∆k)−g(θk)}

−ak{∆
−1
k ∆T

k − I}g(θk)−
ak
ck

L(θk)∆
−1
k
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− ak
ck

ε+
k ∆−1

k .

In the manner of (6), the SPSA2-1UH recursion is written

as:

θk+1 = θk −ak∆
−1
k ∆T

k g(θk +λkck∆k)

− ak
ck

(L(θk)−L(θ+
k̄

))∆−1
k − ak

ck
(ε+

k − ε+
k̄

)∆−1
k

which can be expanded as

θk+1 = θk −akg(θk)

−ak∆
−1
k ∆T

k {g(θk +λkck∆k)−g(θk)}

−ak{∆
−1
k ∆T

k − I}g(θk)

+ak∆
−1
k ∆T

k̄
{g(θk̄ +λk̄ck̄∆k̄)−g(θk̄)}

+ak∆
−1
k ∆T

k̄
g(θk̄)

− ak
ck

(

L(θk)−L(θk̄)− ε+
k + ε+

k̄

)

∆−1
k .

However, we need to make a non-restrictive assumption:

Assumption 3 The function g (cf. A1 of Xiong,

Wang, and Fu 2002) is uniformly continuous.

Theorem 1 Under Assumptions from Spall (1997)

and 3, Algorithm 2 produces iterates θk where θk → θ∗ w.p.

1.

Proof: We first show that terms in (7) and (7) are error

terms in the nature of ei(θi) in condition (b) of Lemma 2.

In particular, we show that these satisfy the conditions (B1)

and (B4) in Xiong, Wang, and Fu (2002). We reproduce

these two conditions for clarity:

(B1) For some T > 0,

lim
n→∞

(

sup
n≤k≤m(n,T)

‖

k
∑

i=n

aiei‖

)

= 0,

where m(n,T )
∆
=max{k : an + ...+ak ≤ T}.

(B4) There exist sequences {e1,n} and {e2,n} with en =
e1,n + e2,n for all n such that

∑n
k=1 ake1,k converges, and

limn→∞ e2,n = 0.

Observe that due to limk→∞ ck̄ = 0 and the uniform

continuity of g, ∆−1
k ∆T

k̄
{g(θk̄ +λk̄ck̄∆k̄)−g(θk̄)} satisfies

(B4). Since limk→∞ θk̄ −θ
k+1

= 0, ∆−1
k ∆T

k̄
g(θk̄) satisfies

(B1). This is shown by applying Lemma 2.2 of Xiong,

Wang, and Fu (2002) with the substitution {xn} where

xn = 1 ∀n ≥ 1, {∆−1
n ∆n̄} and {g(θn̄)} for {cn}, {rn}, and

{en}, respectively. We have ∀k,

|(L(θk)−L(θk̄))−(L(θk+1)−L(θ
k+1

))|

ck
≤

|L(θk)−L(θk̄)|

ck
Ik%q=0 +

|L(θk)−L(θk+1)|

ck
.
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We consider the first term on the RHS, the second follows

similarly:

|L(θk)−L(θk̄)|

ck
Ik%q=0 ≤

M0
ck

k−1
∑

m=k̄

‖θm+1−θm‖Ik%q=0

+M0
ck

k−1
∑

m=k̄

(

M1
am
cm

+M2
am
cm
|ε+

m |
)

Ik%q=0

≤





M0M1q
ck

ak̄
ck̄

+ M0M2
ck

ak̄
ck̄

k−1
∑

m=k̄

|ε+
m |



 Ik%q=0,

where M0, M1, and M2 represent appropriate bounds. The

summability of {
akak̄
ckck̄

} is obtained using Assumption 1 —

implying that the LHS satisfies (B1). This fact is used when

we apply Lemma 2.2 of Xiong, Wang, and Fu (2002) again

(with {∆−1
n }, {L(θn)−L(θn̄)} replacing {rn} and {en}, re-

spectively, and {cn} as is) to see that
L(θk)−L(θk̄)

ck
∆−1

k satisfies

(B1). We now consider the last term, i.e.,
ε+

k
−ε+

k̄
ck

∆−1
k . How-

ever, now the noise term ε̄k,l =
ε+

k
−ε+

k̄
∆k,l

is not mean 0 w.r.t.

