Proceedings of the 2005 Winter Simulation Conference

M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

COMPARING SKILL-BASED ROUTING CALL CENTER SIMULATIONS
USING C PROGRAMMING AND ARENA MODELS

Rodney B. Wallace

IBM
7907 Woodbury Drive
Silver Spring, MD 20910, U.S.A.

ABSTRACT

This paper describes the modeling of a skill-based rout-
ing call center using two distinct simulation programming
methods: the C language and the Arena software package.
After reviewing the features of this type of call center, we
describe the salient components of each method in modeling
the call center. The paper concludes with a comparison of
the pros and cons of using each simulation programming
approach in this context.

1 INTRODUCTION

Advances in automatic call distributors (ACDs) have made
it possible to have skill-based routing (SBR) which is the
protocol for online routing of incoming calls to the appropri-
ate agent. Simulation-based analysis of skill-based routing
call centers is expected to be the predominant tool of choice
since even for relatively simple systems, available analyt-
ical solutions are rather restricted. We have developed a
M,/M,/C/K/NPRP SBR call center simulation program
using two different programming methods: the C language
and the Arena software package. This paper documents our
experience using these two different methods.

We first describe the skill-based routing call center
under study. Next, we review the major components of
each simulation program. This is followed by comparing the
outputs of the two methods using three numerical examples.
Finally, a traditional pros and cons comparison is made
between the two simulation programming methods.

2 THE CALL CENTER MODEL

We consider a M,,/M,,/C/K /N PRP call center or multi-
server queueing system with C total agents, n different call
types and telephone trunkline capacity C + K. Calls have
types 1, ..., n and are handled in a non-preemptive priority
(NPRP) order. The priorities are associated with the skill
levels of the agents. Agents have skills at various skill

2636

Robert M. Saltzman

Department of Decision Sciences
College of Business
San Francisco State University
San Francisco, CA 94132, U.S.A.

levels (primary, secondary, tertiary and so on). The number
of different skill levels is equal to the number of call types
n. Skill level 1 represents a primary skill. Skill level 2
represents a secondary skill level, and so on. Each agent
has one and only one primary skill. Agents may have up
to n — 1 secondary skills at unique skill levels.

Agents with the same primary skill j make up the work
group j. The number of agents in work group j is denoted
by C;, where 1 < j <m and m < n. The agent skills are
given and are represented by a C x n agent-skill matrix A.
Each entry of the agent-skill matrix A is

g when agent k supports call type g

axi = at skill level i,
0 otherwise,
where k =1,...,C, 1 <g <n,and 1 <i <n. Thus, the

rows of the agent-skill matrix represent the unique agent
identification (ID), the columns represent the skill level
(column 1 indicates primary skill, column 2 secondary, and
so on), and the entry ay; indicates the call type supported.
The agent skill matrix is one of the major components that
distinguishes our SBR call center.

Callers or customers arrive to the call center in ac-
cordance to a Poisson process with rate A. These callers
then, independently of one another, select the type of service
desired with probability p;, where i indicates the type of ser-

vice requested or simply the customer’s type, i = 1, ..., n.
Thus, the arrival process for each call type is characterized
by a Poisson process with rate A; = Ap; fori =1,...,n,

where A = 27:1 Aj. The service times to process calls
depend only on the call type and are independent and identi-
cally distributed (IID) with exponential service times 1/u;,
where i represents the call type fori =1,...,n.

In the C + K trunklines capacity, the parameter K is the
number of waiting spaces or buffers to hold waiting callers.
If an arriving caller finds that there are already C + K
customers present, then the caller is blocked and is lost to
the system. Callers arriving to each work group are handled

Wallace and Saltzman

or processed using a first-come first-serve (FCES) service
discipline among qualified agents. Customer abandonments,
retrials, and jockeying are not permitted.

There are two fundamental problems we must address
in our SBR call center model construction. They are:

1. What to do When an Arrival Occurs
2. What to do When an Agent Becomes Free.

We address each of theses in the following subsections.
2.1 What to do When an Arrival Occurs

To address the issue of what to do when an arrival occurs, we
consider the call routing strategy most commonly used by
call center managers, the longest idle agent routing policy.
The longest-idle-agent routing (LIAR) policy sends calls to
the agents that have been waiting the longest for a call since
the completion of their last job (i.e., idle the longest). To
adjust for priorities, the LIAR policy that we adopt sends
calls to the agents that have been waiting the longest (or
idle the longest) and have the highest skill-level to handle
the call.

