
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

FEATURE-BASED GENERATORS FOR TIME SERIES DATA

Jorge R. Ramos
Vernon Rego

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907, U.S.A.
ABSTRACT

A variety of interesting domains, such as financial markets,
weather systems, herding phenomena, etc., are characterized
by highly complex time series datasets which defy simple
description and prediction. The generation of input data for
simulators operating in these domains is challenging because
process description usually involves high-dimensional joint
distributions that are either too complex or simply unavail-
able. In such applications, a standard approach is to drive
simulators with (historical) trace-data, along with facilities
for real-time interaction and synchronization. But, limited
input data, or conversely, abundant but low-fidelity random
data, limits the usefulness and quality of the results. With
a view to generating high-fidelity, random input for such
applications, we propose a methodology which uses the
original data, as a template, to generate candidate datasets,
to finally accept only those datasets which resemble the tem-
plate, based upon parameterized features. We demonstrate
the methodology with some early experimental results.

1 INTRODUCTION

Simulators typically rely on well-known statistical distribu-
tions (Law and Kelton 2000) to generate input data. These
distributions have theoretical formulations which allow an-
alysts to describe their behaviour in precise, mathematical
and probabilistic terms. Their main usefulness in simu-
lation stems from the fact that they can often be used to
describe real-world observations in a fairly accurate, suc-
cint and simple way. When theoretical distributions are
not appropriate, real-world data can be used to construct
empirical input distributions. A simulator may then recreate
variations on the behavior of a real-world system by varying
input parameters. Independence is often a feature of the
data-generation scheme for simplicity or by necessity.

Time series data occurs in a variety of interesting do-
mains but, because of complex dependencies in time, is
not easily described by standard distributions. When such
26
data is required in abundance, with features of reproduca-
bility and parametric control, random data-generation can
be challenging. Examples of systems which require such
data include financial price series for stocks, bond and
options, commodity prices, weather systems, irregular but
cyclic data for productivity measures, economic cycles, etc.
In the case of stock prices, for example, one approach is
to use real-time or historical market data combined with
user-generated decisions in the simulator (Kearns and Ortiz
2003). Here, to preserve data integrity, the market is polled
at certain instants in time and, with the aid of a set of rules,
instantaneous market data is synchronized with simulator
output. While this tack can produce interesting insights into
the nature of the observed system – in this case, a market on
stocks – it is far from ideal because it provides only a single
realization of a price trajectory and lacks reproducability.
As a result, aggregate statistical analysis cannot be done on
the output data; further, conclusions drawn from use of a
single trajectory are subject to questions of data-snooping
(Sullivan, Timmermann, and White 1998). In studying the
efficacy of trading algorithms, for example, a single dataset
is hardly adequate. Conversely, the use of purely random
input data has such a low-fidelity, that it will offer poor
results.

The time series data generation problem arose in an
application involving the information content of manipulated
data (Ramos and Rego 2005) in the financial markets. It was
necessary to process randomly generated clones of a real-
world dataset (i.e., historical stock/options data) for studies
in classification. While it has been suggested that stock data
has a random walk property (Malkiel 2004), in the sense
that the average person may be hard-pressed to distinguish
between a real stock price series and one generated using,
say, the method of independent increments with Gaussian
variates, an experienced trader would have little difficulty
telling the data apart, even without additional clues (name of
stock, size of float, etc). This is because a stock’s price series
tends to exhibit characteristic patterns or “structure” that is
not easily captured by naive data-generation schemes. This
00

Ramos and Rego

���������	
�����������

��������
����

	
������
����
��

���� �������

�������
��������� ������

������	
������
����

	�����

�������

Figure 1: Feature Based Generation of Time Series
includes high-frequency oscillations due to local overbought
and oversold conditions, spikes, and also broader chart
patterns (cup and handle, saucer, head and shoulders and
double-bottom formations, etc).

Time series data generated by simple methods which
ignore structure exhibit characteristics that are inherently
different in appearance from data generated by methods
which attempt to account for structure.

We present a methodology to generate random instances
of time series which resemble a given template with speci-
fiable measures of similarity on critical features. That is,
the generated data is random but exhibits similarity to given
historical or synthetic data; the template is used as a basis for
generation, so that the resulting datasets are similar. There
are two ways to proceed: (a) generate random data with
select template features, and (b) generate random datasets
with some template property but accept only those datasets
which exhibit features similar to template features. In this
paper we focus on method (b), because the emphasis of
our original application was classification; by using pattern
recognition and data mining algorithms, it is possible to
classify series data based on selectable and relevant fea-
tures (Last, Klein, and Kandel 2001; Gavrilov et al. 2000).
We present method (a) in another paper.

