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ABSTRACT 

Traditionally, a simulation-based optimization (SO) system 
is designed as a black-box in which the internal details of 
the optimization process is hidden from the user and only 
the final optimization solutions are presented. As the com-
plexity of the SO systems and the optimization problems to 
be solved increases, instrumentation – a technique for 
monitoring and controlling the SO processes – is becoming 
more important. This paper proposes a white-box approach 
by advocating the use of instrumentation components in 
SO systems, based on a component-based architecture. 
This paper argues that a number of advantages, including 
efficiency enhancement, gaining insight from the optimiza-
tion trajectories and higher controllability of the SO proc-
esses, can be brought out by an on-line instrumentation ap-
proach. This argument is supported by the illustration of an 
instrumentation component developed for a SO system de-
signed for solving real-world multi-objective operation 
scheduling problems. 

1 INTRODUCTION 

One of the most important and challenging subjects in the 
simulation field today is simulation-based optimization 
(Buchholz 2005). It has shown to be a powerful technique 
for systems improvement and has been successfully ap-
plied to address a wide range of real-world industrial opti-
mization problems (April et al. 2004). The general problem 
in simulation-based optimization (SO) is to find a setting 
of decision variables that maximize or minimize a given 
objective function, assuming that the objective function is 
not available directly but must be estimated through simu-
lation. In a general SO system (Figure 1), an optimization 
procedure feeds input values into a simulation, which 
measures the performance of the input. Based on the 
evaluation feedback, possibly in combination with previ-
ous evaluations, the optimization procedure generates a 
new set of input values. The generation-evaluation process 
then iterates until a stopping criterion is satisfied, usually 
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based on the user’s preference for the amount of time to be 
spent (April et al. 2004). 

 

 
Figure 1: Simulation-Based Optimization 

 
From the outside, a traditional SO system is an ab-

stract black-box in which the internal processes are hidden 
behind an input-output interface, as shown in Figure 2. The 
user inputs initial system parameters and then waits for the 
final results to be presented, unaware of the internal system 
execution.  

 

 
Figure 2: Traditional Black-Box Simulation-Based Opti-
mization 

 
Without a user-friendly user interface that presents the 

details of the optimization progress, it is difficult for the user 
to gain insight in the optimization process and the system 
under study. Also, with a black-box approach, efficiency 
might be easily lost if the SO process does not converge, for 
example, with the chosen optimization parameters. The use 
of more and more complex SO systems gives rise to a need 
of insight in the how and why of the system execution. In 
order to understand the SO system and improve its perform-
ance, monitoring of the system is critical. For this aim the 
SO system cannot simply be designed as a black-box, as the 
internal dynamic behavior of the system must be made visi-
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ble from the outside. An important way to get insight is in-
strumentation, i.e. monitoring and control of the system. For 
SO, instrumentation is essential for system analysis tasks 
and performance evaluations. 

Building on top of a component-based architecture for 
SO (Persson et al. 2006), this paper presents and describes 
an on-line instrumentation component for a SO system 
(Figure 3). This instrumentation component provides run-
time visual monitoring, control, and analysis of the SO 
process. 
 

 
Figure 3: Instrumentation Component 

 
In the next section, we introduce the topic of system 

instrumentation. In Section 3, we describe the concepts of 
the instrumentation component and some of its advantages. 
Section 4 presents a case implementation of an instrumen-
tation component where it is connected to a SO system for 
solving a complex operation scheduling problem. This sec-
tion also includes some ideas of how to design the graphi-
cal user interface for the component. In Section 5, we dis-
cuss some implications of adopting the instrumentation 
component. 

2 BACKGROUND 

Instrumentation in general is the art and science of meas-
urement and control. In software engineering, instrumenta-
tion is a general term denoting techniques used to modify 
an existing program in order to collect data during the pro-
gram’s execution (Maebe et al. 2002). The basic principle 
of program instrumentation is to aggregate instrumentation 
code with the original program code, as shown in Figure 4 
(adapted from Maebe et al. 2002). The instrumentation 
code is executed together with the program code during the 
execution.  
 