2.2 What to do When an Agent Becomes Free

When agents become free, if there are no customers in
the n queues then the agents go idle; otherwise, the first
customer in the queue that the agents can support at their
highest skill level is taken into service. More precisely,
when agents become free, the first customer in the queue in
which the agents have a primary skill level to support the
call is taken into service. We will refer to this queue as the
agents primary skill queue. If there are no customers in the
agents primary skill queue, the first customer in the agents
secondary skill queue is taken (provided the agents have a
secondary skill or agy # 0). The process is continued in
this manner until either a customer is found that the agents
can support or all skill levels have been exhausted. If the
agents cannot find a waiting customer that they can support
then the agents go idle. Customers waiting in the queue
that are not supported by freed or idled agents continue to
wait until agents that can support their call type become
available.

2.3 Key Performance Measures

From a call center manager’s perspective, we consider the
following seven (7) key performance measures as listed in
Table 1.

In the table, we have several random variables of interest.
The random variable Q has steady-state distribution for the
queue length process of the system. The random variable
D has steady-state distribution for the delay time of a caller

2637

Table 1: Key Call Center Performance Measures.

Performance Measure Description

—_

P(Q=C+K)=¢
E[D|Q<C+K]=W

Probability of blocking
Average speed to answer
(ASA) given system entry
Average speed to answer
call type i given

system entry

Percent of calls that are
answered within t

minutes given system entry
Percent of calls of type i
that are answered within 7
minutes given system entry
Agent utilization

Jjth work group utilization

E[D;|QO<C+K]=W,;

P(D<t|Q<C+K)
=1-4

P(D; <1/ Q0 <C+K)
=1-¢

Uj

admitted to the system and random variable D; has steady-
state distribution for the delay time of a caller admitted to the
system that requests type i service. The number of callers
in the system includes the number of callers in service plus
the number of callers in queue or waiting. In the table,
the indices i and j indicate the call type or service request
(i=1,...,n) and the work group ID (j =1, ..., m).

In Table 1, the first performance metric, the probability
that an arriving caller is blocked, is a measure of the call
center’s availability and is sometimes part of the service
level agreements (SLAs). The second parameter E[D | Q <
C + K] and the fourth P(D < 7| Q < C + K) are speed-
to-answer performance measures and are typically part of
the service levels as well. These two aggregate quantities
are conditioned given admission or entry into the system.
Usually, one of the two and not both speed-to-answer metrics
is part of the SLA. Average speed to answer (ASA) is the
call center term reserved for E[D| Q < C + K].

The last two measures of performance deal specifically
with tracking agent’s utilization. The average utilization for
an agent is the percent of time that he/she is busy processing
calls or one minus the fraction of time he/she is idle.

3 THE C PROGRAM SIMULATION

We develop a discrete-event simulation to model the
M,/M,/C/K /N PR P skill-based routing call center model
described in the previous section using the C programming
language running on an IBM ThinkPad laptop with a Pen-
tium M 1.6 GHz processor and 768 MB (megabytes) of
memory. Mazzuchi and Wallace (2004) cite many of the
references we used to construct a very robust multi-server
simulation model. In this section, we provide a brief sum-

Wallace and Saltzman

Arrival Event

Update System States
DeterminetCall Type
Schedule Next arrival

Are all agents
busy?

Search Idle AgenttQueue
for First Available Agent

Primary Skill
Agent Idle?

nth SkiltLevel
Agent Idle?

¥

place_cust_in_q() route_cust_to_agent()

|]

v

Return

Figure 1: Flowchart for arrival routine, SBR Call Center
Model.

mary of the components of our C program while focusing
on the unique aspects of skill-based routing.