Fk but letting k̃ = k+q, ∀k we see that E(ε̄
k̃,l
|Fk) = 0. This

results in
{

∑m
k=ñ

ak
ck

ε̄k

}

m≥ñ
being a martingale sequence

w.r.t. Fn, where we again utilize the inequality

P

(

sup
m≥ñ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

k=ñ

ak
ck

ε̄k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ η

)

≤ η−2
∞
∑

k=ñ

(

ak
ck

)2

E‖ε̄k‖
2
,

the LHS modified to obtain

P

(

sup
m≥n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

k=n

ak
ck

ε̄k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ η

)

≤ η−2
∞
∑

k=ñ

(

ak
ck

)2

E‖ε̄k‖
2

+P

(

sup
ñ>m≥n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

k=n

ak
ck

ε̄k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ η

)

.

The square summability of
ak
ck

and boundedness of ε̄k result

in quantities on the RHS vanishing as n →∞. The proof

of Proposition 2.3 in Xiong, Wang, and Fu (2002) handles

the terms in the RHS of (7), thus resulting in the claim. 2

5 SECOND-ORDER ALGORITHMS

We now propose two second order SPSA algorithms, both

re-use noisy function measurements. The first algorithm —

called 2SPSA-3UR since it is a modification of 2SPSA of

Spall (2000) — makes three measurements in the vicinity

of each iterate θk and re-uses the current gradient estimate

Gk(θk) to estimate the Hessian matrix Hk(θk) at θk. The
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second algorithm 2SPSA-2UR makes two measurements

at θk and reuses the value L(θ+
k−1) in the Hessian matrix

estimation. A third algorithm, 2SPSA-1UR, makes a single

measurement per iteration and is described in Abdulla and

Bhatnagar (2006). Second-order SPSA algorithms, which

are stochastic analogs of the Newton-Raphson algorithm,

are also proposed in Spall (2000) and Bhatnagar (2005).

The two algorithms that we propose are modifications of

3SA and 2SA of Bhatnagar (2005) although differing in a

few details.

• Unlike the 2SPSA in Spall (2000), all three algo-

rithms 2SPSA-nUR n = 1,2,3 use an additional

ak−like step-size sequence {bk} (not to be con-

fused with the bias term bk(θk) in Lemma 1) in the

recursion to compute Hk. Such an additional step-

size {bk} is employed in all the four second-order

SPSA algorithms described in Bhatnagar (2005).

The property of bk relative to ak is the well-known

‘two-timescale’ property:
∑

k bk =∞,
∑

k b2
k <∞

and ak = o(bk).
• Similar to 2SPSA, we employ an auxiliary pertur-

bation sequence {∆̃k} with the same properties as

the original {∆k}, although independently gener-

ated. There is also an associated scaling parameter

{c̃k}. We will also require an analog of Assump-

tion 1: replace the pair (ak,ck) in Assumption 1

with the pairs (ak, c̃k), (bk, c̃k), (bk,ck).
• We use the ‘unbiasing’ concept by storing past or

current measurements of L and gradient estimate

G. However, unlike the unit storage overhead in

SPSA2-1UR and SPSA2-1UH, this retention of

the current estimate of gradient G arguably costs

O(p) in storage. Second-order algorithms of Spall

(2000) and Bhatnagar (2005) do implicitly assume

memory to store, manipulate and multiply Hessian

estimates Hk — which are O(p2) data structures.

5.1 2SPSA-3UR

As used in Bhatnagar (2005), the function Γ used below maps

from the set of general p× p matrices to the set of positive

definite matrices. There are many possible candidates for

such a Γ, as explained in §II-D of Spall (2000) where the

notation fk is used.

θk+1 = θk −akH−1
k Gk(θk) (7)

Hk = Γ(H̄k)

H̄k = H̄k−1 +bk−1(Ĥk − H̄k−1)

where

Ĥk = 1
2

[

δGT
k

ck∆k
+

(

δGT
k

ck∆k

)T
]
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δGk = G1
k (θ

+
k )−Gk(θk).