An overview of the generation process is shown in
Figure 1. The data trajectory in the given template is
quantized, and then syntactically analyzed, to generate a
probabilistic grammar that can generate sentence data that
resembles the template. Generating a random data trajec-
tory is equivalent to generating a random sentence using the
grammar. The template and synthetically generated data are
subjected to characterization by a feature extraction module
which transforms trajectories into characteristic vectors. A
similarity measure is used to classify/select synthetically
generated trajectories that are acceptable, by exhibiting pat-
26
terns resembling the template. By using feature extraction
techniques and weighed similarity measures, we are able to
quantify the likenes of synthetically generated datasets to
generating template. A set of parameters enable an analyst
to vary the desired degree of similitarity between template
and synthetic dataset. The acceptance procedure is parame-
terized in that it utilizes a number of relevant features, with
each requiring a specifiable threshold that functions as a
similarity measure.

The remainder of the paper is organized as follows.
In Section 2, we explain how probabilistic context free
grammars can be used to generate data. In Section 3, we
examine some important feature extraction algorithms for
time series. Section 4 shows how to use the features to
determine similarity between a template and its synthetic
trajectories. In Section 5, we show some experimental
results using actual time series data. A brief conclusion is
given in Section 6.

2 DEPENDENCY STRUCTURE

A number of distinct methods may be used to capture the
structure of dependency in the original data for the pur-
pose of sampling trajectories. We chose to use techniques
of syntactic pattern recognition (Fu 1982) and formal lan-
guage theory – grammars and production rules – to describe
dependencies, because they offer use of convenient Markov
properties, and because grammar-based generation was cru-
cial in our original application (Ramos and Rego 2005).
Syntactic pattern recognition is well-suited to classification
studies using time-based data, where a relationship between
symbols is an essential feature requiring description. This is
an off-shoot of a methodology for data-recognition; we see
it as a middle-ground approach, lying between use of theo-
retical distributions and accurate summaries of dependence
01

Ramos and Rego
for sequences of random variables, and purely unstructured
real-time observations or histograms.

A grammar formally describes a language using a rela-
tively small set of rules called productions; it is defined as a
quadruple G =< �T , �N, P, S > (Friedman and Kandel
1999), where �T is a set of terminal symbols, �N is a
set of non-terminal symbols, P is a set of production rules
and S is the starting symbol (or root). �T and �N are
subsets of an alphabet �, which is a finite set of symbols
x1, x2, ..., xn.

A production rule for a context-free grammar has the
form:

A1 → β2,

where the symbol A1 undergoes substitution by string β2.
cfg’s require a non-terminal (i.e. A1 ∈ �T) on the left
side of the production rule, with no restrictions on the right
side. That is, β1 can be a combination of terminals and
non-terminals. cfgs have played a significant role in the
development of computer sciences, where they have been
used in computational theory for abstract machines (Brook-
shear 1989) and, more practically, for the specification of
computer languages and the building of compilers (Aho,
Sethi, and Ullman 1986).

Stochastic (or probabilistic) grammars (Friedman and
Kandel 1999) allow for some ambiguity in the patterns,
by associating a probability Q with a set of productions.
A stochastic grammar is defined by a quintuple G =<

�T , �N, P, Q, S >.
Probabilistic context free grammars (PCFG) are stochas-

tic extensions of context-free grammars and are used to
create models of semistructured and ambiguous data by use
of machine learning algorithms (Pearl 1988, Mitchell 1997).
PCFGs (Stolcke and Omohundro 1994, Pynadath and Well-
man 1998) have been used for pattern recognition in many
areas, such as speech recognition (Jurafsky et al. 1995),
music (Steedman 1984) and RNA modelling (Sakakibara
et al. 1994). A PCFG is formed by generating hierarchi-
cal production rules in the form of trees, with associated
probabilities, based on a set of learning data.

