
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

ON-LINE INSTRUMENTATION FOR SIMULATION-BASED OPTIMIZATION

 Anna Persson
Henrik Grimm

Amos Ng

University of Skövde
Box 408, 541 48, SWEDEN

ABSTRACT

Traditionally, a simulation-based optimization (SO) system
is designed as a black-box in which the internal details of
the optimization process is hidden from the user and only
the final optimization solutions are presented. As the com-
plexity of the SO systems and the optimization problems to
be solved increases, instrumentation – a technique for
monitoring and controlling the SO processes – is becoming
more important. This paper proposes a white-box approach
by advocating the use of instrumentation components in
SO systems, based on a component-based architecture.
This paper argues that a number of advantages, including
efficiency enhancement, gaining insight from the optimiza-
tion trajectories and higher controllability of the SO proc-
esses, can be brought out by an on-line instrumentation ap-
proach. This argument is supported by the illustration of an
instrumentation component developed for a SO system de-
signed for solving real-world multi-objective operation
scheduling problems.

1 INTRODUCTION

One of the most important and challenging subjects in the
simulation field today is simulation-based optimization
(Buchholz 2005). It has shown to be a powerful technique
for systems improvement and has been successfully ap-
plied to address a wide range of real-world industrial opti-
mization problems (April et al. 2004). The general problem
in simulation-based optimization (SO) is to find a setting
of decision variables that maximize or minimize a given
objective function, assuming that the objective function is
not available directly but must be estimated through simu-
lation. In a general SO system (Figure 1), an optimization
procedure feeds input values into a simulation, which
measures the performance of the input. Based on the
evaluation feedback, possibly in combination with previ-
ous evaluations, the optimization procedure generates a
new set of input values. The generation-evaluation process
then iterates until a stopping criterion is satisfied, usually

3041-4244-0501-7/06/$20.00 ©2006 IEEE
based on the user’s preference for the amount of time to be
spent (April et al. 2004).

Figure 1: Simulation-Based Optimization

From the outside, a traditional SO system is an ab-

stract black-box in which the internal processes are hidden
behind an input-output interface, as shown in Figure 2. The
user inputs initial system parameters and then waits for the
final results to be presented, unaware of the internal system
execution.

Figure 2: Traditional Black-Box Simulation-Based Opti-
mization

Without a user-friendly user interface that presents the

details of the optimization progress, it is difficult for the user
to gain insight in the optimization process and the system
under study. Also, with a black-box approach, efficiency
might be easily lost if the SO process does not converge, for
example, with the chosen optimization parameters. The use
of more and more complex SO systems gives rise to a need
of insight in the how and why of the system execution. In
order to understand the SO system and improve its perform-
ance, monitoring of the system is critical. For this aim the
SO system cannot simply be designed as a black-box, as the
internal dynamic behavior of the system must be made visi-

Persson, Grimm, and Ng

ble from the outside. An important way to get insight is in-
strumentation, i.e. monitoring and control of the system. For
SO, instrumentation is essential for system analysis tasks
and performance evaluations.

Building on top of a component-based architecture for
SO (Persson et al. 2006), this paper presents and describes
an on-line instrumentation component for a SO system
(Figure 3). This instrumentation component provides run-
time visual monitoring, control, and analysis of the SO
process.

Figure 3: Instrumentation Component

In the next section, we introduce the topic of system

instrumentation. In Section 3, we describe the concepts of
the instrumentation component and some of its advantages.
Section 4 presents a case implementation of an instrumen-
tation component where it is connected to a SO system for
solving a complex operation scheduling problem. This sec-
tion also includes some ideas of how to design the graphi-
cal user interface for the component. In Section 5, we dis-
cuss some implications of adopting the instrumentation
component.

2 BACKGROUND

Instrumentation in general is the art and science of meas-
urement and control. In software engineering, instrumenta-
tion is a general term denoting techniques used to modify
an existing program in order to collect data during the pro-
gram’s execution (Maebe et al. 2002). The basic principle
of program instrumentation is to aggregate instrumentation
code with the original program code, as shown in Figure 4
(adapted from Maebe et al. 2002). The instrumentation
code is executed together with the program code during the
execution.

