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ABSTRACT

We present a review of methods for simulation optimization.

In particular, we focus on gradient-based techniques for con-

tinuous optimization. We demonstrate the main concepts

using as an example the multidimensional newsvendor prob-

lem. We also discuss mathematical techniques and results

that are useful in verifying and analyzing the simulation

optimization procedures.

1 INTRODUCTION

Recent advances in computing power have inspired great

interest in simulation optimization. Many techniques for

simulation optimization have been developed, but their ef-

fectiveness varies greatly depending on the details of the

problem under consideration: the underlying structure of

the decision variables, objective function, and constraints.

The general optimization problem we consider in this

paper has the following form:

min
θ∈Θ

f (θ) = E[ f (θ ,ξ )], (1)

for some random variable ξ and parameter θ ∈ Θ, where

Θ ∈ R
p is a set of possible values of the parameter θ . Note

that (1) is a stochastic optimization problem. We assume

that the function f (θ) is differentiable, and can only be

evaluated using Monte Carlo simulation. Thus, standard

gradient-based stochastic optimization algorithms can be

used to compute an (approximate) minimizer of (1).

The purpose of this paper is to provide a tutorial in

simulation optimization methods for solving problems like

(1). We will consider only those simulation optimization

problems with continuous variables and differentiable ob-

jective functions. Furthermore, in our discussion of those

problems, we will focus only on gradient-based procedures.

We will not cover some other important classes of meth-
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ods for simulation optimization, including response surface

methodology, ranking and selection, and random search. For

excellent comprehensive reviews of literature on simulation

optimization, which cover these topics, see Andradóttir

(1998), Azadivar (1999), Fu (1994), Fu (2002), Fu, Glover,

and April (2005), Henderson and Nelson (2006).

The emphasis is on the mathematical techniques that

can be used to answer the following questions. When does

the optimization method work? How well does it work?

We present results which are relatively easy to apply, and

we show how to verify the technical details in practice with

an example.

The remainder of the paper is organized as follows. In

Section 2, we introduce a motivating example that will serve

as the underlying thread of this paper. This example is a

problem that is easy to describe, but difficult to solve when

its underlying structure is high dimensional. We show how

simulation optimization is relevant to the example. Then,

in the next three sections of the paper, we discuss gradient-

based techniques for solving the optimization problem (1).

Section 3 gives an overview of gradient estimation tech-

niques. Section 4 reviews stochastic approximation and

Section 5 reviews sample average approximation. In Sec-

tion 6 we describe the results of some limited experiments

with the example of Section 2. Finally, in Section 7, we

compare these two classes of methods and point out some

potential difficulties in their use.

2 MOTIVATING EXAMPLE

Henceforth, all vectors are assumed to be column vectors,

and xT denotes the transpose of x.
Multi-dimensional Newsvendor Problem: Consider a

firm that manufactures q products using p different resources.

Suppose that a manager must decide on a non-negative

resource vector K ∈ R
p
+, before the product demand vector

D ∈ R
q
+ is observed. After the demand becomes known,
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the manager chooses a production vector x ∈ R
q
+ so as

to maximize the operating profit in the following linear

program:

P(K,D) : maxx∈R
q
+

vT x

s.t. Ax ≤ K (capacity constraints)

x ≤ D (demand constraints).

Here, v ∈R
q
+ is a q-vector whose jth component represents

the unit margin for product j (that is, revenue minus pro-

cessing cost), and A is a p× q matrix whose component

(i, j) represents the amount of resource i required to pro-

duce one unit of product j. Let π(K,D) denote the maximal

operating profit function for a given resource level K and

a given demand D. This is precisely the optimal objective

value of the problem P(K,D). Then π(K,D) = vT x∗(K,D),
where x∗(K,D) is an associated optimal production vector.

Suppose that the demand D can be viewed as a random

variable and the probability distribution of D is known. Let

Π(K) denote the expected maximal operating profit, where

Π(K) = Eπ(K,D),

for all K ∈R
p
+. The manager’s objective is now to choose the

resource level K so as to maximize the expected maximal

operating profit. This leads to the following stochastic

optimization problem:

min
K∈R

p
+

−Π(K). (2)

This problem is known as the multi-dimensional newsvendor

problem. We do not consider specifically shortage penalties

and holding costs, but they can be easily incorporated into

the operating profit function (Van Mieghem and Rudi 2002).

