
Proceedings of the 2006 Winter Simulation Conference

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

A TESTBED OF SIMULATION-OPTIMIZATION PROBLEMS

Raghu Pasupathy

Industrial and Systems Engineering

Virginia Tech

Blacksburg, VA 24061, U.S.A.

Shane G. Henderson

School of Operations Research and

Industrial Engineering

Cornell University

Ithaca, NY 14853, U.S.A.
ABSTRACT

We propose a testbed of simulation-optimization problems.

The purpose of the testbed is to encourage development and

constructive comparison of simulation-optimization tech-

niques and algorithms. We are particularly interested in

increasing attention to the finite-time performance of al-

gorithms, rather than the asymptotic results that one often

finds in the literature.

1 INTRODUCTION AND MOTIVATION

The Deterministic-Optimization (DO) problem is to

minimize g(x)

subject to h(x) ≥ 0

x ∈ D,

where g :D→R and h :D→R
d are the real-valued objective

function and vector-valued constraint functions respectively,

and D ⊆ R
q is an underlying set of potential solutions. In

many cases h is vacuous, and the problem is then said to

be unconstrained. The set D is arbitrary, so it can represent

any level of constraints. Typically, however, D represents

a natural and easily-defined set of potential solutions, such

as the nonnegative orthant.

The Simulation-Optimization (SO) problem is a gen-

eralization of the DO problem where the objective is the

same, i.e., a solution x∗ is sought that minimizes g over

D while also satisfying h(x) ≥ 0. The difference is that

now g and/or h are only observable through a stochastic

simulation, and therefore with error. We assume estimators

Gm(x) of g(x), and Hm(x) of h(x), that are consistent, in the

sense that Gm(x) ⇒ g(x) and Hm(x) ⇒ h(x) as m →∞, for

any x ∈ D. Here ⇒ denotes convergence in distribution,

and m is some measure of simulation effort. For example,

when h and g are performance measures associated with a
2551-4244-0501-7/06/$20.00 ©2006 IEEE
finite-horizon simulation, m might represent the number of

independent and identically distributed (i.i.d.) replications.

We assume that the domain D is deterministic and known.

In many cases, the SO problem possesses structure

which can be used to assist in the search for a minimum. For

example, if g is differentiable and one can obtain estimates

of the gradients of g, then one can employ methods that

exploit gradient information.

While one would like to identify a global minimum,

this goal is, in general, exceedingly difficult to achieve, even

in the case where g can be computed without simulation

error. For example, if g is completely unstructured, then

to guarantee that a global minimum has been found, one

must compute g at every feasible solution. Accordingly, we

tailor our discussion to the goal of finding local minima.

There has recently been a marked growth in the number

and type of instances where SO problem formulations apply,

often with only minor variations. There has also been

a corresponding increase in the number and diversity of

solutions to these SO problem variants. Recognizing this, a

panel discussion at the 2000 Winter Simulation Conference

(Fu et al. 2000) identified the need for a testbed of SO

problems which, among other things, can be used to evaluate

and compare competing SO algorithms, and to identify

particular problem classes for further inquiry. This need

was reiterated in Fu (2002) and in comments to that article

in Glynn (2002). The use of testbeds is well-established in

other fields. See Jackson et al. (1991) for examples, as part

of an update to a set of guidelines (Crowder et al. 1979)

on reporting computational results. For early discussion

in the mathematical programming community, see Mulvey

(1982).

An SO testbed is primarily motivated by the following

considerations:

1. a testbed is useful in comparing the performance

of competing algorithms through execution on the

same problem instances;

Pasupathy and Henderson
2. a testbed helps to identify particular SO problem

classes that have defied efficient solution and in

the process stimulates algorithm development for

these classes;

3. a testbed increases the visibility of SO problem

tools among researchers and practitioners thereby

leading to their increased use.

In this paper, we describe the design and construction

of a testbed of SO problems. Our aims in writing this paper

are threefold:

(i) to inform the simulation community of our effort;

(ii) to obtain feedback from the simulation community

on the testbed design; and

(iii) to solicit SO problems for inclusion in the testbed.