Note the re-use of the current gradient estimate Gk(θk) in

the second recursion above. This estimate is computed as in

the algorithm SPSA2-2R. In addition to θ+
k and θ−

k , we now

employ the shorthand notation θ++
k = θk + ck∆k + c̃k∆̃k.

Similarly, we denote the measurement noise incurred at

θ++
k as ε++

k . The terms used above are:

G1
k (θ

+
k ) =

∆̃−1
k
c̃k

(

L(θ++
k )+ ε++

k −L(θ+
k )− ε+

k

)

, and

Gk(θk) =
∆−1

k
2ck

(

L(θ+
k )+ ε+

k −L(θ−
k )− ε−

k

)

.

Appendix 3 of Abdulla and Bhatnagar (2006) contains

the derivation regarding E(Ĥk|Fk) = H(θk)+ O(ck). The

convergence analysis of θk → θ∗ proceeds as in Bhat-

nagar (2005), outlines of which we explain here. We

construct a time-axis using the step-size bk: assume that

t(n) =
∑n

m=0 bm and define a function H(·) as H(t(k)) = Hk

with linear interpolation between [t(k), t(k +1)). Similarly

define function θ(·) by setting θ(t(k)) = θk and linear

interpolation on the interval [t(k), t(k + 1)]. Let T > 0
be a scalar and define a sequence {Tk} as T0 = 0 and

Tk = min{t(m)|t(m)≥ Tk−1 +T}. Then Tk = t(mk) for some

mk and Tk −Tk−1 = T . Now define functions H̄(·) and θ̄(·)
as H̄(Tk) = H(tmk

) = Hk and θ̄(Tk) = θ(tmk
) = θk, and for

t ∈ [Tk,Tk+1], the evolution is according to the system of

ODEs:

˙̄Hi, j(t) = 52
i, jL(θ̄(t))− H̄i, j(t)

˙̄θ(t) = 0,

where 52
i, j indicates

∂2L(θ̄)
∂θi∂θ j

. One can now show as in

Lemma A.8 of Bhatnagar (2005) that

lim
k→∞

sup
t∈[Tk,Tk+1]

‖H(t)− H̄(t)‖ = 0

and

lim
k→∞

sup
t∈[Tk,Tk+1]

‖θ(t)− θ̄(t)‖ = 0.

Recursion (7) can now be shown to asymptotically track

the trajectories of the ODE ˙θ(t) = −H−1(θ(t))5L(θ(t))
in a similar manner as above on the slower timescale {ak}
(cf. Theorem 3.1 of Bhatnagar (2005)).

5.2 2SPSA-2UR

The proposed algorithm can be understood in terms of the

gradient-free four-measurement algorithm 2SPSA of Spall

(2000). In Footnote 6 of that article, the SPSA2-1R analog

of 2SPSA was not considered due to the inherent variability
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of both estimates Gk and Hk if the one-measurement form

of SPSA were to be used. We employ the technique of

the proposed SPSA2-1UR to overcome this hurdle, in the

process reducing the number of function measurements

required from 4 to 2. The family of recursions (7) is

retained with the differences that

Gk(θk) =
∆̃−1

k
c̃k

(

L(θ++
k )+ ε++

k −L(θ+
k )− ε+

k

)

,

Ĥk = 1
2

[

δGT
k

ck∆k
+

(

δGT
k

ck∆k

)T
]

, and

δGk = G1
k (θ

+
k )− G̃1

k (θk),

followed by a correction of the diagonal terms in Ĥk:

Ĥk(i, i) := Ĥk(i, i)+
L(θ+

k
)+ε+

k
−L(θ+

k−1
)−ε+

k−1

c2
k

(8)

where the measurement at θ+
k−1 is reused. This correction

assumes that ∆k and ∆̃k are both Bernoulli distributed over

{+c,−c} for some c > 0, although a similar corrective term

can be derived for other classes of perturbations. Appendix

4 of Abdulla and Bhatnagar (2006) derives the steps leading

to this correction. In the above,

G̃1
k (θk) =

L(θ+
k

)+ε+
k
−L(θ+

k−1
)−ε+

k−1
ck

∆−1
k

and G1
k (θ

+
k ) is as in 2SPSA-3UR. Note that G̃1

k (θk) is

precisely the gradient estimate in the algorithm SPSA2-

1UR of Section 2. Also, Gk(θk) = G1
k (θ

+
k ) indicating that a

re-use of the gradient estimate Gk is being made to compute

the Hessian estimate Ĥk. Here, Gk is computed using a one-

sided difference just as in 2SA of Bhatnagar (2005). Such

an estimate still uses two measurements, yet is different

from the one-measurement form of Gk as in SPSA2-1R or

the unbiased Gk of SPSA2-1UR proposed in Section 2.