We use the next-event time advance approach for ad-
vancing the simulation clock. An event is either an arrival to
the call center or a departure from an agent. Thus, our event
list consists of C + 1 items (i.e., arrival or departure from
agent k, where k = 1,---,C). Our C program includes
all the basic components or subroutines found in discrete-
event simulations: system state, simulation clock, statisti-
cal counters, initialization, timing routine, event routines,
library routines, report generation, and a main program.

We will discuss the logic of two key routines in our C
program: arrival and departure. Figure 1 shows a flowchart
of the logic we use to show what happens when an arrival
occurs. The logic is somewhat standard for arrival routine
that supports multiple call types. The exception or unique-
ness is how calls are routed to accommodate the longest
idle agent routing (LIAR) policy.

2638

To simulate the LIAR policy, we use the following
technique. We construct an idle agent queue. When agents
become free or idle, their IDs are placed at the end of the
idle agent queue. Thus, the agents that have been idle the
longest are at the top of the queue. As shown in Figure 1,
a first scan of the idle agent queue seeks to find the first
agent that has a primary skill to support the call. Agent
skill profile information is taken from the agent skill matrix
using the agent ID stored in the idle agent queue. If no
agents are found then a second scan of the idle agent queue
seeks to find the first agent that has a secondary skill to
support the call and so on.

The first agent ID that is identified in this sequential
search is given the arriving call via the route_cust_to_agent()
subroutine. If no agents in the idle agent queue can support
the arriving call then the caller is placed in queue, provided
there are less than C + K callers in the system.

Next, we will discuss the departure routine that describes
what happens when agent k becomes free, k = 1,---, C.
Figure 2 shows the logic used for departure routine. When
agent k completes a call (i.e., a departure occurs), agent k
seeks to retrieve the next caller he/she can support that has
been waiting the longest in the following manner. Using the
agent skill matrix, agent k primary skilled-queue is checked
first for a waiting caller. If primary-skilled queue is empty
then agent k secondary skilled-queue is checked and so on. If
waiting callers are found that can be supported, then agent k
gets the waiting caller that is first in queue; otherwise, agent
k goes idle with the execution of the make_server_idle()
routine. The idle agent ID is stored at the end of the idle
agent queue.

We briefly review how the performance statistics are
calculated. Performance reporting and data analysis ac-
counts for a majority of the C program. For each call, we
record the time the call entered the system (or time the call
was blocked), the ID of the agent who handled the call, the
time the call entered service and the time the call completed
service and exited the system.

From stochastic output processes of the form {X, :
n > 1}, we estimate the steady-state performance measures
shown in Table 1 using one long simulation run. During the
long run, we delete an initial portion of the observations in
order to account for the effects due to initial bias. We choose
the initial portion to delete large enough so the system is
nearly in steady-state. The remaining observations are di-
vided into a fixed number of non-overlapping batches of
equal length. The length of the batches is sufficiently large
such that correlation between batches becomes negligible
and the batch mean approximately follows a normal distri-
bution. We use sample batch means to estimate variances
and construct confidence intervals.

Finally, we have used a number of techniques to validate
and verify our SBR call center simulator coded in C. This list
of techniques include program logic review by call center

Wallace and Saltzman

Agent
Departure Event

Y Check each Supported
Queue in Priority Order
for First Waiting
Customer

k.

make_server_idle() get_waiting_cust()

v
Return

Figure 2: Flowchart for departure routine, SBR Call Center
Model.

managers and experts, sensitivity testing, stress testing, trace
analysis, and output comparison against known models. See
Mazzuchi and Wallace (2004) and Wallace (2004) for details.

4 THE ARENA SIMULATION

We also developed an equivalent call center model using the
animated simulation package Arena 7.01 (Kelton, Sadowski
and Sturrock, 2004). The model was constructed and run
on a Dell Inspiron 600m laptop with a Pentium M 1.4 GHz
processor and 512 MB of memory. This section recaps the
model’s structure, most of which can be seen in Figures 3
and 4 below.

In the top box of modules of Figure 3 the idle agent
queue is initially populated with an entity for each agent.
These agent entities are shown as an ID number indicating
which agent subgroup they belong to, where a subgroup
is defined to be a set of agents with completely identical
skills. Later on, as calls are allocated to agents who can
handle them, ID numbers are removed from the idle agent
queue; when an agent becomes idle, its ID number is put
back into the queue.