We use the following algorithms to process a template
and generate synthetic time series data:

1. Analysis for PCFG generation: Consecutive data
increments in the original data template are Nor-
mally distributed and offer a convenient mechanism
for PCFG symbol generation.
We begin by computing differences between con-
secutive data points, while storing the absolute
value of the starting point p0. A quantization con-
stant q is chosen to map numerical values into
symbols, by dividing the range of numbers into s

equally sized buckets of size q; clearly, this yields
a total of s symbols for the sequence. Given a set
of symbols, we proceed to the next step, which
26
is to capture dependency. While this can be done
in a number of ways, we use syntactic analysis to
construct conditional probability tables for m−th
order Markov transitions. With m = 1, these tables
offer the empirical probability of symbol Ai being
followed by symbol Aj , 1 ≤ i, j ≤ s.
A PCFG is obtained, with production rules similar
to these examples:

A1 → A2 | A3 | A6 (0.25 | 0.45 | 0.30)

A2 → A5 | A1 | A7 | A9 (0.70 | 0.10 | 0.15 | 0.05),

which means that A1 is followed by A2 with prob-
ability 0.25, by A3 with probability 0.45, etc.

2. Synthetic data generation: On obtaining the
PCFG for a given template, we arrive at a tree
whose paths represent transitions between consec-
utive symbols, and path probabilities are transition
probabilities. We may then then choose a suitable
starting symbol for the new sequence (say, starting
symbol p0 from the template). The new sequence is
generated by following the production rules, always
choosing the next symbol using a uniform vari-
ate and the given conditional probabilities. Once
a sentence (symbol sequence) is ready, we must
invert symbols into numerical (time series) values.
Some information is lost during quantization, and
a uniform variate is used to generate a value within
a symbol’s bucket range. Recalling that the gram-
mar is based on increments, the conversion from
symbols to numerical data (starting from p0) re-
quires consecutive additions for generation of the
synthetic series.

3 FEATURE EXTRACTION

Computational mining of time series data has grown in
importance in recent years. Algorithms have been developed
to clean, compress, index and detect certain patterns in
particular time series. In the sequel we exploit a few
of these techniques to help quantify useful template data
features that we would like preserved in the synthetsized
data.

Time series data is often noisy and short-term variations
can obscure long-term trends. A first step usually entails
cleaning of data to to eliminate as much noise as possible
while retaining important features; this is done with moving
averages, filters, and transformations/selection of certain
points. The transformed data is then used to obtain features
of interest. Among methods available in the literature to
characterize time series, we have found the following to be
useful in our context:

1. Slope, Length, & Signal to Noise Ratio: A key
feature of a time series is its overall trend, character-
02

nd Rego
Ramos a

ized by its slope. We use the algorithm presented
in (Last, Klein, and Kandel 2001) to clean the
data using a finite impulse response (FIR) filter,
interpolate to eliminate local extrema lying within
time-threshold d , and finally merge consecutive
data segments with slopes that differ by less than
some threshold ε. Other measures given by this
algorithm include segment lengths (in time units)
and signal to noise ratio, which is the ratio be-
tween the original data values and newly generated
segments. User specified parameters include d, ε,
and bandwidth B and number of coefficients N of
the filter. We refer to the features derived here as
SLOPE, LENGTH and SNR.

2. Extremal points & indexing values: We use the
algorithm in (Fink and Pratt 2003) to locate major
extrema based on a parameter R. The consecutive
segments (“legs”) formed by connecting extrema
are used to calculate certain indexing values. If
VL and VR represent left and right end-points of
a leg, then RATIO=VR/VL. This algorithm can
also provide leg-length in time units, though we
we only use VL and RATIO (since the VR of one
segment is the VL of the following segment). We
use the quantity LENGTH given by the algorithm
quoted in the prior step.

3. Distribution characteristics of increments: Con-
secutive incremements in the time series data is
approximately Normal. Estimates of skew, kur-
tosis and mean of the distribution can be used to
quantify the similitarity between template data and
synthetic data; standard deviation is not useful for
making distinctions because it has experimentally
been shown to offer like values for distinct se-
ries. We refer to the features computed here as
SKEWNESS�, KURTOSIS� and MEAN�.

The algorithms generate values that help characterize
a given time series. By collecting these values in a feature
vector, we effectively obtain a signature for each time series.
Some algorithms generate multiple m values for one feature
(i.e., SLOPE, RATIO, etc.) in one data trajectory, and n ≤ m

values in a second data trajectory. In this case we use the first
n values in the feature vector. We use the term FEATURE(i)
to denote the i-th feature.

4 SIMILARITY MEASURES

To compare the feature vectors we expand on similarity
measures developed in (Fink and Pratt 2003), based on
a zero-to-one scale, with zero implying no likeness and
one implying complete likeness. Having a uniform scale,
as opposed to distance-based methods, makes it easier to
26
establish criteria for accepting or rejecting synthetic data
— a threshold selected in the 0-1 range will suffice.

