
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

SHARING EVENT DATA IN OPTIMISTICALLY SCHEDULED MULTICAST APPLICATIONS

Garrett Yaun
David Bauer

Christopher D. Carothers

Department of Computer Science
Rensselaer Polytechnic Institute

110 8th Street
Troy, NY 12180, U.S.A.
ABSTRACT

A major consideration when designing high performance
simulation models is state size. Keeping the model state
sizes small enhances performance by using less memory,
thereby increasing cache utilization and reducing model
execution time. The only remaining area for reducing model
size is within the events they create. The event population
is typically the most memory intensive region within a
simulation especially in the case of multi/broadcast like
applications which tend to schedule many events within the
atomic processing of a single event. This paper introduces
the idea of shared event data within an optimistic simulation
system. Here, the read-only data section is shared for a
multicast event, which may then be delivered to several LPs.
From our performance study, we report a 22% reduction in
the data cache miss rate, a processor utilization in excess
of 80% and a reduction in model memory consumption by
a factor of 20.

1 INTRODUCTION

In parallel discrete-event simulations, a model is decom-
posed into two key data structures: events and logical
processes (LPs). LPs communicate by exchanging times-
tamped events messages. These events are then processed
in timestamp order. Beyond the parallel synchronization
problem, one of challenging issues for large-scale parallel
simulation is keeping the model size small. A good way to
address this problem is to reduce the amount of duplicate
information. As mentioned in (Yaun et al. 2003) Logical
Processes (LPs) that share common data can have a global
information pointer to the shared data which reduces the
total state of the model. From this, the question of “why
must this just be limited to the LPs?” arises. Could a
sharing approach be employed in event data as well? Our
experimentation shows that the answer is yes and one good
example is a multicast network model (Deering 1989) be-
cause of the duplicate nature of the events. However, this
26
approach could be used in several, more generic model sce-
narios. In fact, at any point in a model where an event is to
be broadcast to two or more LPs there can be a significant
memory savings attributed to this approach.

In the multicast protocol, data transmission is minimized
by sending messages through a multicast tree before being
broadcast to each subscriber. The goal is to minimize
individual transmissions sent separately to each subscriber.
This protocol model has duplicate information being sent
to each subscriber where there are branches in the multicast
tree. In a simulation with shared memory we have the
ability to have a global view of the system. Typically, a
multicast model generates messages that result in multiple,
identical messages being sent to each subscriber LP in the
system. Each LP would then read those messages, update
it’s state, and possibly generate more events in the system.

Rather than identical events being sent to each subscriber
with the same data attached, in our system we keep a pointer
to the data in the event header and send each subscriber
LP this pointer. Each LP is required not to overwrite the
data, as it is understood in the model that this event data is
being shared globally throughout the system. Our second
requirement is that only once each subscriber has received
the multicast event is the attached data reclaimed.

This optimization is important because it drastically
reduces the most memory exhaustive component of simula-
tion: the event population. This optimization can be applied
to all types of simulation: sequential, parallel and even dis-
tributed. In this paper, we will discuss the sequential and
parallel implementation of this approach. Additionally, there
are two types of parallel synchronizations. With sequen-
tial and conservative synchronization the implementation of
this idea is trivial because attached data can immediately
be reclaimed.

Optimistic simulators pose a greater design and im-
plementation challenge because processed events are main-
tained for possible future rollback scenarios. These scenarios
are much more difficult to address because events must have
been read by all receivers prior to reclamation. In fact, there
49

Yaun, Bauer and Carothers

Figure 1: Multicast graphic from Cisco (Cisco 2002)
are several cases that we outline in this paper where this
optimization must be managed properly by the optimistic
simulation executive.

We chose the multicast protocol model as our primary
example for this experimental investigation. We follow with
possible implementations of the method assuming differ-
ent synchronization mechanisms. There will be a detailed
discussion of the implementation in a discrete-event simu-
lation which employs optimistic synchronization. For the
performance results a benchmark multicast-like model will
be used in the evaluation.