The middle box of modules in Figure 3 begins by
creating calls and assigning them key attributes such as

2639

their call type, picture and service time. An arriving call
is blocked if the total number of calls already waiting in
queue equals the maximum queue capacity. Blocked calls
are recorded and disposed of. Other calls check to see if
there are any idle agents available. If all agents are currently
busy (i.e., the idle agent queue is empty), then the call is
sent to wait in a queue specific to its call type. If there’s
at least one idle agent, then the call searches the idle agent
queue for an agent possessing the skills required to handle
its type. If such an agent is available, the agent’s ID number
is assigned to the call’s “ServedBy" attribute and the call is
then sent to the agent’s station for service. Meanwhile, this
agent’s ID number is removed from the idle agent queue.
If no appropriately-skilled agent is found, the call is sent
to wait in a queue.

The bottom box of modules in Figure 3 handles com-
pleted calls. First, call waiting time and service level
statistics are recorded. Then the call queues are searched
to see if there are any waiting calls that can be served by
the agent who has just finished serving the completed call.
If so, the call is removed from its queue and sent to the
appropriate agent’s station for service. If no such call is
waiting, the agent becomes idle and its ID number is placed
in the idle agent queue.

Figure 4 shows the main call and agent animation, as
well as the logic needed for the queuing and processing
of calls. On the left side of the figure are the queues
(one per call type) where calls wait for an available agent.
Eventually, each call reaches the head of its queue, is sent
to one of the agent subgroup stations for service (on the
right), and returns to the logic for completed calls (bottom
of Figure 3). During model execution calls of different
types are shown in different colors, and can be seen waiting
in various lines and getting served by agents.

Important data modules (not shown in the figures) in-
clude the Variable, Expression and Advanced Set modules.
Key variables are: NGroups, the number of subgroups of
agents who possess identical skills sets; NAgentGroupSize,
a vector of the number of agents within each subgroup;
AMatrix, the agent skill matrix containing just 1 row per
subgroup; MaxSkill, a vector of the number of skills per
agent subgroup; NAgentsTotal, the total number of agents;
MaxQLength, the maximum number of calls that may be
put on hold; and SLTarget, the desired service level target
time. The Expression data module defines an expression for
the total number of calls currently in queue, as well as an
indexed expression holding the service time distributions
by call type. Finally, the Advanced Set module defines
collections of similar objects, namely, QueueSet, which
holds the names of all of the call queues, QueueStationSet,
which contains the names of the station modules preceding
each queue, and AgentStationSet, which holds the names of
the stations preceding the agent subgroup process modules.
These sets greatly simplify the logic used in Figure 3.

Wallace and Saltzman

Idle agent queue contains agenttiD numbers.

k AssigntAgent
mmauzQeulgllleeAgeIR_ sioniAgen
Capacity
0 B Y 4

£ coontonext
Group

N

IdletStation

\
.|| AssigntAgent
Picture

V 4

IdleAgent

d

Assign Type N
eine Count Created
Process Time

Create Calls)H
0

Main call flow: If arriving call istnot blocked, see i there's an idle agent skiled to handle thistcal type.

/\0 y.
Is CalliBlocked? —

Record Blocked
Ci

/
Dispose of Blocked
all | cal

True
\

False
o
| / 0 R T
ssign Time E nte} . oute to Type
'Quetie \\AII Agents Busy? Queue Station
N True cue
\
0 N
_—— False
_Send Call totAgent
Station
S cal Searchiforagent | Foungd A Remove Agent
nitialize CalltType - Increment Call Typ ith skill to Ia- Assign Agent to || from Idie Agent G rginal
Index q tol0 Index q by 1 T Wla”d Call p— 5 o
V. V. o ueue /

Not
Found

.//Dispose of Agent
Removed Entity | 1D#
\

\

\

0

Route2 to Type
| Queue Station

pe Index g equals n

False

After cal is completed, recordistatistics & check to see if there's a waiting cal that can betserved by an idle agent.