Figure 4: Program Instrumentation
305
Program instrumentation can be performed on various
abstraction levels, such as hardware level, source code
level, or executable level (Maebe et al. 2002). Instrumenta-
tion can also be performed at various stages, such as com-
pile-time or run-time (Luk et al. 2005). In this paper we
consider run-time instrumentation of an executable pro-
gram.

A great number of instrumentation applications have
been built for a wide range of different systems, e.g. in the
area of parallel and distributed systems, and in operating
system kernels. Although a lot of work have been done in
the field of program instrumentation, our review of the lit-
erature revealed no applications of instrumentation for SO
systems.

3 AN ON-LINE INSTRUMENTATION
COMPONENT

This section describes the concepts and functionality of the
proposed on-line SO instrumentation component. The
component supports monitoring and control of both the
simulation and the optimization. However, there is slightly
more focus on the latter as it is the optimization procedure
that brings the SO process forward.

In short, the instrumentation component allows the
user to perform the following:

• Visually observe and monitor the optimization

process and its progress
• Keeping track of and view the most promising so-

lutions
• Analyze solutions on-line by collecting and gen-

erating statistical data from both the simulation
and optimization components

• Interactively control the optimization

The instrumentation component is designed to be used
by non-specialist users and requires no familiarity with the
underlying simulation/optimization technology. It can be
linked to a wide range of various optimization problems
and it is not tightened to or constrained by any specific
simulation software or optimization procedure.

3.1 Architectural Design

Monitoring of software systems is either time-driven or
event-driven (Klar et al. 1992). In the former, samples of
the program’s behavior are collected over time and used
for statistical analysis of the program behavior, while in the
latter events are represented by program activities and the
dynamic functionality of the system is studied. The instru-
mentation component proposed in this paper is event-
driven; when an event happen in the SO, a database is up-
dated with information of the current status of the simula-
tion and the optimization procedure. As soon as the data-

Persson, Grimm, and Ng

base is updated, the instrumentation component reads the
information and presents the intermittent results of the SO
system to the user. The overall architecture of a SO system
with an instrumentation component is shown in Figure 4.

Instrumentation
component

Feedback

Input values

Optimization
procedure Simulation System outputUser input

Database

R
ea

d
W

rit
e

Figure 4: Architectural Design

An advantage of using a database, instead of obtaining

the results directly from the SO system, is that the steadily
growing amount of information does not need to be held in
volatile memory but are saved in the database. This re-
duces memory use and facilitates efficient system recovery
in case of a system crash. The database query language
also supports complex questions to be asked about the data
in a convenient way. Furthermore, multiple instrumenta-
tion components can connect to the database.

3.2 Functionality

This section describes the general functionality of the in-
strumentation component. The component comprises three
modules for the support of on-line visual monitoring, con-
trol, and analysis of the SO system, namely, a solution
analysis module, a statistical analysis module, and a con-
trol module (Figure 5).

Figure 5: Instrumentation Component Modules

3.2.1 Solution Analysis Module

The solution analysis module provides functionality for
analyzing individual solutions, according to Figure 6. The
solutions to analyze are displayed in a list (a). To avoid
306
overwhelming the user in the analysis process, the list of
solutions only contains the most promising solutions. Still,
the list can potentially be extensive. In order to reduce the
number of solutions to analyze, filtering rules can be ap-
plied so that only solutions with certain properties are dis-
played in the list (b). The filtering rules are problem de-
pendent. The list of solutions can also be sorted according
to the achievement level of different objectives, in order to
ease the user’s analysis (b). When the user selects a solu-
tion from the list (c) for evaluation, this solution is visual-
ized graphically together with relevant information such as
the achievement level of each optimization objective (d).
In an optimal buffer allocation problem, for example, all
buffer capacities are graphically presented in a diagram in
which the Y-axis corresponds to overall throughput of the
system, which can represent the optimization objective.
Two solutions can also be compared with each other
graphically, to analyze similarities and differences between
them (e). To facilitate comparison, the user chooses two
solutions from the list and a visualization of these results
are displayed next to each other.