It is worth emphasizing that the testbed we propose

is intended not as an archive of “unsolved” problems in

SO, but instead as a forum that presents a range of SO

problems to facilitate research and application. We recognize

that a potential consequence of a testbed is the emergence

of algorithms tailored for solving the particular instances

appearing in the testbed. This negative consequence can

be mitigated by ensuring that particular problem classes

are not overly represented, that all problem classes contain

a rich set of problems, and through the careful choice of

performance measures for reporting algorithm performance.

For further discussion of the merits and potential pitfalls

of testbeds, see Jackson et al. (1991) and the references

therein.

2 PROBLEM FORMAT

We propose three general classes of problem formats to

cover the gamut of SO problems.

1. High-level Description (HD): In this format, the

SO problem is specified through a detailed, ver-

bal description of the problem. For example, the

famous newsvendor problem as an SO problem in

HD format is:

A newsvendor orders a fixed quantity x of

newspapers to be sold each day. The cost to the

newsvendor, and the selling price respectively, of

each newspaper is c and s. Unsold newspapers

are salvaged each day at the unit price w. The

daily demand D is Poisson distributed with mean λ .

What is the quantity x that maximizes the expected

profit for the newsvendor?

Sets of values for λ ,c,s and w would then

be specified, corresponding to particular problem

instances. An important feature of this problem

is that the optimal solution is known. Another

important feature is that x can be viewed as an
256
integer-ordered variable as in the newspaper ex-

ample, or as a continuous quantity if, for example,

the problem relates to stocks of a perishable chem-

ical.

2. Simulation Blackbox (SB): In SB format, one has

some form of black box that, given a design point x

and simulation runlength m (broadly interpreted),

returns estimates of g(x) and h(x). The black

box could be, for example, code in some general-

purpose programming language, or a model en-

coded in a specific simulation language.

The SB format may be useful in contexts where

the model complexity defies easy problem descrip-

tion. As an example, in the newsvendor problem

described above, suppose that the daily demand is

not known to be Poisson but is instead the output

of another module. Then the problem in SB for-

mat is a program that, for a given design x, uses

the demand generation module to generate a ran-

dom demand, and then delivers the corresponding

realized profit for each day.

An important weakness of this approach is

that it is highly dependent on the black box be-

ing implementable on different platforms. This is

especially important in view of the fast pace at

which hardware and software platforms are evolv-

ing. Therefore, while we believe it is important to

include such descriptions, they are likely to date

rather quickly.

3. Objective Function–Feasible Space–Error (OFE):

In the OFE format, the SO problem representation

is more explicit and specified through an objec-

tive function, a set of inequalities that constitute

the feasible space, and the error distribution, all

provided in closed form. For example,

g(x) = 2x2
1 + x2

2,

x1x2 ≥ 2,

x1 ≥ 0,

x2 ≥ 0,

Gm(x) = g(x)+N(0,(x2
1 + x2

2)/m),

where N(a,b) denotes a normal random variable

with mean a and variance b. Here we have not

specified the correlation structure of the error for

different xs, or for different runlengths m. This is

important, for example, in the setting of common

random numbers. One such structure assumes that

the errors are independent for different xs, and

that for a given x, Gm(x) is a sample average of

m i.i.d. N(g(x),x2
1 + x2

2) random variables, with

the samples used for different runlengths being

mutually independent. It is difficult to specify

Pasupathy and Henderson
more general dependence structures in this format,

and this is a weakness of the approach. However,

problem descriptions such as this are needed in the

library, because they represent problems for which

much is known about the problem. Therefore,

they can be used to identify particular strengths

and weaknesses of algorithms.

Each problem also includes a brief description of what

may be assumed about the problem. For example, in the

newsvendor problem, one would clarify whether x should

be viewed as continuous or integer-ordered. Furthermore,

newsvendor problems are known to have certain convexity

properties. One would specify whether this information can

be assumed or not.

3 PROBLEM TAXONOMY

Algorithms are usually tailored to particular features of SO

problems. For example, problems with discrete variables

usually require quite different algorithms than problems in-

volving continuous variables and a differentiable objective

function. Accordingly, we provide a taxonomy of SO prob-

lems, similar in many respects to that provided in Barton

and Meckesheimer (2006), based on important and identi-

fiable properties of the feasible region, objective function

and constraints. We plan to use the taxonomy to classify

problems in the testbed.