Similarity between two numbers a and b is defined as:
S(a, b) = 1 − |a−b|

|a|+|b| .

The peak similarity between two points, a and b is:
S∗(a, b) = 1 − |a−b|

2·max(|a|,|b| .

The mean similarity and root mean square

similarity between two series a1, . . . , an and b1, . . . , bn

are given by:

1
n

· ∑n
i=1 S(ai, bi), and,

√
1
n

· ∑n
i=1 S(ai, bi)2,

with similar definitions for peak similarity and
root peak square similarity between series.

While the similarity measures are usually applied to
a uniform vector space, in our case, however, dissimilar
features are combined in a single vector. Furthermore, some
features are more relevant than others and this asymmetry
should be observed in the final result. To effect this, we
introduce weighted similarity measures:

Si (a, b) = 1 − wi · |a−b|
|a|+|b| ,

1
W

· ∑n
i=1 Si (ai, bi),

where

W = ∑n
i=1 wi .

The definitions for all other corresponding weighted

similarity measures are straightforward. Clearly, if all
weights wi are equal, we obtain the original measures.

5 EXPERIMENTAL RESULTS

We present some typical results that show the practical ap-
plication of our methodology, and address issues an analyst
must consider in choosing parameters in designing a clas-
sifier. Our template contains a single year of daily closing
prices of Microsoft’s stock (MSFT), starting in February
2000, as shown in Figure 2. The chosen region shows price
fluctuations overlaying a clear trend, which makes it an
interesting dataset for experiments.

5.1 Experimental Setup

A PCFG tree was generated using the above template with
s=15 symbols. If s is too small the generated data will
show bigger fluctuations than the template, while too big a
number will reduce transition variability, and thus reduce
randomness. Independent price trajectories were generated
with the help of the PCFG tree and independent random
03

and Rego
Ramos

5

15

25

35

45

55

65

75

Dec-99 Jan-00 Mar-00 May-00 Jun-00 Aug-00 Oct-00 Nov-00 Jan-01 Feb-01

Date

C
lo

si
ng

 P
ric

e
(U

S
$)

Figure 2: Template, MSFT Stock with Extremal Points

number seeds. We show three examples in Figures 3, 4 and
5. Each one of these trajectories represented a candidate
dataset, to be accepted or rejected based on parametrized
features.

5

15

25

35

45

55

65

75

Dec-99 Jan-00 Mar-00 May-00 Jun-00 Aug-00 Oct-00 Nov-00 Jan-01 Feb-01

Date

C
lo

si
ng

 P
ric

e
(U

S
$)

Figure 3: Synthetic Trajectory 1 with Extremal Points

5

15

25

35

45

55

65

75

Dec-99 Jan-00 Mar-00 May-00 Jun-00 Aug-00 Oct-00 Nov-00 Jan-01 Feb-01

Date

C
lo

si
ng

 P
ric

e
(U

S
$)

Figure 4: Synthetic Trajectory 2 with Extremal Points
2

5

15

25

35

45

55

65

75

Dec-99 Jan-00 Mar-00 May-00 Jun-00 Aug-00 Oct-00 Nov-00 Jan-01 Feb-01

Date

C
lo

si
ng

 P
ric

e
(U

S
$)

Figure 5: Synthetic Trajectory 3 with Extremal Points

The guiding design criteria for the parameters was to
focus on the overall, long term characteristics of the data
and discard minor fluctuations.

To specify the parameters to calculate the SLOPE,
LENGTH and SNR, a finite impulse response filter (FIR)
was used, with N=20 coefficients and a bandwidth B=1/30,
which means that cycles with frequencies less than 30 days
were removed. N was chosen to provide enough accuracy
for our purposes, whereas B was chosen to focus on the
major trend. Using the filter with a value of d=30 days
and ε=0.05, we obtain the slopes shown in Figure 6, which
effectively yields the overall trend of the series.