2 MULTICAST BACKGROUND

The multicast protocol is a bandwidth-conserving technology
that aims to reduce packets in a network by transmitting
a single stream of data to thousands of receivers on the
network. Many applications take advantage of this protocol,
including: video conferencing, corporate communications,
distance learning, and distribution of just about any type of
information.

Multicast has been in use on large scale networks since
the introduction of the Mbone (Macedonia and Brutzman
1994) in 1992. Today, Microsoft China has one of the
largest multicast networks, and plans to begin providing
multicast television to viewers in 2005 (IPMSI 2004). The
multicast solution will become widely used on the Internet
as a solution to higher bandwidth costs due to ever increasing
numbers of Internet subscribers.

The multicast model works by delivering traffic from
a single source to multiple receivers through the multicast
26
tree. Multicast receivers subscribe to a given source, and
the information is then disseminated through the multicast
tree back to the multicast group of receivers. Internet
routers replicate packets at branches in the multicast tree
so that all subscribers will receive the same packet data.
This low-cost solution not only reduces the amount of
bandwidth required to transmit a large stream of data to
multiple receivers, it also reduces the number of requests
serviced by the source. The multicast protocol is efficient
in it’s design compared to other protocols which commonly
require the source to send individual copies of the same
information to multiple receivers. When the amount of data
being transmitted is large, it quickly becomes difficult for
the source to send multiple copies across a network, as
in the case of MPEG video. A large amount of network
resources are consumed providing an individual stream for
each receiver. The multicast protocol can also provide
a substantial savings when the data transmitted from the
source is small because there may be thousands of receivers
to be serviced. Figure 1 demonstrates how data from a
single source is delivered to multiple recipients through a
multicast tree.

Our model of the multicast protocol clearly illustrates
the performance impact of our shared event data optimiza-
tion. It is easy to see that if we are able to move X bytes into
a shared message and there are 1000 multicast subscribers
the savings will be roughly 1000-fold bytes. Conversely,
if X is very large, and there are only few receivers, the
memory savings will also yield a significant performance
improvement as the large event memory segment would
only need to be written into memory once. Furthermore,
50

Yaun, Bauer and Carothers
as these large packets traverse the network the number of
copy operations is zero.

3 IMPLEMENTATION

In order to successfully deploy this new idea in a current
simulator executive, two restrictions must be met. Once the
shared event data has been identified, it can be allocated and
written only once, and then dereferenced for each subscriber
event created. The first restriction is that each subscriber
may not destroy or modify the shared event data. The
second restriction is that the simulation executive may not
prematurely reclaim the shared event data. Only once each
subscriber has received the event can the shared event data
be freed.

3.1 Sequential and Conservative Simulation

In the sequential simulation this optimization can easily be
implemented entirely within the model. The modeler can
keep a pointer to the shared event data. For each newly
created event that will forward the shared data, the pointer
to the shared data is set. Next, there needs to be a way to
free the shared data once the event has been processed by
all subscribers. If the final subscriber is known, the shared
event data can be freed once that subscriber has processed
the event. Another approach is to maintain a counter that
indicates the number of sends and receives. When the last
subscriber receives the event and does not forward it to any
other subscriber, the counter will be zero and the shared
data segment is safe to reclaim. Since the execution is
sequential, only one LP will be accessing the counter at a
time and there is no need for mutual exclusion. Finally, the
last subscriber to receive the event will be the correct one
to free it.

With conservative simulation systems such as DaSSF
(Nicol a d Liu 2002), this optimization can also be imple-
mented by the model. Once again the modeler creates a
pointer in the event message for the shared data segment.
Each newly created event that is going to be forwarding
the data can point to the same shared data segment. The
freeing of the data can be done the same way as in the
sequential case because in conservative simulation there are
no roll backs and all events executed are processed in the
correct causal order. However, the execution is parallel and
so would require mutual exclusion for the counter if that is
the method used to determine the second restriction.