For simplicity, we focus our attention on the single-period

newsvendor model, but the structure of the optimal policy

in the single-period model can easily be extended to a

dynamic setting under reasonable conditions (Harrison and

Van Mieghem 1999).

It is much more difficult to find the optimal resource

level for the multi-dimensional problem than for the single-

dimensional problem (which actually has a closed-form

solution). In the following sections, we illustrate several

approaches for dealing with simulation optimization prob-

lems. We discuss how the simulation optimization methods

can be used in practice and present technical details in the

context of this example.

3 GRADIENT ESTIMATION

Consider the expected maximal operating profit function

Π(K) = E[π(K,D)]. Assume that D is a continuous random

vector that is finite with probability 1. We would like to
160
determine conditions under which Π(K) is differentiable

and the interchange of the expectation and the gradient is

valid, that is,

∇Π(K) = ∇E[π(K,D)] = E[∇Kπ(K,D)]. (3)

This is called infinitesimal perturbation analysis (IPA). If

IPA is valid, then it gives an unbiased estimator of ∇Π(K)
from a single simulation run.

We can verify the validity of the IPA gradient estimate

of Π(·) by using duality theory of linear programming.

We follow the proof of Proposition 2 in Harrison and Van

Mieghem (1999). Consider the dual problem of the linear

program P(K,D):

D(K,D) : min
(λ ,µ)∈R

p+q
+

KT λ +DT µ

s.t. AT λ + µ ≥ v.

Since D is finite, the primal problem has a finite optimal

solution. Hence, the optimal value of the primal problem

is equal to that of the dual problem. Let λ (K,D) denote

the optimal shadow value of the capacity constraint in the

primal problem P(K,D). It can be easily shown that for any

K,K0 ∈ R
p
+ and given D,

π(K,D) ≤ π(K0,D)+λ (K0,D)T (K −K0), (4)

and hence λ (·,D) is a subgradient of π(·,D). From linear

programming theory, we know that π(·,D) is concave for

any fixed D, and hence is differentiable except on a set

L of Lebesgue measure zero. Thus λ (·,D) is unique and

∇Kπ(·,D) = λ (·,D) except on L. Taking the expectation

in Equation (4) yields that Eλ (·,D) is a subgradient of

Π(·) = Eπ(·,D). Since D is a continuous random variable,

L has probability measure zero. So Eλ (K,D) is unique

for all K ∈ R
p
+ so that Π(·) is differentiable and ∇Π(·) =

Eλ (·,D) = E∇Kπ(·,D).
The concavity of the function π(·,D) and Equation (4)

play important roles in the previous proof. The function

π(·,D) is differentiable at a fixed K w.p. 1 so that the right

hand side of Equation (3) makes sense. Note that π(·,D)
does not have to be differentiable everywhere. Expectation

with respect to a continuous random variable D smooths the

function Π(·). For further detailed properties of Π(·) and a

more general discussion on stochastic linear programming,

see Birge and Louveaux (1997).

Under a set of assumptions, IPA can be applied to a

more general form of the expected performance, one that

does not have to be obtained from a linear program. The

following theorem provides sufficient conditions for the

interchange of the expectation and gradient to be valid for

the objective function f (θ) in (1). The key condition is

that the gradient of f (·,ξ ) must be uniformly dominated by



Kim
an integrable function of ξ . Since each component of the

gradient ∇ f (θ) can be dealt with separately, we assume

without loss of generality that p = 1 for this theorem.

Theorem 1 Let θ0 ∈Υ, where Υ is an open interval,

and let H be a measurable set such that P(ξ ∈ H) = 1.

Suppose that for every z ∈ H, there is a set D(z), where

D(z) is at most countable, such that

(i) ∀z ∈ H, f (·,z) is continuous everywhere in Υ,

(ii) ∀z ∈ H, f (·,z) is differentiable everywhere in

Υ\D(z),
(iii) there exists a function φ : H → [0,∞) such that

sup
θ∈Υ\D(z)

| f ′(θ ,z)| ≤ φ(z),

∀z ∈ H with Eφ(ξ ) < ∞, and

(iv) f (θ ,ξ ) is almost surely differentiable at θ = θ0,

i.e.,

P(ξ ∈ {z : f ′(θ0,z) exists.}) = 1.