In Figure 1 we first determine whether the set D con-

sists of categorical, integer-ordered, or continuous variables.

Categorical variables are those that cannot be ordered in

an appropriate way, such as variables corresponding to a

choice of queue discipline. Integer-ordered variables usu-

ally represent a count of discrete entities, such as agents

in a call center. Continuous variables take values in R.

If a problem contains a mix of variable types, then we

classify it as categorical if it has categorical variables, or

integer-ordered otherwise.

Integer-ordered problems and continuous problems are

further classified as to whether they are constrained (h is

non-null) or unconstrained. Continuous-variable problems

are also classified as to whether their objective function and

constraint functions are known to be smooth (continuously

differentiable) or non-smooth. In cases where it is not

known whether the functions are smooth or non-smooth,

the problems are classified as non-smooth.

4 ALGORITHM PERFORMANCE ON A SINGLE

PROBLEM

The literature on simulation optimization is replete with

proofs of convergence of algorithms. Such proofs are widely

viewed as being an important feature of algorithms: given

enough computational effort, one would hope that an al-
257
gorithm converges to at least a locally optimal solution.

Unfortunately, it is often the case, or perhaps usually the

case, that the computational effort required to reach a point

where such asymptotic results are informative is too large to

be practical. In that case, the asymptotic results are not as

useful as one might hope. In order to compare algorithms

on a more appropriate time scale, it seems that we need to

evaluate their finite-time performance. In this section we

recommend and discuss a finite-time performance measure

for use in reporting results of algorithm performance.

One often sees plots like that of Figure 2. Such plots

show the estimated objective function value associated with

the estimated best solution seen so far, as a function of time,

where time can be measured by wall-clock time, number

of objective function evaluations or otherwise.

These plots are intuitive and easily constructed, but

they have at least two important shortcomings. First, the

objective function value is observed with noise, and so

there is uncertainty in the curve height, given the series of

estimated best solutions with time. The impact of noise is

usually most clearly seen when the limiting height of the

curve is below the true objective function value associated

with the final estimated best solution (for a minimization

problem). This is an example of the bias often associated

with simulation optimization; see Mak, Morton, and Wood

(1999) for an accessible overview.

Second, these curves hide the stochastic performance

of the algorithm. If the optimization procedure is repeated

then, due to a combination of the stochastic nature of the

algorithms and the noise in the simulated function evalua-

tions, performance can vary. One could overlay the curves

resulting from multiple replications giving some idea of

the true performance, but as the optimization procedure is

repeated, the curves tend to fill the plane, leading to a loss

of visual information.

Another thorny issue occurs when there are constraints

h(x) ≥ 0, where h is also evaluated through simulation. In

this case, the estimated best solution may, in fact, be infea-

sible. This is an issue even when h is deterministic, because

of numerical inaccuracies. The mathematical programming

community deals with this issue by specifying a tolerance,

ε say, for each problem with constraints. Each component

of h is then required to be greater than −ε . The same

tolerance is used for all constraints to keep things simple

for problems with huge numbers of constraints. We adopt

this approach.

For a performance measure, we propose an alternative

to the above plot that more accurately reflects the stochastic

performance of the algorithms. The alternative is related to

the notion of goal softening as introduced in Ho, Sreenivas,

and Vakili (1992).

Let Zt be the true objective function value associated

with the estimated (and therefore random) best solution

seen by time t. (If a solution is infeasible, even taking

Pasupathy and Henderson

All Problems

Categorical

Variables

Integer-ordered

Variables

Continuous

Variables

Smooth Non-smooth

Constrained UnconstrainedConstrained Unconstrained

Smooth Non-smooth

Figure 1: An SO Problem Taxonomy
Best Solution So Far

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50

Time

O
b

je
ct

iv
e

fu
n

ct
io

n

Figure 2: Estimated Objective of Estimated Best Solution

into account the tolerance −ε , then set its objective equal

to some known poor value of the objective function zbad

say. Then Zt could take on the value zbad with positive

probability, and this will show up in the plot described

below. We considered setting the objective function for

infeasible points equal to ∞ for a minimization problem,

but this would cause difficulties in the summary statistics we

describe in later sections.) Then Zt is a real-valued random

variable for each t ≥ 0. It is random because the underlying

estimated best solution is random. We are unlikely to know

the true objective function values in practical simulation

optimization problems, unless the objective function is not

computed by simulation. However, this seems (to us) to

be the right random variable to study. It is random due

to random results of the simulations, and perhaps due to

randomization in the optimization algorithm itself. This

issue is revisited below when we discuss how to generate

appropriate plots.