3.2 Optimistic Simulation

Within optimistic simulation there are additional issues to
address. In particular, speculative execution complicates the
allocation/deallocation process when rollbacks occur. We
chose to implement this novel idea within ROSS (Carothers,
26
Bauer, and Pearce 2002) because it provides a reversible
memory library similar to the structures described in GTW
(Carothers, Perumalla, and Fujimoto 1999) and ROSS and
it is these memory buffers which form the shared event
data segments. ROSS handles causal errors through reverse
computation. When a rollback occurs, an event’s reverse
computation event handler is called, which has the inverse
effects on the LP’s state compared to the forward execution
of the event. ROSS includes a memory library which allows
for the dynamic allocation of statically allocated memory.
This library was designed to overcome the problem of
reverse computing memory operations such as malloc
and free during event execution. The memory library
greatly reduces the complexity of many models by allowing
them to create memory buffers and either maintain them
in their LP state or to send them as part of the event data.
When we discuss reclaiming the shared event data segments,
it is these memory buffers to which we are referring.

Our implementation used a counter within the event
header to track subscriber sends. The easiest implementation
of this idea is not to try to reclaim the shared data when
it reaches the end points. The reason is the supposed final
end point might not be the final end point due to the fact
that other end points might be rolled back. In an optimistic
solution, the event data segments are reclaimed only once
the possibility of a rollback is eliminated by the passing of
the global virtual time (GVT) (Jefferson 1985). Only those
events with a timestamp less than the current GVT value may
be reclaimed by the system (Fujimoto 2000). Typically, for
caching purposes, those events are made readily available
for the next event creation. This improves the cache hit
rates because we know that the newly reclaimed event is in
our cache, and so it should be the next event to be allocated.
On the reallocation of the event the shared event data can
be reclaimed. This method requires additional memory
because the shared event data is being reclaimed later in the
simulation, but still dramatically less than the amount of
memory needed for a non-shared data approach. Within the
shared data there is a counter and a mutual exclusion lock
which the simulation executive manages. This optimization
is entirely transparent to the model.

A second issue is that the execution of an event might
not create the desired new event. For example in ROSS,
once all event-memory is allocated, a special event called
the abort event is returned as opposed to returning a null
pointer. This enables regular optimistic processing to con-
tinue until the scheduler reaches a point at which it can
correctly and safely re-claim memory. This approach is
similar to the approach taken in Georgia Tech Time Warp
(GTW) (Fujimoto and Hybinette 1997) as well as ROSS.
In the “event-send” routine, if it finds an abort event has
been scheduled, it continues processing but does not send
that event. Additionally, when the current event execution
51

Yaun, Bauer an

completes, it is rolled back and any events which it created
are cancelled.

The steps for the memory set routine are illustrated
in Figure 2. Here, the newly allocated memory buffer
denoted by b, has its access control counter increased by
one provided the owning event, e, is not the abort buffer.
If the abort buffer is encountered, and the counter is zero,
then that shared memory segment is freed. Otherwise, this
routine returns. Next, Figure 3 shows the algorithm for
how a shared event segment is deallocated or freed. In this
routine, the memory segment’s access counter must be zero
prior to the actual release of the memory segment. Please
note, critical sections are denoted by the lock and unlock
routines. Both increment and decrement operations of the
access counter variables are “locked”. Additionally, any
tests for zero are placed within the lock since one and only
one processor should free a shared memory buffer.

if(e has been ABORTED) {
if(*b)
{

lock(&((*b)->mem_lck));
if((*b)->counter != 0)
{

unlock(&((*b)->mem_lck));
return;

}

//free the memory pointed by event e
free(e->memory);
unlock(&((*b)->mem_lck));
*b = NULL;

}
return;

}

lock(&((*b)->mem_lck));
(*b)->counter++; unlock(&((*b)->mem_lck));

e->memory = *b; return;

Figure 2: Memory Set Routine. This routine is preformed
when setting a memory buffer to an event. B is the memory
buffer. E is the event.

We observe that this interface only affects forward
event processing. When a rollback occurs, the reverse
event handling code is not effected and no new function
calls or code modifications are required to support shared
event segments.