Figure 6: Analysis of Solutions

3.2.2 Statistical Analysis Module

The Statistical Analysis Module supports prognoses and
analysis of the overall SO performance. The status of the
SO process is plotted continually as new information are
read from the database. These progress curves are a valu-
able tool for the user to determine the expected running
length of the SO process. When the curves begin to level
out it is a signal that no further improvements are to be ex-
pected and hence the process can be terminated or the set-
tings can be modified to guide the optimization.

3.2.3 Control Module

The control module allows the user to change the settings
of the simulation and the optimization on-line, in order to
test if improved results can be achieved with a modified
configuration. Example of variable settings are objective
preferences and optimization algorithm parameters.

3.3 Advantages

This section discusses some advantages of connecting an
on-line instrumentation component to a SO system.

Persson, Grimm, and Ng

3.3.1 Improved Understanding

The instrumentation component provides dynamic visuali-
zation of the SO system execution and a continuous view
of its performance. This white-box approach allows for a
better understanding of the SO and how the system’s per-
formance can be improved, in comparison with the tradi-
tional approach in which the performance of the SO system
is evaluated only after the process has terminated.

3.3.2 No Explicit Stopping Criterion

The instrumentation component allows running the SO
system without an explicit stopping criterion; instead the
process is executed until the user is satisfied with the re-
sults. In the traditional approach when designing the SO
system as a black-box, a stopping criterion (e.g., number of
optimization iterations or maximum time consumption)
must be specified to determine the SO run length. As there
are no general heuristics for deriving stopping criteria, the
length of running a SO process becomes an arbitrary deci-
sion. This decision is unlikely to be optimal; either the
stopping criterion may be too tight and hinder optimal so-
lutions to be found, or too generous so that a lot of time is
wasted.

3.3.3 Fast Feedback of Objective Trade-offs Results

In most situations, it is not obvious how tradeoff informa-
tion should be assigned to the various optimization objec-
tives in order to obtain the requested solution, and there is
a need for an agile analysis of the early results which may
give some insight. The graphical visualizations of the SO
progress provided in the instrumentation component sup-
ports this feature and allows the user to quickly acquire in-
sight of the direction of the SO performance for a specific
tradeoff setting. The user does not need to wait for the en-
tire experiment to be finished, but may stop the process
whenever noticing that the tradeoff information assigned
will not result in a satisfactory solution and then may try
with another tradeoff setting.

3.3.4 Interactive Control

The instrumentation component allows the user to evaluate
different SO parameter settings in a convenient way by
enabling run-time parameter modifications and immediate
monitoring of their consequences. Since the result of the
modifications are presented on-line there is no need to re-
start the system between each modification, like the tradi-
tional approach wherein results are presented only after the
SO process has been terminated.
307
4 CASE IMPLEMENTATION

This section describes how the concepts of the instrumen-
tation component presented in the previous chapter has
been implemented to monitor and control a SO system
solving a complex real-world machine scheduling problem.
In short, the problem is to schedule mail batches on sorting
machines at the Swedish Postal Services (see Persson et al.
2006 for more information).

The SO system in this case implementation comprises
a simulation model built in the Arena simulation software
and an optimization procedure based on a Genetic Algo-
rithm. There are three conflicting optimization objectives;
minimization of cost, maximization of slack time, and
maximization of even machine utilization. As it is not pos-
sible to obtain solutions which maximize performance of
all objectives at the same time, the user must express
tradeoff preferences between the objectives, specifying
their relative importance.

Building on top of a component-based architecture
specifically designed for SO (Persson et al. 2006), the on-
line monitoring component that connects to the SO system
is implemented in C++ using Microsoft Visual Studio
.NET. Spreadsheet applications like Microsoft Excel that is
commonly used for data input and output in simulation
modeling may be used to develop the user interface of the
instrumentation component. However, to increase the
flexibility and controllability of the software development
during our research study, we have chosen to develop our
own Graphical User Interface (GUI). Currently, full im-
plementation of the instrumentation component is under-
way, but it is sufficiently built to illustrate the concepts and
ideas presented in this paper.