The distribution of Zt , when viewed as a function of

time, gives a tremendous amount of information about the

performance of an algorithm. We advocate a plot that depicts

this distribution as a function of time.

There are several plots which could show distributional

information of Zt as a function of time. Perhaps the simplest
258
such plot gives the cumulative distribution function (c.d.f.)

of Zt as a function of time t. This can be depicted in a number

of ways. For example, one can plot a function of t and r,

where the height of the function is P(Zt ≤ r), as in Figure 3.

One could also plot a family of curves parameterized by r,

where each curve is of the form P(Zt > r) as a function of

t, for a fixed r, as in Figure 4.

Such plots clearly showcase the performance of algo-

rithms designed to find local versus global optima. Typically,

algorithms designed to identify global optima converge more

slowly than those designed to find local optima, owing to

the need to search the feasible region. This slower rate

typically exhibits itself through the distribution of Zt being

quite diffuse, and converging to the cdf of a point mass at a

slow rate. In contrast, algorithms designed to identify local

optima typically converge to the cdf of a point mass at a

value that is strictly greater (for a minimization problem)

than the globally optimal objective function value.

Let us consider how to generate these plots. It is

straightforward to run multiple replications of an optimiza-

tion procedure in order to obtain the collection of solutions

identified as best-so-far by time t as a function of t. How-

ever, we will not know the exact objective function value

of these solutions if computing g involves simulation. One

might then perform a post-processing step, where the ob-

jective function values of the estimated best-so-far solutions

are estimated with great care, thereby obtaining an accurate

estimate of the values that Zt takes on, and therefore the

cdf P(Zt ≤ r).
A natural question arises as to how one should divide

effort between the replications of the optimization procedure

and the post-processing effort in order to best estimate the

cdf of Zt (for multiple t). This is a question that we will

address elsewhere, perhaps adapting some of the ideas from

a treatment of a similar problem (Lee 1998). For now we

simply recommend that performance be reported through

an estimate of the curve (P(Zt ≤ r) : t ≥ 0,r ∈ R), and that

for best results, one should probably perform additional

simulation replications after the simulation optimization

experiment has finished, in order to compute the objective

values needed more precisely.

Pasupathy and Henderson
0
20

40
60

80
100

0

50

100
0

0.2

0.4

0.6

0.8

1

tr

Figure 3: Hypothetical Plot of P(Zt ≤ r) for a Maximization

Problem

How should we measure time t? One would like the

results to be platform independent, while still giving some

idea of the work involved in the optimization procedure. A

method that is often adopted in deterministic, unconstrained,

black-box optimization is to measure t in terms of evaluations

of the function g. There are at least three issues that arise

in adapting this approach to our context.

First, the evaluation of any constraints h may involve

nontrivial effort. Second, for finite-horizon simulations

one can simply compute the number of replications, while

for infinite-horizon simulations there is no obvious analog

of replications, e.g., as occurs in steady-state simulations

where one typically generates a single sample path. Third,

some algorithms extract additional information from the

generated sample path, such as gradient-estimation schemes

like infinitesimal perturbation analysis. Usually this entails a

minimal amount of additional computational effort, but one

can envisage situations where significant additional work is

required.

In view of these issues, we recommend that the units

in which t is measured be problem-specific, and specified

as part of the specification of the problem.

5 ALGORITHM PERFORMANCE ON A TESTBED

In this section, we discuss summary statistics that facilitate

reporting algorithm performance on a tesbed. The summary

statistics we propose are derived from the trajectory of Zt

across time. Recall that Zt is a random variable represent-

ing the true objective function value associated with the

estimated best solution by time t.