Check Station

| | AssigntTimeInQ ecordtWaitinQ by
Attribute Type
V4

.| | Record WaitinQ
Overall

Record Service Record Overall
Level Service Level

itialize Skill Leve Increment Skill A
00 Level by 1 h
V4

)

//\TmE
Last Skill Level? |
0

—
i

@’ Dispose of
|\ Completed Call
\

ssigniS ervedB:
Attribute

Route Waiting Call
to Agent Station

RoutetoIdle
Station

False

Figure 3: Main logical flow for the skill-based routing model in Arena 7.01.

As with the model built in C, the Arena model also
collects output via the batch means method, after deleting
output from a long warm up period. Confidence intervals
are automatically reported by Arena for all performance
measures specified in the Statistic data module except those
based upon counters, such as the blocking percentage, which
is the ratio of the number of calls blocked to the number
created.

2640

5 SIMULATION RUN COMPARISONS

In this section, we compare the simulation output from the C
and Arena programs using three numerical examples. Table
2 shows the 95% confidence intervals for each of the key
call center performance measures presented in Table 1. In
each simulation run, we generate approximately 800,000
observations (simulated calls) in which the first 20% of the
observations are discarded to account for the initial bias.

Wallace and Saltzman

QStation] |——| Queue
TypelQueue
1
aseenz ’—
Type2Queue
|
1
asetons %
TypedQueue
|
1
astant ’
Type4Queue
|
1
QStation5 |——| Queue
TypesQueue
|
1
QStation6 ~ ——|

Type6Queue

O

Total Calls Waiting

Agent
“/| Subgroupt
Station
o

Idle AgentQueue

Process 1

Agent
Subgroup2
Station

Process 2

0

Agent
Subgroup3
Station

Process 3

0

Agent
Subgroup4
Station

Process 4

0

Agent
Subgroups
Station

Process 5

0
Routet to

Check Station

Agent
Subgroupé
Station

Process 6

0

Agent
Subgroup?
Station

Process 7

0

Agent
‘Subgroup8 Process 8
Station

Agent
Subgroupd
Station

Process 9

Agent
Subgroup10
Station

Process 10

0

Figure 4: Part of the main animation section of the Arena model.

The outputs from the C program and Arena are remarkably
close.

The first example is the Stanford and Grassmann (1998)
Bilingual Call Center model. They modeled the continuous
Markov chain that describe the Bilingual call center system
using a matrix-geometric model in order to estimate average
delay for each call type. Their estimates for ASA| and ASA»
are 1.43 and 9.39 seconds. Stanford and Grassmann (1998)

2641

occupancy or agent utilization is calculated using

Ah

v=——— =80%
Ci+C

where h = 1/u is the mean service time, A = A1 + Ao,
C; is the number of unilingual agents in work group 1
and C, is the number of bilingual agents in work group

Wallace and Saltzman

Table 2: Comparing the C and Arena SBR Call Center Simulations 95% Confidence Results.