4.1.1 Control Module

The Control Module (Figure 7) allows the user to modify
optimization and simulation settings while running the SO
system, in order to test if improved results can be achieved
with a different configuration. The settings that can be
modified include objectives tradeoffs, simulation parame-
ters, and parameters for the specific optimization strategy.

The user expresses tradeoff preferences regarding the
various objectives by assigning a weight value to each ob-
jective specifying its relative importance – a higher value
indicates that the objective is considered more important.
The decision maker allots each objective a percentage
value and the total weighting assigned must sum up to
100%. The objective tradeoff weightings can be changed
using either slide bars or a graphical distance triangle, as
shown in Figure 8. There is one slide bar for each of the
objectives and the weighted importance of an objective is

Persson, Grimm, and Ng

Figure 7: Control Module

shown on the right-hand side of its corresponding slider.
Using the graphical distance triangle, the user changes ob-
jective tradeoff information by dragging a handle. Each
corner of the triangle represent an objective, and the closer
the point is to a corner the more important is the corre-
sponding objective considered. If the point in the distance
triangle is changed, the slide bars are changed accordingly
and vice versa.

Figure 8: Objectives Preferences

The simulation parameters that the user can modify

run-time include simulation run time period (e.g., 24 hours
or one week), simulation warm up period, and number of
replications, as shown in Figure 9.

Figure 9: Simulation Settings

In this application example, since a Genetic Algorithm

is used as the optimization algorithm, the variable parame-
ters are therefore population size, mutation rate, and cross-
over frequency (Figure 10) that are specific for GA as well
as other evolutionary strategies.

308

Figure 10: Genetic Algorithm Settings

4.1.2 Solution Analysis Module

In the Solution Analysis Module (Figure 11), the user can
perform visual on-line analysis of promising solutions. In
this case, promising solutions are considered to be the
Pareto optimal set. Pareto optimal solutions are solutions
superior to the other solutions considering all objectives
but possibly inferior to other solutions considering one or
several objectives (Srinivas and Deb 1995).

Figure 11: Solution Analysis Module

The Pareto optimal set of solutions is displayed in a

list (Figure 12), where each list entry corresponds to an in-
dividual solution. Each solution has a unique identifier and
is presented in the list together with its achievement values
of the various optimization objectives. To ease the user’s
analysis, the list can be sorted according to the achieve-
ment values, as in Figure 12 where solutions are sorted
based on cost. To aid the user in the evaluation of solu-
tions, there is also a possibility to write a comment next to
each solution.

The list of solutions is updated on the user’s initiative
when pushing the “Update” button. This button is only en-
abled when new Pareto optimal solutions have been found,
and in that way the user knows when there are new solu-

Persson, Grimm, and Ng

tions available. The reason for not updating the list auto-
matically as soon as a new Pareto optimal solution is found
is to avoid, from a user-perspective, confusing unexpected
changes in the list.

Figure 12: List of Pareto Optimal Solutions

The number of solutions to analyze can be reduced by

applying filtering rules (Figure 13), which specify that only
solutions that fulfill certain constraints should be displayed
in the list. Filtering can be done according to minimum fit-
ness, maximum cost, maximum latest stop time, and maxi-
mum machine utilization.

Figure 13: Filtering Rules

The Pareto optimal solutions are also presented in a

trade-off graph (Figure 14). In this graph, the relationships
between objectives are visually presented and conflicting
objectives are indicated with crossing lines (Fonseca and
Fleming 1993). The high-dimensional (in this case, 3-
dimensional) space is reduced to only two dimensions,
comprehensible for a human analyst. The horizontal axis
represents the different objectives and the vertical axis in-
dicates the normalized performance of each of the objec-
tives. A line in the graph is highlighted when the user se-
lects a solution in one of the lists of Pareto optimal
solutions, with different highlighting colors for the two
lists.

Figure 14: Graph of Pareto-optimal Solutions

When the user selects a solution, either in one of the

lists or in the trade-off graph, the solution is visualized in a
graphical schedule diagram as shown in Figure 15. The X-
axis of the diagram represents machines (there are sixteen
309
machines in this case) and the Y-axis represents time. A
box in the diagram corresponds to a job and for each job its
identification number is shown together with its start and
stop time.