5.1 Ideal Summary Statistics

Let C be a random variable representing the time at which

an algorithm achieves convergence. Let us assume for now

that the notion of achieving convergence has been defined in
259
0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

r=20

r=40

r=60

r=80

Figure 4: Hypothetical Plots of P(Zt > r) for Various r, for

a Maximization Problem

some suitable fashion. Then two natural summary statistics

are the mean e∗ and the variance v∗ of the area under the

Zt trajectory generated by the algorithm. The measures e∗

and v∗ are computed as

e∗ = E

∫ C

0

Zt dt, v∗ = E

(

∫ C

0

Zt dt − e∗

)2

.

So, in minimization problems, algorithms with lower e∗

values exhibit better performance on average. Also, low

v∗ values imply low variability in the performance of an

algorithm.

The measure e∗ has two advantages. First, it assesses

algorithm performance in a hypothetical but correct inter-

val, namely from time t = 0 to when the algorithm achieves

convergence. Second, the measure naturally incorporates

solution quality and convergence speed in assessing algo-

rithm performance. In other words, through this measure,

an algorithm will be assessed as performing well if it con-

verges fast and/or produces solutions of high quality. It has

the disadvantage that null algorithms that do nothing have

e∗ = v∗ = 0, but such algorithms are not even contenders.

5.2 Estimable Summary Statistics

The measures e∗ and v∗ are very useful in concept but have

an important drawback. They assume knowledge of the

time C when an algorithm attains convergence, a notion

that is difficult to precisely define. For example, for smooth

problems, most definitions that one sees in the literature

involve a condition such as ‖∇g‖ ≤ ε , where ∇g is the

gradient of g and ε is a pre-specified tolerance. Since direct

observations on the gradient are not available, procedures

for checking the condition usually involve either a heuristic

or some kind of a hypothesis testing procedure. In general,

Pasupathy and Henderson
there seems to be little agreement on how to best define

this notion.

For actual algorithm assessment, we therefore propose

surrogate measures e and v for e∗ and v∗ respectively.

The measures e and v are obtained by replacing C in the

expressions for e∗ and v∗ by a user-specified problem-

specific parameter tC. The parameter tC represents the time

over which an algorithm needs to be assessed, and might

represent, for instance, the available computing budget for

solving the problem on hand. The measures e and v are

computed as

e = E

∫ tC

0

Zt dt, v = E

(
∫ tC

0

Zt dt − e

)2

.

Admittedly, the value of tC is subjective, but we expect that

as the testbed evolves and more algorithms are executed on

a given problem, choosing tC for any given problem will

become more natural.

6 COMPARING SEVERAL ALGORITHMS ON A

TESTBED

We are now in a position to compute a real-valued per-

formance measure that describes the performance of an

algorithm on a single problem. Suppose now that one

wishes to compare the performance of several algorithms

on a testbed of problems. One way to do this is via perfor-

mance profiling, as introduced by Dolan and Moré (2002).

Performance profiling is rapidly becoming a standard in the

mathematical programming community. Unfortunately we

only have space to sketch the key idea here.

Let e(i, j) be the value of e for algorithm i on problem

j. Let e(j) = mini e(i, j) be the best value of e observed by

any algorithm on problem j. Now compute r(i, j), where

r(i, j) =
e(i, j)− e(j)

ebad − e(j)
.

The value ebad = zbad(j)tC reflects bad performance over

the interval [0, tC]. The r(i, j)s are between 0 and 1, with

smaller values being better. The r(i, j)s also have the

nice property that they don’t depend on the scaling of the

objective values in the problems, although they do depend on

the zbad(j)s. Now plot, for each algorithm i, the empirical

distribution function of r(i,1),r(i,2), . . . , all on the same

graph. The r(i, j) values were adopted from a proposal for

global optimization in Montaz Ali et al. (2005).

7 PROBLEM SPECIFICATION AND EXAMPLES

A simulation-optimization problem appearing in the testbed

is specified through the following characteristics, and along

the lines discussed in the preceding sections:
26
1. problem statement (in one of the recommended

formats);

2. recommended parameter settings, including the tol-

erance ε and the value zbad;

3. recommended measurement of time;

4. a method for obtaining a starting solution for al-

gorithms that require a single starting point, and

a method for generating a collection of starting

solutions for algorithms that require a family of

solutions, e.g., genetic algorithms;

5. any information about the optimal solution(s);

6. comments on any known structure in the problem;

7. recommended r values to be used when reporting

algorithm performance.