 
Figure 4: Program Instrumentation 
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Program instrumentation can be performed on various 
abstraction levels, such as hardware level, source code 
level, or executable level (Maebe et al. 2002). Instrumenta-
tion can also be performed at various stages, such as com-
pile-time or run-time (Luk et al. 2005). In this paper we 
consider run-time instrumentation of an executable pro-
gram. 

A great number of instrumentation applications have 
been built for a wide range of different systems, e.g. in the 
area of parallel and distributed systems, and in operating 
system kernels. Although a lot of work have been done in 
the field of program instrumentation, our review of the lit-
erature revealed no applications of instrumentation for SO 
systems. 

3 AN ON-LINE INSTRUMENTATION 
COMPONENT 

This section describes the concepts and functionality of the 
proposed on-line SO instrumentation component. The 
component supports monitoring and control of both the 
simulation and the optimization. However, there is slightly 
more focus on the latter as it is the optimization procedure 
that brings the SO process forward.   

In short, the instrumentation component allows the 
user to perform the following: 

 
• Visually observe and monitor the optimization 

process and its progress 
• Keeping track of and view the most promising so-

lutions 
• Analyze solutions on-line by collecting and gen-

erating statistical data from both the simulation 
and optimization components 

• Interactively control the optimization 
 

The instrumentation component is designed to be used 
by non-specialist users and requires no familiarity with the 
underlying simulation/optimization technology. It can be 
linked to a wide range of various optimization problems 
and it is not tightened to or constrained by any specific 
simulation software or optimization procedure. 

3.1 Architectural Design 

Monitoring of software systems is either time-driven or 
event-driven (Klar et al. 1992). In the former, samples of 
the program’s behavior are collected over time and used 
for statistical analysis of the program behavior, while in the 
latter events are represented by program activities and the 
dynamic functionality of the system is studied. The instru-
mentation component proposed in this paper is event-
driven; when an event happen in the SO, a database is up-
dated with information of the current status of the simula-
tion and the optimization procedure. As soon as the data-
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base is updated, the instrumentation component reads the 
information and presents the intermittent results of the SO 
system to the user. The overall architecture of a SO system 
with an instrumentation component is shown in Figure 4. 
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Figure 4: Architectural Design 

 
An advantage of using a database, instead of obtaining 

the results directly from the SO system, is that the steadily 
growing amount of information does not need to be held in 
volatile memory but are saved in the database. This re-
duces memory use and facilitates efficient system recovery 
in case of a system crash. The database query language 
also supports complex questions to be asked about the data 
in a convenient way. Furthermore, multiple instrumenta-
tion components can connect to the database. 

3.2 Functionality 

This section describes the general functionality of the in-
strumentation component. The component comprises three 
modules for the support of on-line visual monitoring, con-
trol, and analysis of the SO system, namely, a solution 
analysis module, a statistical analysis module, and a con-
trol module (Figure 5). 

 

 
Figure 5: Instrumentation Component Modules 

3.2.1 Solution Analysis Module 

The solution analysis module provides functionality for 
analyzing individual solutions, according to Figure 6. The 
solutions to analyze are displayed in a list (a). To avoid 
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overwhelming the user in the analysis process, the list of 
solutions only contains the most promising solutions. Still, 
the list can potentially be extensive. In order to reduce the 
number of solutions to analyze, filtering rules can be ap-
plied so that only solutions with certain properties are dis-
played in the list (b). The filtering rules are problem de-
pendent. The list of solutions can also be sorted according 
to the achievement level of different objectives, in order to 
ease the user’s analysis (b). When the user selects a solu-
tion from the list (c) for evaluation, this solution is visual-
ized graphically together with relevant information such as 
the achievement level of each optimization objective (d). 
In an optimal buffer allocation problem, for example, all 
buffer capacities are graphically presented in a diagram in 
which the Y-axis corresponds to overall throughput of the 
system, which can represent the optimization objective. 
Two solutions can also be compared with each other 
graphically, to analyze similarities and differences between 
them (e). To facilitate comparison, the user chooses two 
solutions from the list and a visualization of these results 
are displayed next to each other. 
 