Then f (·) is differentiable at θ = θ0, and

f ′(θ0) = E f ′(θ0,ξ ).

Further, if f ′(·,z) is continuous all over Γ for each z ∈ H,
then f (·) is continuously differentiable on Γ.
For a proof, see Proposition 1 in L’Ecuyer (1995).

IPA is usually highly efficient when it is valid (i.e., yields

an unbiased gradient estimator). If the gradient ∇θ f (·,ξ ) is

known analytically for a fixed ξ , the computational effort to

compute the gradient of f (θ) can be significantly reduced.

IPA has been successfully applied to a number of real-world

problems. Unfortunately, there are many other problems

where IPA is not valid.

Example 1 Suppose that ξ is a random variable

with a density, and that we wish to compute P(ξ > θ) and

its derivative, for a given θ . Let f (θ) = P(ξ > θ) and

f (θ ,ξ ) = I(ξ > θ), where I is the indicator function. Then

f ′(θ ,ξ ) = 0 except when ξ = θ , where it is undefined. But

since ξ has a density, P(ξ = θ) = 0 and f ′(θ) < 0 for

some θ , so that E[ f ′(θ ,ξ )] = 0 6= f ′(θ). Thus the naı̈ve

IPA derivative estimator is not valid.

In many cases, f (θ ,ξ ) can be replaced by a smoother

alternative, and then IPA can be used. For example, one

can use conditional expectation to smooth f (θ ,ξ ). This is

called smoothed perturbation analysis (Fu and Hu 1997).

For a more detailed overview of IPA and other perturbation

analysis (PA) techniques, see Glasserman (1991), L’Ecuyer

(1991) and Fu and Hu (1996).

If none of these techniques is available, or if they are

too complicated to implement, we may appeal to finite

difference (FD) schemes. Let ei = (0, ..0,1,0, ...,0) denote

the ith coordinate vector for i = 1, ..., p and let c > 0. Then
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the ith component of the gradient ∇θ f (θ) can be estimated

by

f (θ + cei,ξ
+)− f (θ ,ξ−)

c
,

where ξ+ and ξ− are i.i.d. replications of ξ . This is the FD

estimator using forward differences. If central differences

are used, then

f (θ + cei,ξ
+)− f (θ − cei,ξ

−)

2c
.

It is clear that the forward FD estimate requires the simula-

tion of p+1 parameter values, whereas central FD requires

2p simulation replications. Thus, when p > 1, central FD

involves more computational effort than forward FD. How-

ever, central FD usually has smaller bias than forward FD.

The difference parameter c must be chosen carefully to

achieve a balance between bias and variance. The bias of

the FD estimators increases with c. But when c decreases

to zero, the variance of FD estimators goes to infinity.

The variance of the FD estimators can be reduced by

using common random numbers. Taking ξ+ = ξ− in the

above FD form yields forward and central FDC estimators

(FD estimators with common random numbers). For small

c, f (θ + cei,ξ
+) and f (θ − cei,ξ

+) are highly correlated,

so a significant variance reduction can be obtained.

In practice, to estimate a gradient, one would take a

sample of size n and use the corresponding sample average

of a given gradient estimator. One might then be interested

in the convergence rate of the mean square error (MSE) of

the sample average. When IPA is valid and the variance is

finite, under some uniform integrability condition, the MSE

for IPA converges to zero at the canonical rate O(n−1), from

the central-limit theorem. On the other hand, in contrast to

IPA, FD does not reach the canonical rate. Glynn (1989) and

Zazanis and Suri (1993) obtained a subcanonical rate for

FDC under a set of assumptions. But these assumptions turn

out to be too loose when IPA applies. L’Ecuyer and Perron

(1994) have shown that if the IPA estimator is unbiased and

has finite variance, then the MSE of FDC is O(n−1), the

same as that of IPA, provided that there is one parameter

(i.e., p = 1) and the difference parameter c = cn is of order

O(n−1/2). Thus when IPA estimation is too complicated,

FDC can be a good alternative.

4 STOCHASTIC APPROXIMATION

Stochastic approximation (SA) methods are used to solve

differentiable simulation optimization problems. They are

analogous to the steepest-descent gradient search method

in deterministic optimization, except that here the gradient

does not have an analytic expression and must be estimated.

Since the basic stochastic algorithms were introduced by
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Robbins and Monro (1951) and Kiefer and Wolfowitz (1952),

a huge amount of work has been devoted to this area.