We now present a few examples.

7.1 The Newsvendor Problem

(Integer-ordered variables, unconstrained.)

Problem Statement: A newsvendor orders a fixed quantity x

of newspapers to be sold each day. The cost to the newsven-

dor, and the selling price respectively, of each newspaper

is c cents and s cents. Unsold newspapers are salvaged

each day at the unit price w cents. The daily demand

D is Poisson distributed with mean λ . A simulation that

generates random variates from the specified demand dis-

tribution is available. What is the quantity x that maximizes

the expected profit for the newsvendor? Assume that the

mean demand (λ) and the fact that the demand is Poisson

distributed are unknown to the solution procedure.

Recommended Parameter Settings: c = 50,s = 90,w =
10,λ = 100, zbad = 0.

Starting Solution(s): 0.

Measurement of time: Number of demand random variates

generated. Take tC = 1000,10000.

Optimal Solution(s): Global minimum at inf{x : F(x) ≥
(s−c)/(s−w)} where F is the Poisson cdf with parameter

λ .

Known Structure: The objective function equals 0 for x = 0,

and tends to −∞ as x →∞. The objective function is only

defined on the integers, but if one extends it to R through

the usual piecewise-linear construction, then it is concave.

Recommended Plots: 0.1(s−c)λ ,0.2(s−c)λ , . . . ,(s−c)λ .

7.2 Call Center Staffing

(Integer-ordered variables, constrained.)

Problem Statement: Calls arrive to a call center according

to a non homogeneous Poisson process with rate function

(λ (t) : 0 ≤ t ≤ 16), where t is measured in hours. Call

handling (service) times are gamma distributed with mean
0

Pasupathy and Henderson
µh minutes and variance σ2
h minutes2. Customers are willing

to wait on hold for a limited amount of time before reaching

a server. If this “patience time” expires before they reach

a server then they hang up (abandon) and don’t call back.

Patience times are also gamma distributed with mean µp

minutes and variance σ2
p minutes2. Handle times, patience

times and the call arrival process are all independent of

one another. The call center has T trunk lines, so that it

can accommodate at most T calls either being dealt with

by agents or on hold; calls that arrive when this limit has

been reached receive a busy signal (and do not call back).

At time t = 16 the call center stops receiving calls, but any

calls still in the system are answered by agents until all are

served or abandoned.

Agents work shifts that are structured as follows. They

work for x hours, take a 1/2 hour lunch break, and then

work 8− x hours, where x can be 3, 3.5, 4 or 4.5. Agents

can start work on the hour or on the half-hour throughout

the day, starting from t = 0 through to t = 8. Agents starting

at t = 8 finish at t = 16.5. There are no part-time shifts.

Agents are paid a flat rate of $r per hour. At the end of a

shift, agents finish any call they are currently handling, and

then leave (except at the end of the day, when any queued

calls are also completed before the agents leave).

Performance is measured in each hour as follows. Let Ni

be the number of calls received (even if they are blocked) in

the ith hour, i = 1, . . . ,16. Let Si be the number of calls that

are answered within 20 seconds. (Calls that abandon or are

blocked are not counted in Si.) The service level constraint

for the ith hour is that ESi ≥ 0.8ENi, i = 1, . . . ,16. Notice

that ENi can be analytically computed while ESi cannot,

so that simulation is used to estimate ESi for i = 1, . . . ,16.

Let x j be the number of agents starting shift at time

j/2, where j = 0,1, . . . ,16. We wish to choose the vector x

that minimizes costs, subject to ESi −0.8ENi ≥ 0 for each

i = 1, . . . ,16.

Recommended Parameter Settings: λ (t) = 500 +
500sin((3πt − 16π)/32),µh = 6,σ2

h = 2,µp = 2,σ2
p =

1,T = 150,r = 18. The tolerance for the constraints is

ε = 0.5, and we take zbad = 16rT , which would be the cost

if the number of agents equalled the number of trunk lines

in all periods.

Starting Solution(s): Let xi = 8, for all i. If multiple ran-

dom solutions are required, then let each x j be uniformly

distributed on {0,1,2, . . . ,10}. (Note that x j represents the

number of agents starting their shift at a certain time, rather

than the number of agents actually working at that time.)