To ease the evaluation of solutions, important proper-
ties of a schedule are color encoded. For the problem con-
sidered in this implementation there are two properties to
highlight, namely missed deadlines for jobs and job colli-
sions (i.e. when more then one job is scheduled on the
same machine in the same time). In the schedule shown in
Figure 15, there are three jobs with missed deadlines and
one job collision.

Figure 15: Graphical Visualization of a Solution

Two solutions can be compared with each other
graphically to analyze similarities and differences between
them, as shown in Figure 16. To facilitate a convenient
comparison, differences of the solutions are highlighted in
the schedule diagrams.

Figure 16: Graphical Comparison of Solutions

Persson, Grimm, and Ng

4.1.3 Statistical Analysis Module

The Statistical Analysis Module (Figure 17) supports
prognoses and analysis of the optimization performance. In
this module, status information of the Genetic Algorithm
fitness value is continuously presented, as well as the
achievement level of each of the three optimization objec-
tives.

Figure 17: Statistical Analysis Module

To facilitate analysis of optimization progress, curves

representing fitness value and achievement levels of the
optimization objectives are displayed, showing minimum,
mean, and maximum value for each simulation-
optimization iteration (Figure 18).

Figure 18: Time Plotted Progress Curves

To allow for a detailed analysis of the plotted curves,

continuous status values are also displayed in a table. The
310
user chooses what columns to include in the table using a
selection menu, as shown in Figure 19.

Figure 19: Table of Status Values

5 CONCLUSIONS AND FUTURE WORK

A major problem of SO for practical applications is that it
is computationally time consuming (Dengiz et al. 2006;
Boesel et al. 2001; Fu et al. 2005). By introducing instru-
mentation to SO systems, as proposed in this paper, there is
a potential for alleviating this problem. There are mainly
three features of the SO instrumentation that enables sys-
tem efficiency enhancement:

• The instrumentation enables run-time system per-
formance analysis and evaluations, essential in
order to gain the understanding necessary to ac-
complish efficiency improvements of the system
implementation.

• The instrumentation allows for the SO system to
be run for the exact time needed for the user to be
satisfied with the results.

• The instrumentation provides possibility to inter-
rupt the running SO system and reconfigure or re-
start it if its progress is not satisfying.

However, it should be remarked that the instrumenta-

tion is not a pure efficiency enhancement tool – it also in-
troduce some overhead to the SO process. The SO system
status is written to a database, or exposed in some other
way, frequently and each such command causes a certain
performance degradation. It is important that this instru-
mentation overhead is limited and future work includes
studying how this can be achieved.

As argued in this paper, a white-box approach to SO
systems have a number of advantages, such as for example
higher controllability of the SO processes and insight into
the system internals. However, it also has a drawback in that
the instrumentation component implementation, to some de-
gree, becomes dependent on the implementation of the simu-
lation and the optimization strategy – although the general
concepts of using instrumentation component are generic
irrespective of underlying SO technology. For example,
changing the optimization strategy to another strategy has
the consequence that the Control Module must be changed

Persson, Grimm, and Ng

accordingly, and probably also the Statistical Analysis Mod-
ule. In future work, we intend to study how a generic in-
strumentation component interface can be designed to facili-
tate the loose coupling between different components in the
SO system. In this aspect, the traditional black-box approach
has an advantage as it allows for system internals to be
changed without influencing the use of the system.

One of our current research focuses which is related to
this work is the design of an Internet-based component ar-
chitecture called OPTIMISE (OPTIMization using Intelli-
gent Simulation and Experimentation). This architecture
has emerged from the observation that many simulation-
optimization applications, for example, the automatic gen-
eration of optimized operation schedules described here,
can be rapidly developed by making use of a common ar-
chitectural design. With a common component-based ar-
chitecture, many system components can be reused and op-
timization components can be customized rapidly for new
applications. The design of OPTIMISE is now underway
and integrating the proposed instrumentation components
to the OPTIMISE platform will be one of the major tasks
in our future work.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the Knowledge
Foundation (KK Stiftelsen), Sweden, for the provision of
research funding and Posten AB for their collaborative in-
puts to this work.