The general form of the SA algorithm is a recursion

where an approximation θn for the optimal solution is up-

dated to θn+1 using an estimator gn(θn) of the gradient

∇ f (θn) of the objective function evaluated at θn. For a

minimization problem, the recursion is of the form

θn+1 = ΠΘ(θn −angn(θn)), (5)

where ΠΘ denotes a projection of points outside Θ back

into Θ, and {an} is a sequence of positive real numbers

such that

∞
∑

n=1

an = ∞ and

∞
∑

n=1

a2
n < ∞. (6)

The sequence {an} is usually chosen to be of the form

an = a/n for all n, where a is a positive scalar, although

other forms have their merits. When FD is used to obtain

the gradient gn(θn), the resulting procedure is called the

Kiefer-Wolfowitz algorithm (Kiefer and Wolfowitz 1952).

Fu (1990) and L’Ecuyer and Glynn (1994) studied the SA

method with IPA gradient estimation, as applied to the

optimization of the steady-state mean of a single-server

queue.

In the presence of non-convexity, the SA algorithm

may only converge to a local minimum. Theorem 2 below

is an immediate specialization of [Theorem 2.1, p. 127]

of Kushner and Yin (2003), which gives conditions under

which θn converges to a local minimizer θ∗ a.s. as n →∞.

We need the following definitions.

A box B ⊂ R
p is a set of the form

B = {x ∈ R
p : a(i) ≤ x(i) ≤ b(i), i = 1, . . . , p}.

For x ∈ B, define the set C(x) as follows. For x in the

interior of B, C(x) = {0}. For x on the boundary of B, C(x)
is the convex cone generated by the outward normals of the

faces on which x lies. A first-order critical point x of a C1

function f : B → R satisfies

−∇ f (x) = z for some z ∈ C(x).

A first-order critical point is either a point where the gradient

∇ f (x) is zero, or a point on the boundary of B where the

gradient “points towards the interior of B”. Let S( f ,B) be

the set of first-order critical points of f in B. We define the

distance from a point x to a set S to be

d(x,S) = inf
y∈S

‖x− y‖.
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The projection y = ΠBx is a pointwise projection defined

by

yi =







a(i) if x(i) ≤ a(i),
x(i) if a(i) < x(i) < b(i), and

b(i) if b(i) ≤ x(i)

for each i = 1, . . . , p.

Let (Gn : n≥ 0) be a filtration, where the initial guess θ0

is measurable with respect to G0 and gn(θn) is measurable

with respect to Gn+1 for all n.

Theorem 2 Let B be a box in R
p and f : R

p → R

be C1. Suppose that for n ≥ 0, θn+1 = ΠB(θn −angn(θn))
with the following additional conditions.

(i) The conditions (6) hold.

(ii) supn E‖gn(θn)‖
2 < ∞.

(iii) There is a sequence of random variables {βn} such

that

E[gn(θn)|Gn] = ∇ f (θn)+βn, for all n ≥ 0,

where

∞
∑

i=1

|aiβi| < ∞ w.p.1.

Then,

d(θn,S( f ,B)) → 0

as n →∞ a.s. Moreover, suppose that S( f ,B) is a discrete

set. Then, on almost all sample paths, θn converges to a

unique point in S( f ,B) as n →∞.

Note that the limiting points in S( f ,B) can be random.

If there exists a unique optimal solution, then θn converges

to that point. Assumption (iii) implies that the bias sequence

{βn} is asymptotically negligible. In the Kiefer-Wolfowitz

algorithm, βn represents the FD bias. In the classical SA

methods, the function gn(·) does not depend on n. In this

case, a sufficient condition for the condition (ii) is that

supθ∈Θ E||g0(θ)||2 < ∞. When the experimental design

varies with n or variance reduction methods are used, we

have the n-dependent function gn(·).
Theorem 2 can be extended by considering a parameter

set Θ, which is defined by a number of smooth constraints.

Often Θ can be only estimated by noisy observations on

ξ . For a discussion of how the SA algorithm can be

used to solve constrained optimization problems with noisy

constraints, see Kushner and Clark (1978) and Kushner and

Yin (2003). It is known that choosing the gain sequence {an}
according to an analog of the deterministic Newton-Raphson

algorithm provides an optimal form of the algorithm, that is,

the estimator θn of θ∗ converges at the highest possible rate

n−1/2. However, this procedure requires a priori knowledge

of the Hessian matrix of f (θ), which is often difficult or



Kim
impossible to obtain in practice. Polyak and Juditsky (1992)

demonstrate the asymptotic normality of the SA algorithm

under milder conditions by averaging the estimates θn.