 
Figure 6: Analysis of Solutions 

3.2.2 Statistical Analysis Module 

The Statistical Analysis Module supports prognoses and 
analysis of the overall SO performance. The status of the 
SO process is plotted continually as new information are 
read from the database. These progress curves are a valu-
able tool for the user to determine the expected running 
length of the SO process. When the curves begin to level 
out it is a signal that no further improvements are to be ex-
pected and hence the process can be terminated or the set-
tings can be modified to guide the optimization. 

3.2.3 Control Module 

The control module allows the user to change the settings 
of the simulation and the optimization on-line, in order to 
test if improved results can be achieved with a modified 
configuration. Example of variable settings are objective 
preferences and optimization algorithm parameters. 

3.3 Advantages 

This section discusses some advantages of connecting an 
on-line instrumentation component to a SO system. 
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3.3.1 Improved Understanding 

The instrumentation component provides dynamic visuali-
zation of the SO system execution and a continuous view 
of its performance. This white-box approach allows for a 
better understanding of the SO and how the system’s per-
formance can be improved, in comparison with the tradi-
tional approach in which the performance of the SO system 
is evaluated only after the process has terminated. 

3.3.2 No Explicit Stopping Criterion  

The instrumentation component allows running the SO 
system without an explicit stopping criterion; instead the 
process is executed until the user is satisfied with the re-
sults. In the traditional approach when designing the SO 
system as a black-box, a stopping criterion (e.g., number of 
optimization iterations or maximum time consumption) 
must be specified to determine the SO run length. As there 
are no general heuristics for deriving stopping criteria, the 
length of running a SO process becomes an arbitrary deci-
sion. This decision is unlikely to be optimal; either the 
stopping criterion may be too tight and hinder optimal so-
lutions to be found, or too generous so that a lot of time is 
wasted. 

3.3.3 Fast Feedback of Objective Trade-offs Results 

In most situations, it is not obvious how tradeoff informa-
tion should be assigned to the various optimization objec-
tives in order to obtain the requested solution, and there is 
a need for an agile analysis of the early results which may 
give some insight. The graphical visualizations of the SO 
progress provided in the instrumentation component sup-
ports this feature and allows the user to quickly acquire in-
sight of the direction of the SO performance for a specific 
tradeoff setting. The user does not need to wait for the en-
tire experiment to be finished, but may stop the process 
whenever noticing that the tradeoff information assigned 
will not result in a satisfactory solution and then may try 
with another tradeoff setting. 

3.3.4 Interactive Control 

The instrumentation component allows the user to evaluate 
different SO parameter settings in a convenient way by 
enabling run-time parameter modifications and immediate 
monitoring of their consequences. Since the result of the 
modifications are presented on-line there is no need to re-
start the system between each modification, like the tradi-
tional approach wherein results are presented only after the 
SO process has been terminated. 
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4 CASE IMPLEMENTATION 

This section describes how the concepts of the instrumen-
tation component presented in the previous chapter has 
been implemented to monitor and control a SO system 
solving a complex real-world machine scheduling problem. 
In short, the problem is to schedule mail batches on sorting 
machines at the Swedish Postal Services (see Persson et al. 
2006 for more information). 

The SO system in this case implementation comprises 
a simulation model built in the Arena simulation software 
and an optimization procedure based on a Genetic Algo-
rithm. There are three conflicting optimization objectives; 
minimization of cost, maximization of slack time, and 
maximization of even machine utilization. As it is not pos-
sible to obtain solutions which maximize performance of 
all objectives at the same time, the user must express 
tradeoff preferences between the objectives, specifying 
their relative importance. 

Building on top of a component-based architecture 
specifically designed for SO (Persson et al. 2006), the on-
line monitoring component that connects to the SO system 
is implemented in C++ using Microsoft Visual Studio 
.NET. Spreadsheet applications like Microsoft Excel that is 
commonly used for data input and output in simulation 
modeling may be used to develop the user interface of the 
instrumentation component. However, to increase the 
flexibility and controllability of the software development 
during our research study, we have chosen to develop our 
own Graphical User Interface (GUI). Currently, full im-
plementation of the instrumentation component is under-
way, but it is sufficiently built to illustrate the concepts and 
ideas presented in this paper. 

4.1.1 Control Module 

The Control Module (Figure 7) allows the user to modify 
optimization and simulation settings while running the SO 
system, in order to test if improved results can be achieved 
with a different configuration. The settings that can be 
modified include objectives tradeoffs, simulation parame-
ters, and parameters for the specific optimization strategy. 