1. M>/M»/20/c0/NPRP 2. Mg/Mg/90/21/NPRP | 3. Mg/M¢g/200/50/NPRP
Stanford and Grassmann
Bilingual Call Center A; = 1.375 calls/min, A; = 3.25 calls/min,
A1 = 0.384 jobs/sec, i=1,---,6 i=1,---,6
Ay = 0.256 jobs/sec, 1/u1 = 1/up = 8 min, 1/u1 = /up = 8 min,
/w1 = Uy = 25 sec, 1/u3 = /g = 10 min, 1/u3 = /g = 10 min,
(Cq, C2) = (12, 8), 1/pns = 1/pg = 12 min, 1/ns = 1/pg = 12 min,
Ci=---=C¢=15, C1 =27, C, =C3 = 30,
Cyq =33, C5 = Cg = 40,
t = 10 seconds t = 30 seconds t = 30 seconds
Performance Measure C [Arena C | Arena C | Arena
1. Blocking (%) - - [0.47, 0.65] 0.556 [0.40, 0.63] 0.515
2. ASA (min) [4.41, 5.05]* [4.34, 4.86]* [0.35, 0.40] | [0.35, 0.39] | [0.49, 0.60] [0.54, 0.59]
3. ASA; [1.38, 1.607* [1.25, 1.45]* [0.47, 0.54] | [0.46, 0.53] | [0.54, 0.70] [0.60, 0.66]
3. ASA, [8.90, 10.291* | [8.84, 10.11]* | [0.45, 0.52] | [0.46, 0.53] | [0.44, 0.54] [0.48, 0.53]
3. ASA3 - - [0.32, 0.37] | [0.34, 0.38] | [0.63, 0.80] [0.72, 0.80]
3. ASA4 - - [0.33, 0.38] | [0.32, 0.37] | [0.47, 0.60] [0.54, 0.60]
3. ASA; - - [0.25, 0.29] | [0.25, 0.29] | [0.40, 0.51] [0.45, 0.50]
3. ASAq¢ - - [0.25, 0.29] | [0.25, 0.28] | [0.40, 0.52] [0.44, 0.49]
4. P(Delay < tlentry) (%) [83.5, 84.9] [84.1, 85.3] [78.5, 80.5] | [78.9, 80.7] | [68.1, 73.3] [68.5, 70.7]
5. P(Delay; < tlentry) [94.5, 95.3] [95.0, 95.8] [73.2, 75.8] | [73.7, 76.1] | [65.4, 70.8] [66.3, 68.8]
5. P(Delay, < t|entry) [67.0, 69.6] [67.2, 69.8] [73.6, 76.0] | [73.8, 76.2] | [68.8, 73.6] [69.1, 71.3]
5. P(Delay3 < t|entry) - - [78.8, 81.0] | [79.2, 81.0] | [63.6, 69.4] [63.7, 66.3]
5. P(Delayy4 < tlentry) - - [79.2, 81.4] | [79.5, 81.3] | [68.1, 73.8] [68.2, 70.6]
5. P(Delays < t|entry) - - [82.8, 84.8] | [83.4, 85.2] | [71.2, 76.5] [71.3, 73.6]
5. P(Delayg < t|entry) - - [82.6, 84.8] | [83.3, 84.9] | [70.9, 76.3] [72.0, 74.2]
6. Avg Agent Util (%) [79.6, 80.2] [79.5, 80.3] [90.8, 91.4] | [90.5, 91.3] | [96.6, 97.2] [96.8, 97.0]
7. Work Group; Util (%) [75.2, 75.8] [75.2, 76.0] [90.2, 91.0] | [90.1, 90.9] | [96.2, 97.0] [96.5, 96.8]
7. Work Group, Util [86.0, 86.9] [85.8, 86.8] [90.3, 91.1] | [90.2, 90.8] | [95.9, 96.7] [96.2, 96.5]
7. Work Groups Util - - [90.8, 91.4] | [90.5, 91.3] | [96.8, 97.6] [97.1, 97.3]
7. Work Groupy Util - - [90.6, 91.4] | [90.5, 91.3] | [96.8, 97.6] [96.9, 97.1]
7. Work Groups Util - - [91.2, 91.8] | [90.9, 91.7] | [96.8, 97.4] [97.0, 97.2]
7. Work Groupg Util - - [91.1,91.9] | [91.1, 91.7] | [96.8, 97.4] [97.0, 97.2]

* - Average Speed to Answer (ASA) is measured in seconds.

2. The 20 x 2 agent skill matrix used in this example has
the following structure. The rows of the agent skill matrix
representing agents in the unilingual work group have a 1
in the first column and a O in the second column. The rows
representing the agents in the bilingual work group have a
2 in the first column and a 1 in the second column. Table
2 shows that the estimates all fall within both simulations’
95% confidence intervals.

The second example, a Mg/Mg/90/21/NPRP SBR
call center model, is simulation run taken from Wallace and
Whitt (2004a). In this example, agents have two skills each.
The agent skill matrix, Aé%)x 6> used in this simulation run
is provided in Appendix A of Wallace and Whitt (2004b).
In the last example, we configured the simulators to model
a relatively large SBR call center with 200 agents and 250
trunklines. In this example, each agent has three skills. The

2642

agent skill matrix, A;%)Oxﬁ, used in this simulation run is
provided in the supplemental paper by Wallace and Saltzman
(2005).

In summary, the results in the table show that the two
simulations are clearly modeling the behavior of the same
system. We have found the relative difference in the actual
estimators for the blocking, mean delay, target delay, and
utilization to be less than 0.8%, 8.0%, 2.0%, and 0.2%,
respectively. We can improve these results by running the
simulation much longer than 800,000 observations.