See Kushner and Yin (2003) for more details about the

asymptotic properties of the various SA algorithms.

Let us consider our motivating example, the multidi-

mensional newsvendor problem. Suppose that each resource

level has lower and upper bounds, i.e., K ∈ B = {K =
(K(1), ...,K(p)) ∈ R

p : a(i) ≤ K(i) ≤ b(i), i = 1, .., p}, for

some 0 < a(i) ≤ b(i) < ∞, i = 1, ..., p. Note that π(·,D) is

concave on R
p
+ for any fixed D, and thus Π(·) is concave.

Since B is convex and compact, the problem

min
K∈B

−Π(K) (7)

has a unique optimal solution K∗. The SA algorithm to

search for the optimal K∗ using an IPA estimator is as

follows.

Stochastic Approximation

Initialization: Choose K0.

For n = 1 to N1

Generate the i.i.d. sample Dn,i ∼ D, i = 1, ...,N2,

independent of all else.

Compute

gn−1(Kn−1) =
1

N2

N2
∑

i=1

λ (Kn−1,Dn,i), and

Kn = ΠB(Kn−1 +an−1gn−1(Kn−1)).
If ‖an−1gn−1(Kn−1)‖ < ε then exit loop.

Next n

Set K∗ = Kn.

Once the estimate Kn of K∗ is obtained, the ex-

pected profit Π(K∗) can be estimated using Π̂m =
1
m

∑m
j=1 π(Kn,D j), where D1, ...,Dm is an i.i.d. sample

independent of all the samples used for estimating K∗.
To verify the convergence of Kn, we will show that

the IPA estimator in the above algorithm satisfies the con-

ditions in Theorem 2. Since the IPA estimator is un-

biased and gn(·) does not depend on n in this case, it

suffices to verify that supK∈B E||g0(K)||2 < ∞. In fact,

sup(K,D)∈B×R
q
+
||λ (K,D)|| < ∞. To see why, note that

{x ∈ R
q
+ : Ax ≤ K,K ∈ B} is bounded. Then there exists

some U ∈ R
q
+ such that {x ∈ R

q
+ : Ax ≤ K,K ∈ B} ⊂ ∆ =

{x ∈ R
q
+ : x ≤U}. Then for any D ∈ R

q
+, there exists some

D̃ ∈ ∆ such that for any K ∈ B, π(K,D) = π(K, D̃), and

hence λ (K,D) = λ (K, D̃). Therefore,

{λ (K,D) : (K,D) ∈ B×R
q
+}

= {λ (K,D) : (K,D) ∈ B×∆}.
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Since π(·, ·) is concave function on R
p
+×R

q
+ and for any

D such that ||D|| is small enough, π(·,D) is constant on B,
sup(K,D)∈B×∆ ||λ (K,D)|| is bounded. Then clearly,

sup
K∈B

E||g0(K)||2 ≤ sup
(K,D)∈B×∆

||λ (K,D)||2 < ∞.

The stochastic approximation procedure is easy to implement

and exhibits good performance with appropriately chosen

step sizes. But the algorithm is extremely sensitive to the

choice of step size. Choosing good values is a non-trivial

problem. Various procedures have been developed in which

the step sizes are adaptively updated as the number of

iterations grows. For more details, see Ruppert (1985).

5 SAMPLE AVERAGE APPROXIMATION

Another standard method to solve Problem (1) is that of

sample average approximation (SAA). This method approx-

imates the original simulation optimization problem (1) with

a deterministic optimization problem. The framework is as

follows: Let N be a positive integer and suppose that we

generate the independent random sample ξ1, . . . ,ξN . For a

fixed θ , define the sample mean over ( f (θ ,ξi) : 1 ≤ i ≤ N)
as

f̄N(θ) =
1

N

N
∑

i=1

f (θ ,ξi).