5

15

25

35

45

55

65

75

Jan-00 Mar-00 May-00 Jun-00 Aug-00 Oct-00 Nov-00 Jan-01 Feb-01

Date

C
lo

si
ng

 P
ric

e
(U

S
$)

Template
Synthetic 1
Synthetic 2
Synthetic 3

Figure 6: Segments and Slopes

To identify the extremal points a value of R was chosen
such that 97% of the points in the template data would be
eliminated. This was done so as to focus on major extrema,
which in turn offers a view of long term behavior. After
a few trials we obtained a value of R=1.3. The extremal
points obtained in this way are identified by small circles
in Figures 3, 4 and 5. Once the extremals were obtained,
we calculated VL and RATIO. Finally, by computing incre-
mental differences between consecutive prices in the series,
604

Ramos and Rego
Table 1: Feature Vectors for Sample Time Series

Feature Dataset Weight
Template Synthetic 1 Synthetic 2 Synthetic 3

SNR(1) 0.1607 0.1389 0.0332 0.0706 2
SNR(2) 0.0679 0.1274 0.0452 0.1903 2
SNR(3) 0.0984 0.1219 0.0368 0.2538 2
LENGTH(1) 68.8 94.3 72.2 69.5 1
LENGTH(2) 36 71.3 85.8 48 1
LENGTH(3) 56 32.4 18.5 80.5 1
SLOPE(1) -0.2001 -0.2964 0.0109 -0.1860 10
SLOPE(2) -0.0152 -0.0527 0.0983 -0.3174 10
SLOPE(3) -0.0788 0.0461 0.2164 -0.1361 10
Kurtosis� 9.3066 6.9049 12.9378 8.4693 1
Skewness� -0.9209 -1.4493 -1.9330 -0.9199 1
Mean� -0.0782 -0.1726 -0.0033 -0.0833 1
Ratio(1) 1.0866 1.0585 0.9792 1.1045 2
Ratio(2) 0.5492 0.3156 1.4023 0.3852 2
Ratio(3) 1.3346 1.5221 0.7096 1.3356 2
VL(2) 55.4400 54.0048 49.9600 56.3491 1
VL(3) 30.4500 17.0459 70.0591 21.7082 1
we estimated SKEWNESS�, KURTOSIS� and MEAN�.
It was then left to choose the maximum possible number
of values n for each feature and collect these in the feature
vector. The results of such a procedure are shown in Ta-
ble 1. In the case of VL, the first point was the same for
all samples, and so it was discarded.

5.2 Classifier Design

Given the feature vectors, it was only left to compute
similarity between template data and synthetic data. The
goal of the study was to design a classifier that would reject
synthetic trajectories exhibiting similarity smaller than some
specified threshold t . With a suitable threshold the first and
third synthetic trajectories shown in the figures would be
accepted, while the second would be rejected.

The purpose of introducing weights was to maximize
separation between the accept and reject classes. We wanted
to give emphasis to the overall trend measured by SLOPE,
followed by extrema features such as SNR and RATIO,
and finally followed by others that are less controlled by
parameters, such as KURTOSIS�, etc. We (heuristically)
assigned a weight of 60% to the slopes, 25% to the second
set of features and 15% to the rest. Further distributing
these percentages between repeated features, we obtained
the weights shown in Table 1.

We applied four similarity measures to the feature vec-
tors, in both their weighed and original form. The results
are shown in Table 2. In designing the classifier, we were
mainly interested in distinguishing between data that was
to be accepted or rejected, rather than absolute values of
similarity measures. For that reason, similarity measures
26
were ranked according to their ability to draw clear distinc-
tions between the accept and reject values, measured by
the degree of separation between them. A high degree of
separation also minimizes the possibility of false positives
or false negatives.

The values in Table 2 show that the weighed similarity
measures have a higher degree of separation, than the basic
measures. Likewise, the mean similarity outperfoms other
measures, while the peak similarity seems to be relatively
weaker. Based on the observed values, we chose the weighed
mean similarity for the classifier. We used a threshold of
t = 0.4, which is midway between the nearest accept and
reject values.

6 CONCLUSIONS

We presented a methodology to generate semistructured
data realizations based on a template; this can be used to
generate random (synthetic) trajectories that are “similar”
to a given template. The synthetic data is random, but
also exhibits features considered important in the template.
Multiple parameters enable an analyst to adjust the model
to his particular needs.