6 COMPARING THE
SIMULATION METHODS

TWO DIFFERENT

Table 3 summarizes the comparison of the C program and
Arena. Both programs were developed using Pentium M-

Wallace and Saltzman

based laptops. The C program environment had 50% more
memory. As shown in the table, Arena runs much slower than
the C program (less than 3 seconds), even with animation
disabled; however, it still executes in a reasonable amount

of time (less than 3 minutes).

Table 3: Summary of Comparison: C Program Vs.
Arena Standard Edition

Evaluation Criteria C Program Arena Model
1. Laptop Specs. IBM ThinkPad Dell Inspiron
Pentium M Pentium M
1.6 GHz CPU 1.4 GHz CPU
768MB RAM 512 MB RAM
2. System Run Times
(a) 20-agent run 2 seconds 21 seconds
(b) 90-agent run 2 seconds 30 seconds
(c) 200-agent run 3 seconds 165 seconds
3. Skills Required Advanced Advanced
4. Ease of Construction Tedious Built-in
or Implementation statistical statistics
analysis
Challenge to
implement LIAR
policy
5. Very Flexible? Yes Yes
6. Very Scalable? Yes Yes, but adding
new agent
subgroup is
nontrivial
7. Costs
(a) Tool Cheap Very expensive
(b) Modeler’s Time Few months Few weeks
8. Code Maintenance Challenging Commercially
supported
9. Saleability Challenging Animation and
built-in flow
diagram are
a plus

In terms of the skills required of the modeler, certainly
advanced C programming skills are required to develop a
fully functional discrete-event simulation of a complex multi-
server queueing system from scratch. Advanced Arena skills
are required primarily because agents must be represented
both as resources and as entities with ID numbers who
join and depart from an idle agent queue. Other challenges
involve correctly using Search, Remove and Route logic
modules, and the Advanced Set data module.

Even though the second author had built a number
of call center models before in Arena, e.g., Saltzman and
Mehrotra [2001, 2004], he still found it challenging to
construct parts of this skills-based routing model, especially
the LIAR policy. On the other hand, it was relatively
easy to animate the Arena program and obtain most of the
desired performance measures. Arena has built-in statistical
analysis features; however, in the C program, all statistics
are constructed from scratch which is a very tedious task.
In addition, many counters are collected and reported in a
trace file in order to assist in the debugging process.

2643

As for flexibility, we found both models were able to
accommodate all the modeling objectives with no limitations.
As for scalability, the C program requires no changes to the
code in order to model larger systems. To accommodate
large systems in the C program, only input values are
changed (e.g., the number of agents C, the number of
trunklines C + K, the agent skill matrix). In Arena, some
tasks are easy to do, e.g., scaling up the size of the model
by increasing the number of agents within any subgroup.
Other tasks are a bit more work, e.g., adding a new agent
subgroup because it requires increasing elements of sets
and altering the animation layout.

The Arena program was constructed with the very ex-
pensive Standard Edition of Arena (thousands of dollars).
However, model development time was relatively quick (a
few weeks), and the model can be executed in “Runtime
Mode" using the inexpensive academic version of Arena.
In general, C environments are very cheap (range from
free to $100). On the other hand, the model development
time is much longer (few months) since the environment
is completely developed from scratch. More than half the
C development time and code was spent in creating debug
code (e.g., trace files) and statistical analysis.

As for code maintenance, historically, Arena’s vendor
(Rockwell Software) has kept its software “backward com-
patible" so that newer versions of Arena can convert and
run models developed in earlier versions. This bodes well
for future use of the model. Rockwell Software actively
supports their product and provides training seminars to
product users. The C code is fully documented in Wallace
(2004); however, advanced C programming and call center
modeling skills are required to maintain the existing code
or make future updates.

Finally, the last evaluation criteria is saleability.
Saleability deals with the ability of the modeler to sell
or communicate the results to key call center decision mak-
ers. These key decision makers are typically not experts
in simulation and want to understand the big picture or
bottom line. Arena has the edge on the C code as it relates
to saleability. Arena’s animation capability is definitely
helpful in selling the model’s validity and usefulness to
management (see Figure 4). Also, the Arena program’s
flow diagram appearance is fairly transparent to managers
(see Figure 3).