The user expresses tradeoff preferences regarding the 
various objectives by assigning a weight value to each ob-
jective specifying its relative importance – a higher value 
indicates that the objective is considered more important. 
The decision maker allots each objective a percentage 
value and the total weighting assigned must sum up to 
100%. The objective tradeoff weightings can be changed 
using either slide bars or a graphical distance triangle, as 
shown in Figure 8. There is one slide bar for each of the 
objectives and the weighted importance of an objective is 
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Figure 7: Control Module 

 
shown on the right-hand side of its corresponding slider. 
Using the graphical distance triangle, the user changes ob-
jective tradeoff information by dragging a handle. Each 
corner of the triangle represent an objective, and the closer 
the point is to a corner the more important is the corre-
sponding objective considered. If the point in the distance 
triangle is changed, the slide bars are changed accordingly 
and vice versa.   

 

 
Figure 8: Objectives Preferences 

 
The simulation parameters that the user can modify 

run-time include simulation run time period (e.g., 24 hours 
or one week), simulation warm up period, and number of 
replications, as shown in Figure 9.  
 

 
Figure 9: Simulation Settings 

 
In this application example, since a Genetic Algorithm 

is used as the optimization algorithm, the variable parame-
ters are therefore population size, mutation rate, and cross-
over frequency (Figure 10) that are specific for GA as well 
as other evolutionary strategies.  
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Figure 10: Genetic Algorithm Settings 

4.1.2 Solution Analysis Module 

In the Solution Analysis Module (Figure 11), the user can 
perform visual on-line analysis of promising solutions. In 
this case, promising solutions are considered to be the 
Pareto optimal set. Pareto optimal solutions are solutions 
superior to the other solutions considering all objectives 
but possibly inferior to other solutions considering one or 
several objectives (Srinivas and Deb 1995).   
 

 
Figure 11: Solution Analysis Module 

 
The Pareto optimal set of solutions is displayed in a 

list (Figure 12), where each list entry corresponds to an in-
dividual solution. Each solution has a unique identifier and 
is presented in the list together with its achievement values 
of the various optimization objectives. To ease the user’s 
analysis, the list can be sorted according to the achieve-
ment values, as in Figure 12 where solutions are sorted 
based on cost. To aid the user in the evaluation of solu-
tions, there is also a possibility to write a comment next to 
each solution.  

The list of solutions is updated on the user’s initiative 
when pushing the “Update” button. This button is only en-
abled when new Pareto optimal solutions have been found, 
and in that way the user knows when there are new solu-
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tions available. The reason for not updating the list auto-
matically as soon as a new Pareto optimal solution is found 
is to avoid, from a user-perspective, confusing unexpected 
changes in the list.  

 

 
Figure 12: List of Pareto Optimal Solutions 

 
The number of solutions to analyze can be reduced by 

applying filtering rules (Figure 13), which specify that only 
solutions that fulfill certain constraints should be displayed 
in the list. Filtering can be done according to minimum fit-
ness, maximum cost, maximum latest stop time, and maxi-
mum machine utilization. 
 

 
Figure 13: Filtering Rules 

 
The Pareto optimal solutions are also presented in a 

trade-off graph (Figure 14). In this graph, the relationships 
between objectives are visually presented and conflicting 
objectives are indicated with crossing lines (Fonseca and 
Fleming 1993). The high-dimensional (in this case, 3-
dimensional) space is reduced to only two dimensions, 
comprehensible for a human analyst. The horizontal axis 
represents the different objectives and the vertical axis in-
dicates the normalized performance of each of the objec-
tives. A line in the graph is highlighted when the user se-
lects a solution in one of the lists of Pareto optimal 
solutions, with different highlighting colors for the two 
lists.  
 

 
Figure 14: Graph of Pareto-optimal Solutions  

 
When the user selects a solution, either in one of the 

lists or in the trade-off graph, the solution is visualized in a 
graphical schedule diagram as shown in Figure 15. The X-
axis of the diagram represents machines (there are sixteen 
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machines in this case) and the Y-axis represents time. A 
box in the diagram corresponds to a job and for each job its 
identification number is shown together with its start and 
stop time.  