4 PERFORMANCE STUDY

The Itanium-II processor (Intel 2002) is a 64 bit architecture
based on Explicitly Parallel Computing (EPIC) which intel-
265
d Carothers

if(e->memory) {
lock(&e->memory->mem_lck);
e->memory->counter--;

if(e->memory->counter == 0)
{

unlock(&e->memory->mem_lck);
//free the memory pointed by event e

free(e->memory);
}
else

unlock(&e->memory->mem_lck);

e->memory = NULL;
}

Figure 3: Memory free routine. This routine is preformed
on all event allocations. B is the memory buffer. E is the
event.

ligently bundles instructions together that are free of data,
branch or control hazards. This approach enables up to 48
instructions to be in flight at any point in time. Current
implementations employ a 6-wide, 8-stage deep pipeline.
A single system can physically address up to 250 bytes and
has a full 64-bit virtual address capability. The L-3 cache
comes in a 3 MBs configuration and can be accessed at 48
GBs/second which is the core bus speed.

4.1 Benchmark Multicast Model

For the performance study we implemented a benchmark
multicast model. We constructed binary trees to describe
the network topology of sources, routers and subscribers.
All of the trees were disjointed. The leaf nodes off the
routers were the subscribers. The source root node was
responsible for generating the packets. Once the packet
was received by the left-most subscriber in the tree, the root
will generate the next packet.

4.2 Model Parameters and Results

We experimented with many parameters in the multicast
benchmark model. The most significant model parameters
were the number of LPs and the size of the shared data
segments. We varied the number of trees from 2 to 16 and
the number of levels from 5 to 15. A power of two was
not chosen because 15 was the largest number of levels
that would still fit into memory. The shared data size
ranged from 4 integers to 1024 integers and was modeled
using individual memory buffers of the respective sizes. In
addition we varied the number of start events from 2 to 8.

For the first set of experiments we ran ROSS sequentially
with and without a shared data segment in the events.
2

Yaun, Bauer a

Figure 4: Memory required with respect to levels.

Obviously, as the number of trees and start events increase
the memory increase according. When the number of levels
in the trees grow, an exponential increase in memory usage
was experienced. This can be seen in Figure 4 and is
explained by the exponential nature of the data structure.

It can be observed that there was a smaller benefit for
the small shared data segments. However, in the larger
sized data segments the benefits are quite noticeable. This
can be seen in Figures 5 and 6 and Table 1. In the larger
cases the share data segments lead to significant decreases
in memory and increases in performance. The decrease in
memory is explained by the fact that the over head of the
share data segment is surpassed by the duplicate information.
In some cases the shared data models used 1/20th of the
memory required by traditional sequential simulations (i.e.,
not sharing event segments). One observed result showed a
speedup of 2.5. This performance is explained by the fact
that the traditional model was in swap and thrashing. For
the other data points, the speedup is attributed to a smaller
memory footprint which enables more events to fit in the
cache. Another part of the speedup was the model only had
to assign values to pointers instead of copying data from
events.

Table 2 is the profiling results of the models. It shows
the data cache misses per memory reference for the shared
event data and traditional models. The ratio was obtained
by dividing DCU_LINES_IN by DATA_MEM_REFS which
are counters that Oprofile monitored on a Pentium III. The
table shows that as the event data size increases the shared
event data model has fewer data cache misses than the
26
nd Carothers

Figure 5: Memory required with respect to shared data
segment size. One case is 8 multicast trees, 10 levels and
8 start events and the other case is 16 trees, 10 levels and
4 start events.

Figure 6: Event Rate with respect to shared data segment
size. One case is 8 multicast trees, 10 levels and 8 start
events and the other case is 16 trees, 10 levels and 4 start
events
53

Yaun, Bauer and Carothers
Table 1: Sequential Performance with and without shared data. T is the number
of trees in the multicast graph. L denotes the number of level within each
tree. Estart is the number of initial events each LP schedules at the start of
the simulation. S is the size of the data size in the messages. Mtraditional and
Mshared are the required memory for the traditional and shared event data models
respectively. ERtraditional and ERshared are the event rate for the traditional
and shared event data models respectively.