The SAA problem corresponding to (1) is

min
θ∈Θ

f̄N(θ), (8)

i.e., we minimize the sample average. Once the sample is

fixed, f̄N(θ) becomes deterministic. Its values and gradient

can be computed for a given value of the parameter θ . Con-

sequently, the SAA problem (8) becomes a deterministic

optimization problem and one can solve it using any con-

venient optimization algorithm. The algorithm can exploit

the IPA gradients, which are exact gradients of f̄N(θ).
Generally, the SAA problem (8) is close to the orig-

inal problem (1) when N is large. By the strong law of

large numbers(SLLN), we have that f̄N(θ) converges to

f (θ) w.p. 1 as N → ∞. The above construction can be

extended to optimization problems with noisy constraints by

approximating the constraint functions with sample averages

(Bastin, Cirillo, and Toint 2007).

Various forms of this method have been used by dif-

ferent researchers. The stochastic counterpart method by

Rubinstein and Shapiro (1993) uses likelihood ratios to

obtain the approximate optimization problem. In Robin-

son (1996) this approach is called the sample path method.

Plambeck et al. (1996) use a SAA method with IPA gradient
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estimates to solve convex performance functions in stochas-

tic systems, with extensive computational results. Healy

and Schruben (1991) have also studied this method, which

is called retrospective optimization. Chen and Schmeiser

(2001) developed retrospective approximation algorithms

for stochastic root finding problems. For an introduction to

the SAA approach, the reader is referred to Shapiro (2003).

We next look at conditions under which we can prove

that the SAA method will converge; that is, under which

the optimal solutions of the SAA problem (8) approach the

set of optimal solutions of the original problem as N grows.

We give convergence results based on uniform convergence.

Often, this is sufficient for practical applications. Let v̂N and

v∗ denote the optimal objective values of the SAA problem

(8) and the true problem (1) respectively. Throughout this

section, we assume that Θ is a non-empty compact set.

Theorem 3 Suppose that

(i) the set S( f ,Θ) of optimal solutions of the true

problem (1) is non-empty and contained in Θ,
(ii) the function f (·) is finite valued and continuous

on Θ, and

(iii) f̄N converges to f uniformly on Θ, that is

sup
θ∈Θ

∣

∣

∣

∣

∣

1

N

N
∑

i=1

f (θ ,ξi)−E f (θ ,ξ )

∣

∣

∣

∣

∣

→ 0

as N →∞ a.s.

Let θ̂N be an optimal solution of the SAA problem (8). Then

v̂N → v∗ and d(θ̂N ,S( f ,Θ)) → 0 a.s. as N →∞.
For a proof, see Proposition 6 in Shapiro (2003).

The assumption (ii) in the above proposition is a uniform

version of the strong law of large numbers (ULLN). The

following result shows that, in the convex case, the pointwise

LLN ensures that the ULLN holds on a compact set.

Proposition 4 Suppose that for every z ∈ H,

(i) the function f (·,z) is convex on Θ,

(ii) the law of large numbers (LLN) holds pointwise,

that is f̄N(θ) converges to f (θ) as N →∞ a.s.,

for any fixed θ ∈ Θ, and

(iii) f (·) is finite valued on a neighborhood of Θ.

Then f̄N converges to f uniformly on Θ, as N →∞ a.s.

For a proof, see Proposition 2 and Corollary 3 in Shapiro

(2003).

In practice, we often have non-convex stochastic prob-

lems. The following Proposition provides relatively simple

conditions for the ULLN to hold without the convexity

assumption. We say that f (θ ,ξ ) is dominated by an inte-

grable function h(·) if Eh(ξ ) < ∞ and for every θ ∈ Θ,

| f (θ ,ξ )| ≤ f (ξ ) a.s.

Proposition 5 Suppose that for every z ∈ H,
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(i) the function f (·,z) is continuous on Θ, and

(ii) f (θ ,z) is dominated by an integrable function.

Then f (θ) is finite valued and continuous on Θ and f̄N

converges to f uniformly on Θ, as N →∞ a.s.

For a proof, see Proposition 7 in Shapiro (2003).

Now let us return to the multidimensional newsvendor

problem with bounded resource levels as explained in Sec-

tion 4. To estimate the optimal expected profit Π(K∗), we

can consider the following sample average approximation

algorithm.

Sample Average Approximation

Choose a positive integer n ≥ 2.

Generate the i.i.d. sample D̃i ∼ D, i = 1, . . . ,n,

independent of all else.

For a fixed K, define

Π̄n(K) =
1

n

n
∑

i=1

π(K, D̃i).