To ease the evaluation of solutions, important proper-
ties of a schedule are color encoded. For the problem con-
sidered in this implementation there are two properties to 
highlight, namely missed deadlines for jobs and job colli-
sions (i.e. when more then one job is scheduled on the 
same machine in the same time). In the schedule shown in 
Figure 15, there are three jobs with missed deadlines and 
one job collision.  
 

 
 

Figure 15: Graphical Visualization of a Solution 
 

Two solutions can be compared with each other 
graphically to analyze similarities and differences between 
them, as shown in Figure 16. To facilitate a convenient 
comparison, differences of the solutions are highlighted in 
the schedule diagrams. 
 

 
Figure 16: Graphical Comparison of Solutions 
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4.1.3 Statistical Analysis Module 

The Statistical Analysis Module (Figure 17) supports 
prognoses and analysis of the optimization performance. In 
this module, status information of the Genetic Algorithm 
fitness value is continuously presented, as well as the 
achievement level of each of the three optimization objec-
tives.  
 

 
Figure 17: Statistical Analysis Module 

 
To facilitate analysis of optimization progress, curves 

representing fitness value and achievement levels of the 
optimization objectives are displayed, showing minimum, 
mean, and maximum value for each simulation-
optimization iteration (Figure 18).  
 

 
Figure 18: Time Plotted Progress Curves 

 
To allow for a detailed analysis of the plotted curves, 

continuous status values are also displayed in a table. The 
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user chooses what columns to include in the table using a 
selection menu, as shown in  Figure 19. 
 

 
Figure 19: Table of Status Values 

5 CONCLUSIONS AND FUTURE WORK 

A major problem of SO for practical applications is that it 
is computationally time consuming (Dengiz et al. 2006; 
Boesel et al. 2001; Fu et al. 2005). By introducing instru-
mentation to SO systems, as proposed in this paper, there is 
a potential for alleviating this problem. There are mainly 
three features of the SO instrumentation that enables sys-
tem efficiency enhancement: 
 

• The instrumentation enables run-time system per-
formance analysis and evaluations, essential in 
order to gain the understanding necessary to ac-
complish efficiency improvements of the system 
implementation. 

• The instrumentation allows for the SO system to 
be run for the exact time needed for the user to be 
satisfied with the results. 

• The instrumentation provides possibility to inter-
rupt the running SO system and reconfigure or re-
start it if its progress is not satisfying. 

 
However, it should be remarked that the instrumenta-

tion is not a pure efficiency enhancement tool – it also in-
troduce some overhead to the SO process. The SO system 
status is written to a database, or exposed in some other 
way, frequently and each such command causes a certain 
performance degradation. It is important that this instru-
mentation overhead is limited and future work includes 
studying how this can be achieved. 

As argued in this paper, a white-box approach to SO 
systems have a number of advantages, such as for example 
higher controllability of the SO processes and insight into 
the system internals. However, it also has a drawback in that 
the instrumentation component implementation, to some de-
gree, becomes dependent on the implementation of the simu-
lation and the optimization strategy – although the general 
concepts of using instrumentation component are generic 
irrespective of underlying SO technology. For example, 
changing the optimization strategy to another strategy has 
the consequence that the Control Module must be changed 
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accordingly, and probably also the Statistical Analysis Mod-
ule. In future work, we intend to study how a generic in-
strumentation component interface can be designed to facili-
tate the loose coupling between different components in the 
SO system. In this aspect, the traditional black-box approach 
has an advantage as it allows for system internals to be 
changed without influencing the use of the system. 

One of our current research focuses which is related to 
this work is the design of an Internet-based component ar-
chitecture called OPTIMISE (OPTIMization using Intelli-
gent Simulation and Experimentation). This architecture 
has emerged from the observation that many simulation-
optimization applications, for example, the automatic gen-
eration of optimized operation schedules described here, 
can be rapidly developed by making use of a common ar-
chitectural design. With a common component-based ar-
chitecture, many system components can be reused and op-
timization components can be customized rapidly for new 
applications. The design of OPTIMISE is now underway 
and integrating the proposed instrumentation components 
to the OPTIMISE platform will be one of the major tasks 
in our future work. 
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