T L Estart S Mtraditional Mshared ERtraditional ERshared

8 10 8 4 14.4 MB 14.8 MB 377986.673 370801.924
8 10 8 16 17.4 MB 14.8 MB 350491.922 378053.970
8 10 8 64 29.4 MB 14.8 MB 336866.703 377541.440
8 10 8 256 77.4 MB 14.9 MB 330823.230 370219.797
8 10 8 1024 269.3 MB 15.4 MB 324083.951 367463.726
16 10 4 4 19.1 MB 19.4 MB 342921.408 335885.514
16 10 4 16 22.1 MB 19.4 MB 322796.458 341562.543
16 10 4 64 34.1 MB 19.4 MB 311617.293 342541.110
16 10 4 256 82.0 MB 19.6 MB 306166.442 336635.595
16 10 4 1024 273.9 MB 20.0 MB 300169.391 333708.054
16 15 8 256 4936.3 MB 842.0 MB 137519.194 146734.510
16 15 8 1024 17224.1 MB 842.9 MB 57867.255 146681.164

Table 2: Data cache misses per memory reference. T is the number of
trees in the multicast graph. L denotes the number of level within each
tree. Estart is the number of initial events each LP schedules at the start
of the simulation. MRshared and MRtraditional are the data cache misses
rates for the shared event data and traditional models respectively. Finally,
% Reduction is the amount the miss rate is reduced by the event sharing
scheme.

T L Estart S MRshared MRtraditional % Reduction

8 10 8 4 0.0221 0.0221 0.00 %
8 10 8 16 0.0221 0.0211 -4.73 %
8 10 8 64 0.0221 0.0231 4.33 %
8 10 8 256 0.0224 0.0259 13.51 %
8 10 8 1024 0.0224 0.0290 22.75 %
16 10 4 4 0.0224 0.0224 0.00 %
16 10 4 16 0.0225 0.0213 -5.63 %
16 10 4 64 0.0228 0.0234 2.56 %
16 10 4 256 0.0228 0.0261 12.64 %
16 10 4 1024 0.0229 0.0293 21.84 %
traditional model. These fewer misses can also explain the
speedup which is shown in table 1.

One out-lier result was in the 16 integer case, the
traditional model had a better ratio. Certain models are
more sensitive than others to how the model fits into the
L2 cache, yielding better performance in some cases. It
appears that the 16 integer case was one of these situations.
26
More investigation is needed to determine the precise effects
of caching on performance.

Table 3 shows the result of the tests on the 1.5 GHz
quad processors Itanium-IIs. The maximum speedup attain
was 3.22 on four processors. The low values of speedups
can be explained by the fact that the systems does not have
enough work and can be remedied by increases the number
54

Yaun, Bauer and Carothers
Table 3: Parallel results for shared event data. T is the
number of trees in the multicast graph. L denotes the
number of level within each tree. Estart is the number
of initial events each LP schedules at the start of the
simulation. 2-4 PEs is performance measured in speedup
(i.e., sequential execution divided by parallel execution
time) for 2 to 4 processors.

T L Estart S 2 PEs 3 PEs 4 PEs

8 10 4 256 1.36 1.95 2.34
8 10 4 1024 1.35 1.94 2.32
8 10 8 256 1.49 2.22 2.73
8 10 8 1024 1.48 2.21 2.74
8 15 4 256 1.56 2.43 3.21
8 15 4 1024 1.55 2.43 3.22
8 15 8 256 1.54 2.41 3.19
8 15 8 1024 1.54 2.41 3.19
16 10 4 256 1.51 2.25 2.80
16 10 4 1024 1.51 2.23 2.79
16 10 8 256 1.59 2.40 2.94
16 10 8 1024 1.59 2.43 2.64
16 15 4 256 1.54 2.42 3.20
16 15 4 1024 1.53 2.42 3.20
16 15 8 256 1.53 2.38 3.06
16 15 8 1024 1.54 2.37 3.04
of start events in the system. This can also be observe in
the table.