Measurement of time: Number of simulated days of call

center operation. Take tC = 1000,10000.

Optimal Solution(s): Unknown.

Known Structure: None.

Recommended Plots: Unknown.
26
7.3 Ambulance Bases

(Continuous variables, constrained, unknown if it is smooth

or not.)

Problem Statement: Calls (i.e., requests for ambulances)

arrive according to a Poisson process at constant rate λ per

hour. The calls are located within the unit square [0,1]2,

where distances are measured in units of 30 kilometers so

that the square’s area is 900 km2. Call locations are i.i.d.

with density function (f (x,y) : 0≤ x,y≤ 1) and independent

of the Poisson arrival process. Scene times (time that an

ambulance spends at the location of the call) are gamma

distributed with mean µs minutes and standard deviation σs

minutes.

There are a number d ≥ 1 ambulances. Each ambulance

travels at a constant rate of v f km/hr on the way to a

call, and at a constant rate of vs km/hr otherwise. (These

rates reflect the fact that ambulances have to slow down

when going through intersections to avoid creating further

accidents.) All travel is in Manhattan fashion, in the sense

that when traveling from (x1,y1) to (x2,y2), the ambulance

first travels from (x1,y1) to (x1,y2), i.e., vertically, and then

on to (x2,y2), i.e., horizontally. Ambulance i has a base

located at the point b(i), i = 1, . . . ,d.

When a call arrives, the closest free ambulance travels

to the call, spends some time at the scene, and is then freed

for further work. If there are no available ambulances when

a call is received, the call is added to a queue of calls that

is answered in FIFO order. After attending a call, if there is

no further work, the ambulance proceeds back to its base.

The goal is to choose the base locations that minimize

the (long run) average response time (time from when a call

is received until when an ambulance arrives at the scene).

Recommended Parameter Settings: f is proportional to

1.6− (|x− 0.8|+ |y− 0.8|),µs = 45,σs = 15,v f = 60,vs =
40. The arrival rate λ may be selected at will, and the

number of ambulances d chosen accordingly. Obviously,

d has to be large enough that the system is stable. Set

zbad = 60/v f , which is the time it takes the ambulance to

travel between opposite corners of the square.

Starting Solution(s): All ambulance bases located at

(0.5,0.5). If multiple initial solutions are required, then

select base locations uniformly at random from within the

square, independently of one another.

Measurement of time: Number of simulated hours of oper-

ation. Take tC = 10000.

Optimal Solution(s): Unknown.

Known Structure: None.

Recommended Plots: Unknown.
1

Pasupathy and Henderson
7.4 Parameter Estimation

(Continuous variables, unconstrained, unknown if it is

smooth or not.)

Problem Statement: Say a simulation generates output data

{Yj},Yj ∈ [0,∞]× [0,∞], that are i.i.d and known to come

from a distribution with the two-dimensional density func-

tion

f (y1,y2;x
∗) =

e−y1y
x∗
1

y2−1

1

Γ(x∗1y2)

e−y2y
x∗
2
−1

2

Γ(x∗2)
, y1,y2 > 0,

where x∗ ≡ (x∗1,x
∗

2) is the unknown vector of parameters.

Noting that x∗ maximizes the function

g(x) = E [log (f (Y ;x))]

=

∫

∞

0

log (f (y;x)) f (y;x∗)dy,

and that

Gm(x) =

∑m
j=1

log(f (Yj;x))

m

is a consistent estimator of g(x), find x∗.

Recommended Parameter Settings: Use x∗ = (2,5) to gen-

erate the data. Take zbad as the true objective function

value associated with taking x = (1,1).

Starting Solution(s): Take x = (1,1). If multiple solutions

are required then select them as i.i.d. uniform in the open

square (0,10)× (0,10).

Measurement of time: Number of output data points gen-

erated. Take tC = 1000,10000.

Optimal Solution(s): Global maximum at x∗ = (2,5).

Known Structure: None.

Recommended Plots: Unknown.

7.5 Rosenbrock’s Function

(Continuous variables, constrained, smooth.)