REFERENCES

April, J, Better, M., Glover, F. and Kelly, J. 2004. New ad-
vances for marrying simulation and optimization. In
Proceedings of the 2004 Winter Simulation Confer-
ence, 80-86.

Boesel, J., Bowden, R.O., Glover, F., Kelly, J.P. and
Westwig, E. 2001. Future of simulation optimization.
In Proceedings of the 2001 Winter Simulation Confer-
ence, 1466-1469.

Buchholz, P. and Thümmler, A. 2005. Enhancing evolu-
tionary algorithms with statistical selection procedures
for simulation optimization. In Proceedings of the
2005 Winter Simulation Conference, 842-852.

Dengiz, B., Bektas, T. and Ultanir, E. 2006. Simulation op-
timization based DSS application: A diamond tool
production line in industry. Simulation Modelling
Practice and Theory 14: 296–312.

Fonseca, C. M. and Fleming, P. J. 1993. Genetic algo-
rithms for multiobjective optimization: Formulation,
discussion and generalization. In Proceedings of the
Fifth International Conference on Genetic Algorithms,
416–423.

Fu, M.C., Glover, F. and April, J. 2005. Simulation optimi-
zation: a review, New Developments, and Applica-
311
tions. In Proceedings of the 2005 Winter Simulation
Conference, 83-95.

Klar, R. Quick, A. and Sotz, F. 1992 Tools for a model–
driven instrumentation for monitoring. In Proceedings
of the 5th Int. Conf. on Modelling Techniques and
Tools for Computer Performance Evaluation, 165–
180.

Luk, C. K, Cohn, R, Muth, R. Patil, H., Klauser, A.,
Lowney, G., Wallace, S., Reddi, V. J. and Hazelwood,
K. 2005. Pin: Building customized program analysis
tools with dynamic instrumentation. In Programming
Language Design and Implementation, Chicago, IL,
June 2005.

Maebe, J., Ronsse, M. and De Bosschere, K. 2002.
DIOTA: Dynamic instrumentation, optimization and
transformation of applications. In Proceedings of the
4th Workshop on Binary Translation.

Persson, A., Ng. A., Grimm, H., Karlsson, T., Ekberg, J.,
Falk, S. and Stablum, P. 2006. Simulation-based
multi-objective optimization of a real-world operation
scheduling problem. To appear in Winter Simulation
Conference 2006.

Srinivas, N. and Deb, K. (1995) Multiobjective optimiza-
tion using nondominated sorting in genetic algorithms.
Evolutionary Computation, 2(3):221–248.

AUTHOR BIOGRAPHIES

ANNA PERSSON is a PhD candidate at University of
Skövde, Sweden and De Montfort University, U.K. She
holds a Master’s degree in Computer Science from Univer-
sity of Skövde. Her research interests include artificial in-
telligence, simulation-based optimization, multi-objective
optimization and efficiency enhancement techniques for
simulation-based optimization. Her e-mail address is
<anna.persson@his.se>.

HENRIK GRIMM is a Systems Developer at the Univer-
sity of Skövde, Sweden. He received his BSc and MSc de-
grees in Computer Science from University of Skövde. His
research interests include computer simulation, artificial
intelligence, and distributed systems. His e-mail address is
<henrik.grimm@his.se>.

AMOS H.C. NG is a Senior Lecturer at the University of
Skövde, Sweden. He holds a B.Eng. degree and a M.Phil.
degree, both in Manufacturing Engineering from the City
University of Hong Kong and a Ph.D. degree in Comput-
ing Sciences and Engineering from De Montfort Univer-
sity, Leicester, U.K. He is a member of the IEE and a
Chartered Engineer in the U.K. His research interests in-
clude agent-based machine control systems, virtual engi-
neering for manufacturing machinery and machine systems
as well as simulation-based optimization. His e-mail ad-
dress is <amos.ng@his.se>.

mailto:anna.persson@his.
mailto:henrik.grimm@his.se
mailto:amos.ng@his.se

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