Find K̂n, an optimal solution for the problem

min
K∈B

−Π̄n(K).

The sample average approximation function −Π̄n(K)
is piece-wise linear and convex, but not smooth. How-

ever, the sample average approximation function becomes

smooth as the sample size n grows, so in practice, one can

choose sufficiently large n, and then apply an algorithm

for optimization of smooth function to solve the sample

average approximation problem using the IPA gradient esti-

mator −n−1
∑n

i=1 λ (K, D̃i). In our implementation we use

a quasi-Newton method with a line-search.

Once the estimate K̂n of K∗ is obtained from the SAA

algorithm, we then estimate the expected profit Π(K∗) via the

sample average Π̂m(K̂n) = m−1
∑m

j=1 π(K̂n,D j), where the

sample D1, . . . ,Dm is independent of the sample D̃1, . . . , D̃n.
It is easy to verify that K̂n converges to K∗. We only

need to show the ULLN. Since −π(·,D) is convex on B and

the convex function −Π(·) is bounded on a neighborhood

of B, the ULLN is satisfied by Proposition 4.

Theorem 3 ensures that, if θ̂N solves the SAA problem

(8) exactly, then θ̂N converges to the set of optimizers of

the limit function f . Moreover, if the true problem (1) has

a unique optimal solution θ∗, then θ̂N → θ∗. However, in

the non-convex case, the best that we can hope for from a

computational point of view is that θ̂N is a first-order critical

point for the SAA problem. We next prove the convergence

of the first-order critical points to those of the true problem.

Theorem 6 Suppose that Θ is convex, and

(i) for every z ∈ H, the function f (·,z) is continuously

differentiable on a neighborhood of Θ, and
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(ii) the gradient components ∂
∂θi

f (θ ,z)(i = 1, ..., p) are

dominated by an integrable function.

Let θ̂N ∈ S( f̄N ,Θ) be the set of first-order critical points of

f̄N on Θ. Then f is continuously differentiable over Θ and

d(θ̂N ,S( f ,Θ)) → 0 as N →∞ a.s.

For a proof, see Theorem 3.1 in Bastin, Cirillo, and Toint

(2007).

Note that the above assumptions (i) and (ii) are sufficient

conditions for a valid IPA gradient estimator (i.e., ∇θ f̄N(θ)
is an unbiased estimator of∇θ f (θ)). These two assumptions

imply that ∇θ f̄N(θ) converges to ∇θ f (θ) uniformly on Θ.

Theorem 6 shows that θ̂N converges to the set of first-

order critical points of f as N →∞. This does not guarantee

that the sequence {θ̂m} converges almost surely, as was the

case for stochastic approximation. In general we cannot

guarantee this because when there are multiple critical points,

the particular critical point chosen depends, among other

things, on the optimization algorithm that is used. Of course,

a simple sufficient condition that ensures convergence is the

existence of a unique first-order critical point. This condition

is clearly difficult to verify in practice.

There exists a well-developed statistical inference of

estimators derived by the SAA method. That inference is

incorporated into validation analysis and error bounds for

obtained solutions. If the true problem has a unique optimal

solution θ̂∗, under a set of conditions an optimal solution

θN for the SAA problem converges to θ̂∗ at a stochastic rate

of Op(N
−1/2) and the bias E[v̂N ]− v∗ = E[ f (θ̂N)]− f (θ∗)

is of order o(N−1/2) (Shapiro 1993, Shapiro 2003).

6 NUMERICAL RESULTS

In this section we examine the performance of the SA and

SAA methods discussed in Section 4 and Section 5 on a

multi-dimensional newsvendor problem with two products

and two resources. Let c ∈ R
2
+ be a vector whose ith

component represents the unit investment cost for resource

i. Incorporating the investment cost into the operating profit

function Π(·) leads to the following optimization problem:

max
K∈B

V (K) = Π(K)− c′K. (9)

We set v = (3,2) and c = (1,1).
We study the four cases given in Table 1. In the first two

cases, each resource is dedicated to one product so that the

optimization problem (9) is separable and its solution can

be easily obtained using the inverse cumulative distribution

functions of D1 and D2. The optimal resource level K∗ and

the maximal expected value V ∗ for Case 1 and 2 are given

in Table 2. In Case 3 and 4, the second resource is dedicated

to both product 1 and 2, and the the demands for product

1 and product 2 are correlated. In these cases, the optimal
165
solution can only be found by solving the simultaneous

equations using the multivariate demand distribution. In

general, it is not easy to solve this problem analytically.