Problem Statement:

Min g(x) =
∑

j=1,3,...,2q−1

[

(1− x j)
2 +100(x j+1− x2

j)
2
]

,

|x j| ≤ 10 for j = 1,2, . . . ,2k,

Gm(x) = g(x)+
∑

i

= 1mNi(0,(1+
√

g(x))),

where the Nis are independent normal random variables that

are independent at different x values.
262
Recommended Parameter Settings: Choose q at will. Take

zbad as Eg(U), where U is a 2q-dimensional random vector

uniformly distributed as described next for starting solutions.

Starting Solution(s): Uniformly distributed in the hypercube

[−10,10]× [−10,10]×·· ·× [−10,10] .

Measurement of time: Number of random variates generated.

Take tC = 10000.

Optimal Solution(s): Global minimum at (1,1, . . . ,1).

Known Structure: Objective function is nonnegative and

infinitely differentiable everywhere.

Recommended Plots: 0,q,10q,100q,1000q,10000q.

ACKNOWLEDGMENTS

We would like to thank Michael Saunders for helpful dis-

cussions. This work was partially supported by National

Science Foundation Grant DMI 0400287.

REFERENCES

Barton, R. R., and M. Meckesheimer. 2006. Metamodel-

based simulation optimization. In Handbook of Simu-

lation, ed. S. G. Henderson and B. L. Nelson, 535–574.

Elsevier.

Crowder, H. P., R. S. Dembo, and J. M. Mulvey. 1979.

On reporting computational experiments with mathe-

matical software. ACM Transactions on Mathematical

Software 5:193–203.

Dolan, E. D., and J. J. Moré. 2002. Benchmarking optimiza-

tion software with performance profiles. Mathematical

Programming, Series A 91:201–213.

Fu, M. C. 2002. Optimization for simulation: theory vs.

practice. INFORMS Journal on Computing 14:192–215.

Fu, M. C., S. Andradóttir, J. S. Carson, F. G. J. P. Kelly,

and S. M. Robinson. 2000. Integrating optimization and

simulation: research and practice. In Proceedings of the

2000 Winter Simulation Conference, ed. J. A. Joines,

R. R. Barton, K. Kang, and P. A. Fishwick, 610–616.

Glynn, P. W. 2002. Additional perspectives on simula-

tion for optimization. INFORMS Journal on Comput-

ing 14:220–222.

Ho, Y. C., R. Sreenivas, and P. Vakili. 1992. Ordinal op-

timization of discrete event dynamic systems. Journal

of Discrete-Event Dynamic Systems 2 (2): 61–88.

Jackson, R. H. F., P. T. Boggs, S. G. Nash, and S. Powell.

1991. Guidelines for reporting results of computational

experiments. Report of the ad hoc committee. Mathe-

matical Programming 49 (3): 413–425.

Lee, S. H. 1998. Monte Carlo computation of conditional

expectation quantiles. Ph. D. thesis, Stanford University,

Stanford, CA.

Mak, W.-K., D. P. Morton, and R. K. Wood. 1999. Monte

Carlo bounding techniques for determining solution

Pasupathy and Henderson
quality in stochastic programs. Operations Research

Letters 24:47–56.

Montaz Ali, M., C. Khompatraporn, and Z. B. Zabinsky.

2005. A numerical evaluation of several stochastic algo-

rithms on selected continuous global optimization test

problems. Journal of Global Optimization 31:635–672.

Mulvey, J. M. (Ed.) 1982. Evaluating mathematical pro-

gramming techniques, Volume 199 of Lecture Notes

in Economics and Mathematical Systems. New York:

Springer-Verlag.

AUTHOR BIOGRAPHIES

RAGHU PASUPATHY is an assistant professor in the In-

dustrial and Systems Engineering department at Virginia

Tech. His current research interests include simulation op-

timization, stochastic root finding and simulation methods.

He is a member of INFORMS and IIE.

SHANE G. HENDERSON is an associate professor in the

School of Operations Research and Industrial Engineering

at Cornell University. He has previously held positions

at the University of Michigan (Ann Arbor) and the Uni-

versity of Auckland. He is the simulation area editor at

Operations Research, and an associate editor for the ACM

Transactions on Modeling and Computer Simulation and

Operations Research Letters. He likes cats but is aller-

gic to them. His research interests include discrete-event

simulation and simulation optimization.
263

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