7 SUMMARY

We have demonstrated the effectiveness and have shown the
accuracy of constructing a skill-based routing call center
discrete-event simulation using the C programming language
and the Arena simulation package. We have compared
the two different programming methods against a myriad
traditional criteria. Selecting the best method for your needs
still depends on the model’s intended use and audience.

Wallace and Saltzman

ACKNOWLEDGMENTS

The authors would like to thank both Damita Elliott and
Timothy Melvin for their clever programming suggestions
and techniques.

REFERENCES

Kelton, W. D., R. P. Sadowski and D. T. Sturrock. 2004.
Simulation with Arena, 3rd Edition, Boston: McGraw-
Hill.

Mazzuchi, T. A., and R. B. Wallace. 2004. Analyzing
Skill-Based Routing Call Centers using Discrete-Event
Simulation and Design Experiment. In Proceedings
of the 2004 Winter Simulation Conference, eds. R. G.
Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters,
1812-1820.

Saltzman, R. and V. Mehrotra. 2001. A Call Center Uses
Simulation to Drive Strategic Change. Interfaces,31(3):
87-101.

Saltzman, R. and V. Mehrotra. 2004. A Manager-Friendly
Platform for Simulation Modeling and Analysis of Call
Center Queueing Systems. In Proceedings of the 2004
Winter Simulation Conference, eds. R. G. Ingalls, M.
D. Rossetti, J. S. Smith, and B. A. Peters, 466—473.

Stanford, D. and W. K. Grassmann. 1998. Bilingual server
call centers. Analysis of Communication Networks:
call centers, traffic and performance, eds. D. McDonald
and S. R. E. Turner, 31-47, Providence: American
Mathematics Society.

Wallace, R. B. 2004. Performance Modeling and De-
sign of Call Centers with Skill-Based Routing, D.Sc.
Dissertation, The George Washington University.

Wallace, R. B. and R. M. Saltzman. 2005. Com-
paring Skill-Based Routing Call Center Simula-
tions Using C Programming and Arena Mod-
els: supplementary material. Available online
via<http://userwww.sfsu.edu/ saltzman/
skillmatrix200.x1s> [Accessed April 9, 2005].

Wallace. R. B. and W. Whitt. 2004a. A Staffing Algorithm
for Call Centers with Skill-Based Routing. To appear in
Manufacturing and Service Operations Management.

Wallace. R. B. and W. Whitt. 2004b. A Staffing
Algorithm for Call Centers with Skill-Based Rout-
ing: supplementary material. Available online
via <http://www.columbia.edu/ ww2040/
poolingMSOMsupRev.pdf> [Accessed April 7,
2005].

AUTHOR BIOGRAPHIES
RODNEY B. WALLACE is a Technical Solutions Man-

ager at IBM. Rodney has a B.S. and M.S. in Mathematics
from the University of Georgia and Southern University.

2644

He has a D.Sc. in Operations Research from The George
Washington University. His research interests include com-
puter systems performance analysis, queueing theory and
simulation. He is a member of INFORMS and his e-mail
address is <rodney.wallace@us.ibm.com>.

ROBERT M. SALTZMAN is a Professor in the Deci-
sion Sciences Department at San Francisco State University
where he teaches courses in Simulation, Operations Man-
agement, and Statistics. He received his Ph.D. in Operations
Research from Stanford University, and his B.S. degree in
Applied Mathematics from Brown University. Rob’s main
research interests are in decision making via animated sim-
ulation and optimization modeling. His email address is
<saltzman@sfsu.edu>.

http://userwww.sfsu.edu/~saltzman/skillmatrix200.xls
http://userwww.sfsu.edu/~saltzman/skillmatrix200.xls
http://www.columbia.edu/~ww2040/poolingMSOMsupRev.pdf
http://www.columbia.edu/~ww2040/poolingMSOMsupRev.pdf
mailto:rodney.wallace@us.ibm.com
mailto:saltzman@sfsu.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