The values K̂SA and V̂SA are, respectively, the esti-

mated optimal resource level and the expected maximal

value obtained from the SA method. Similarly, K̂SAA and

V̂SAA are the values obtained from the SAA method. In

the SA algorithm, we took N2 = 100 to compute the IPA

gradient estimate in each step of the algorithm. For the

SAA method, we took n = 100 samples and obtained K̂SAA

by applying a quasi-Newton method with a linesearch us-

ing IPA gradients to the sample average approximation

problem minK∈B−(Π̄n(K)− c′K). To ensure a fair com-

parison, we allocated equal amounts of CPU time to both

algorithms. As an estimator of V ∗, we used the sample

average of π(K)− c′K, evaluated at K = K̂SA and K̂SAA,

over m = 10,000 replicates.

Table 1: The Four Cases for the Multi-dimensional

Newsvendor Example

Case A D1 D2 ρ

1 gamma(2,5) gamma(2,10) 0

2

„

1 0

0 1

«

gamma(2,5) unif(0,20) 0

3 gamma(2,5) gamma(2,10) .5

4

„

1 0

1 1

«

gamma(2,5) gamma(2,10) .7

Table 2: Optimal Solutions and Values for the Multi-

dimensional Newsvendor Example

Case K∗ V∗

1 (11.45,16.78) 21.52

2 (11.45,10) 17.03

Table 3 shows that in all four cases, the estimated

maximal value obtained from the SAA method is bigger

than the one given by the SA method. This implies that

the solutions obtained from the SAA procedure are closer

to the true solutions than those from the SA method. In

fact, Table 2 shows that in Case 1 and 2, K̂SAA is fairly

close to K∗. As we said earlier, the SA estimator is very

sensitive to the step size parameters an. When we used

this method, we tuned the parameters heuristically until

reasonable performance was observed. A contour plot of

the expected value surface for Case 4 appears in Figure 1.

We see that the function is concave and close to a smooth

function, and it has a maximum value near the point (7,22),
which is close to the solution obtained from the SAA method.

7 CONCLUSIONS

We have provided a review of two gradient-based techniques

for simulation optimization. It remains to compare the
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Table 3: Simulation Results for the Multi-dimensional

Newsvendor Example

Case K̂SA V̂SA K̂SAA V̂SAA

1 (9.12, 7.86) 18.43 (11.20,16.23) 21.57

2 (9.63,6.70) 16.35 (11.20,9.64) 17.08

3 (2.35, 10.53) 9.16 (7.15,21.54) 13.40

4 (1.64, 8.64) 7.78 (6.76,21.87) 13.22

K1

K
2

2 4 6 8 10 12 14 16

15

20

25

30

35

40

Figure 1: Contour Plot of V (·) for Case 4 with Runlength

500

stochastic approximation and sample average approximation

methods, and to discuss certain performance issues that come

up when these methods are used in practice.

The stochastic approximation method has nice asymp-

totic properties. We have seen that the stochastic approxi-

mation estimator approaches a first-order critical point for

the original problem in the long term. However, in practice

it requires many iterations to achieve the convergence. The

stochastic approximation scheme is easy to implement and

requires low computational effort per iteration. However,

it is highly sensitive to the choice of certain tuning param-

eters (i.e., the step sizes). In order to achieve satisfactory

performance, the method typically requires some adaptive

modification of the tuning parameters.

The sample average approximation method substitutes

a deterministic optimization problem instead of the original

problem. It does not require any tuning parameters, so it is

more robust than the stochastic approximation method. If a

fast deterministic optimization algorithm can be used, then

this method can be very effective on problems with many

variables and/or complicated constraints. However, it can

involve a large amount of computational effort.

Both methods work well when the underlying problem

is well-structured: for example, when we are dealing with a

smooth objective function, or when some relevant random

functions satisfy certain moment conditions. But how can
166
we identify the structure of the problem? As we have seen

in our example, sample path analysis can be a clean way to

analyze the problem structure. Unfortunately, this approach

does not always work. It would be of great interest to obtain

general results that could guarantee a “good” structure for

whole classes of simulation optimization problems that arise

in practice.
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