In place of a detailed convergence analysis, we provide

an outline:

E(G1
k (θ

+
k )− G̃1

k (θk)|θk,∆k)

= E(G1
k (θ

+
k )|θk,∆k)−E(G̃1

k (θk)|θk,∆k)

= g(θ+
k )−

L(θ+
k

)−L(θ+
k−1

)−ε+
k−1

ck
∆−1

k .

Also,

E







g(θ+
k

)−
L(θ+

k
)−L(θ+

k−1
)−ε+

k−1
ck

∆−1
k

ck
(∆−1

k )
T
|Fk







= H(θk)+O(ck),
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the proof being in Appendix 4 of Abdulla and Bhatnagar

(2006). Here H(θk) is the Hessian at θk while the error

term corresponds to a matrix with an induced norm bounded

above by O(ck). We write this as:

E
(

δGk,i

ck∆k, j
|Fk

)

= Hi, j(θk)+O(ck),1 ≤ i, j ≤ p.

The convergence analysis uses the ODE technique of 2SPSA-

3UR, and since Gk is the same as algorithm 2SA of Bhatnagar

(2005), convergence of θk is assured using Theorem 3.3 of

Bhatnagar (2005). The convergence can also be obtained

in a manner similar to that of Theorems 1a and 2a of Spall

(2000). Note that Spall (2000) uses the step-size bk+1 = 1
k+1 .

Our algorithm is applicable for more general step-sizes as

long as the requirement ak = o(bk) is met.

6 NUMERICAL EXAMPLE

We first compare algorithm SPSA2-2R of Spall (1992) with

the proposed SPSA2-1UR using the setting of Spall (1997).

In particular, the objective function used is

Lb(θ) = b+θ T θ +0.1

5
∑

i=1

θ3
i +0.01

5
∑

i=1

θ4
i ,

with θ∗ = 0 and Lb(θ
∗) = 0 for all b. We keep b =

0 for comparison with SPSA2-2R and change to 0.1 for

comparison with SPSA2-1R. We use a = c = 1, α = 6γ = 1
and θ0 = 0.11

¯
(i.e., the vector with 0.1 in all its components)

in all the experiments. Assume that ε+
k are i.i.d., mean-zero,

Gaussian random variables with variance σ2
ε . The formula

for asymptotic normality derived previously lets us consider

two cases for the observation noise:

1. σε = 0.1 where
ñ1
n2

→ 1.30, and

2. σε = 0.07 where
ñ1
n2

→ 0.93, respectively.

Each run of the SPSA2-2R algorithm is for 2000 it-

erations, thus making 4000 observations of the objective

function. Table 1 summarizes the results, the mean square

error (MSE) obtained being over 100 runs of each algorithm.

The MSE values for SPSA2-2R are less when compared to

SPSA2-1UR, the proportion being 0.93 and 0.92, respec-

tively for the two cases. However, this ratio improves if

we use the SPSA2-1UH algorithm, which we compare with

the analogous SPSA2-2H algorithm in Table 2.

Table 1: Mean Square Error and No. of Iterations

σε = 0.1 σε = 0.07
Algorithm MSE Iter. MSE Iter.

SPSA2-2R 0.0135 2000 0.0130 2000

SPSA2-1UR 0.0145 5200 0.0144 3600
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While we have no asymptotic normality results for

SPSA2-1UH, the performance obtained is better than that

of SPSA2-1UR. We also observe the performance of SPSA2-

1UR vis-a-vis SPSA2-1R in Table 3. Possibly due to the

larger number of iterations required to achieve asymptotic

normality, the MSE is always higher. A notable change

in the behaviour of SPSA2-1R is the higher MSE when

b = 0.1. This is due to the L2(θ∗) bias term in (6). Note

that we use σe = 0.1 in both the above comparisons.