5 RELATED WORK

Much of the research in parallel simulation for shared data
was based on modifying and reading multiple LP’s states.
For example sharks world breaks a model down into sectors
and each sector needed to be able to read or modify entities
on its neighbor state (Conklin, Cleary, and Unger 1990).
One method would be to use the push method, in which
messages are passed to the correct neighbors with the entities
information. The other way is posed in the space-time
memory paper (Ghosh and Fujimoto 1991). This concept
has shared objects with a time log attached to them. It allows
for a easier model development over the push method. A
distributed method for sharing variables is discussed in
(Mehl and Hammes 1993). The main difference between
this paper and these other papers is that our shared memory
is not allow to be modify. This eliminates the issue of
whether the memory is safe to read.

In the context of shared memory performance opti-
mization, Panesar and Fujimoto have two key results. In
(Panesar and Fujimoto 1995), they present a event buffer
management scheme that reduces memory overheads on a
26
cache-coherent shared memory multiprocessor (KSR sys-
tems). To efficiently avoid over-optimistic execution, as
well as ensure that event memory is equally distributed
among all processors, they devise a control flow technique
which treats event memory like a window of network pack-
ets and apply a congestion control approach to throttling
Time Warp event processing rates (Panesar and Fujimoto
1997).

Multicast is also used in the High-Level Architecture
(fujimoto 2000, HLA 2005) also known as IEEE 1516. This
is a general purpose architecture for simulation reuse and
interoperability. Here, simulators communicate through a
publish and subscribe interface. One of the key challenges
is how to correctly disseminate update information. To
address this problem, multicast groups are employed as a
means to allow simulators to subscribe to regions of inter-
est. Each “region” is assigned a multicast group identifier.
This approach enables the efficient dissemination of up-
date information about simulation entities of interest. The
key difference here is that our shared-memory approach
reduces memory consumption whereas the HLA’s imple-
mentation reduces network bandwidth, but overall memory
consumptions remains the same.

Finally, we note that sharing event data has some link-
ages to multi-resolution modeling (Natrajan, Reynolds, and
55

Carothers
Yaun, Bauer and

Srinivasan 1997). Here, MRM is primarily concerned with
the correct temporal and spatial aggregation and disaggre-
gation of simulation objects. The key difference between
our approach is that we are only concerned with a spatial
aggregation of event data that would be scheduled to a
number of simulation objects at or about the same point in
virtual time. Additionally, we are unaware of any MRM
approach for an optimistic synchronization environment. In
particular, how one would rollback either an aggregation or
disaggregation operation is still an open question.

6 CONCLUSIONS

From the idea of shared data in the LP we transform it into
the idea of shared data in the event. This paper shows that
the idea of shared event data is possible and shows that there
are benefits of 2 to 20 in memory savings. There are also
speedup gains from this idea due to eliminating the copying
for hop to hop. We show that it can be implemented in all
major types of simulation engines. In addition we show
parallel speedups of 3.22 on a quad processor system.

AUTHOR BIOGRAPHIES

GARRETT YAUN is a member of technical staff at
Google.com. He recieved his Ph.D., M.S., and B.S.
in Computer Science from Rensselaer Polytechnic Insti-
tute (RPI) in 2005, 2003 and 2000 respectively. His re-
search interests include parallel and distributed systems,
networking, modeling, and simulation. His e-mail address
is <yaung@cs.rpi.edu>.

DAVID BAUER is a Ph.D. candidate in Computer Science
Department of Rensselaer Polytechnic Institute (RPI). His re-
search interests include parallel and distributed systems and
network simulation with a focus on performance optimiza-
tions. His e-mail address is <bauerd@cs.rpi.edu>.

CHRISTOPHER D. CAROTHERS is an Associate Pro-
fessor in the Computer Science Department at Rensselaer
Polytechnic Institute. He received the Ph.D., M.S., and B.S.
from Georgia Institute of Technology in 1997, 1996, and
1991, respectively. Prior to joining RPI, he was a research
scientist at the Georgia Institute of Technology. His research
interests include parallel and distributed systems, simula-
tion, networking, and computer architecture. His e-mail
address is <chrisc@cs.rpi.edu>.
2656

Google.com
<yaung@cs.rpi.edu>
<bauerd@cs.rpi.edu>
<chrisc@cs.rpi.edu>

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