We compare the second-order algorithms on the same

setting. For algorithms 2SPSA-3UR and 2SPSA-2UR, we

use ∆̃k,i ∈ {+1,−1} while the step-size c̃k was the same as

ck, with bk = 1
k0.55 . We used a similar projection operator

Γ(·) as in the experiments of Bhatnagar (2005), i.e., choose

the diagonal elements H̄k(i, i), 1 ≤ i ≤ p of the Hessian es-

timate and then truncate to interval [0.1,10.0]. This upper

bound of 10 on Hk(i, i) was justified since typically two-

timescale algorithms are known to perform better with an

additional averaging on the faster timescale, where L >> 1
measurements are made. Since recourse to multiple mea-

surements is ruled out in this setting, we chose to prune

the fluctuations in the diagonal terms H̄k(i, i).
We compare 2SPSA-3UR with the four-measurement

2SPSA of Spall (2000) to obtain the results in Table 4. We

run both algorithms in such a manner that the number of

function evaluations is the same: 4000. The convergence

of the bias (of Ĥk) in 2SPSA-3UR is O(ck), resulting in

problems establishing any asymptotic normality results. As

a consequence, there is no clear set of parameters for which

2SPSA-3UR would outperform 2SPSA. This slower order

of convergence may also be responsible for the poor per-

formance of the algorithm. The experiments indicate the

disconnect between finite-time performance of the second-

order algorithms vis-a-vis the robust convergence behaviour

expected from a Newton-Raphson method. We chose this

numerical setting to compare the proposed algorithms with

those in the literature. The work Zhu and Spall (2002) ex-

plores both finite-time performance and a computationally-

efficient second-order SPSA algorithm. The difference with

Zhu and Spall (2002) would lie in choosing the Γ operator

of (7). This is an issue also identified in Bhatnagar (2005),

from where we chose the 3SA and 2SA algorithms for mod-

ification. Table 5 compares performance of 2SPSA-2UR

w.r.t. 2SA of Bhatnagar (2005). The algorithms are more

or less on par with each other.

Table 2: Mean Square Error and No. of Iterations

σε = 0.1 σε = 0.07
Algorithm MSE Iter. MSE Iter.

SPSA2-2H 0.0133 2000 0.0127 2000

SPSA2-1UH 0.0109 5200 0.0109 3600
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Table 3: Mean Square Error and No. of Iterations

b = 0 b = 0.1
Algorithm MSE Iter. MSE Iter.

SPSA2-1R 0.0443 4000 0.0492 4000

SPSA2-1UR 0.0132 6000 0.0147 4000

Table 4: Comparison of 2SPSA-3UR

σε = 0.1 σε = 0.07
Algorithm MSE Iter. MSE Iter.

2SPSA 0.037 1000 0.039 1000

2SPSA-3UR 0.078 1333 0.073 1333

Table 5: Comparison of 2SPSA-2UR

σε = 0.1 σε = 0.07
Algorithm MSE Iter. MSE Iter.

2SA 0.076 2000 0.077 2000

2SPSA-2UR 0.072 2000 0.078 2000

7 FUTURE DIRECTIONS

The asymptotic convergence properties of SPSA2-1H have

been theoretically shown to be on par with SPSA2-1R in

Proposition 2.5 of Xiong, Wang, and Fu (2002). Yet, it

is unclear why SPSA2-1H performs better in practice and

this represents an avenue for future investigation. Also of

interest is the possibility of reducing the scale factor 2 in the

asymptotic covariance matrix M̃1 using an average of past

measurements L(θk− j), j > 1. Whether online function

regression mechanisms will serve as a ‘critic’ to speed

up SPSA gradient descent by yielding an approximation

of the objective function remains to be seen. Such an

arrangement would place the resulting algorithm in-between

the accepted forms of ‘gradient-free’ and ‘gradient-based’

methods. Further, in line with the asymptotic normality

results of both first and second order SPSA algorithms,

work such as Konda and Tsitsiklis (2004) that identifies

rate of convergence of two-timescale recursions should be

useful.
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