We outlined how parameters can be chosen based on
overall design criteria; in our case, we focused on the
long term. We introduced weighed similarity measures and
showed both its ability to focus on certain features, as
well as its effectiveness in maximizing separation between
datasets that should be either accepted or rejected. The
methodology can be applied hierarchicaly, by partitioning
data into segments and doing piecewise generation and
feature extraction.
05

Ramos and Rego
Table 2: Similarity Measures between Template and Syn-
thetic Feature Vectors

Similarity Measure Synthetic 1 Synthetic 2 Synthetic 3
Weighed
Peak 0.6823 0.5468 0.8028
Mean 0.6864 0.2593 0.5816
Root Peak Square 0.729 0.5816 0.8205
Root Mean Square 0.7604 0.4344 0.6701

Original
Peak 0.7552 0.6604 0.8168
Mean 0.7015 0.504 0.762
Root Peak Square 0.7952 0.7024 0.851
Root Mean Square 0.7557 0.6095 0.8171
Our results are preliminary and a side-issue in the study
of trajectory recognition schemes which exploit higher-order
sequences and conditioning to capture and recognize data
characteristics. We are currently studying feature extraction
and classification algorithms, as well as developing heuristics
to choose parameters.

ACKNOWLEDGMENTS

Research supported in part by DoD DAAG55-98-1-0246
and PRF-6903235.

REFERENCES

Aho, A. V., R. Sethi, and J. D. Ullman. 1986. Compilers.
Boston, MA: Addison-Wesley.

Brookshear, J. G.. 1989. Theory of computation:
Formal languages, automata, and complexity. Ben-
jamin/Cummings Series in Computer Science. Upper
Saddle River, NJ: Pearson Education.

Fink, E. and K. Pratt. 2003. Indexing of compressed time
series. In Data mining in time series databases,ed.
M. Last, A. Kandel, and H. Bunke, 43–65. Singa-
pore:World Scientific.

Friedman, M., and A. Kandel. 1999. Introduction to
pattern recognition: Statistical, structural, neural and
fuzzy logic approaches. Series in Machine Perception
and Artifical Intelligence., Vol. 32. Singapore: World
Scientific.

Fu, K. S. 1982. Syntactic pattern recognition and appli-
cations. Englewood Cliffs, NJ:Prentice Hall.

Gavrilov, M., D. Anguelov, P. Indyk, and R. Motwani.
2000. Mining the stock market: Which measure is best ?
In Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD), 487–496. New York, NY: ACM Press.
260
Jurafsky, D., C. Wooters, J. Segal, A. Stolcke, E. Fos-
ler, G. Tajchman, and N. Morgan. 1995. Using a
stochastic context-free grammar as a language model
for speech recognition. In Proceedings of the 1995
IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 189–192.Piscataway,
NJ:Institute of Electrical and Electronics Engineers.

Kearns, M., and L. Ortiz. 2003. The Penn-Lehman
automated trading project. IEEE Intelligent Systems
18(6):22–31.

Last, M., Y. Klein, and A. Kandel. 2001. Knowledge
discovery in time series databases. IEEE Transactions
on Systems , Man , and Cybernetics, 31B(1):160–169.

Law, A. M., and W. D. Kelton. 2000. Simulation modeling
and analysis. 3d ed. Boston, MA: McGraw-Hill.

Malkiel, B. G. 2004. A random walk down wall street. 8th
ed. New York, NY:W.W. Norton & Company.

Mitchell, T. 1997. Machine learning. Boston, MA:
McGraw-Hill.

Pearl, J. 1988. Probabilistic reasoning in intelligent systems
: Networks of plausible inference. San Francisco,
CA:Morgan Kaufmann.

Pynadath, D. V., and M. P. Wellman. 1998. Generalized
queries on probabilistic context-free grammars. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 20(1):65–77.

Ramos, J. R., and V. Rego. 2005. Financial data and infor-
mation. Report in preparation. Technical report CSD,
Department of Computer Science, Purdue University.

Sakakibara, Y., M. Brown, R. Underwood, I.S. Mian,
and D. Haussler. Stochastic context-free grammars
for modeling RNA. In Proceedings of the 27th Hawaii
International Conference on System Sciences, 284–283.
Honolulu: IEEE Computer Society Press.

Steedman, M. J. 1984. A generative grammar for jazz
chord sequences. Music Perception, 2(1):52–77.
6

Rego
Ramos and

Stolcke,A. and S. Omohundro. 1994. Inducing probabilistic
grammars by bayesian model merging. In Proceedings
of the Second International Colloquium on Grammatical
Inference and Applications, 106–118. London, UK:
Springer Verlag.

Sullivan, R., A. Timmermann, and H. White. 1998. Data
snooping, technical trading, rule performance and the
bootstrap. Financial Markets Group, discussion paper
303. London, UK:London School of Economics.

AUTHOR BIOGRAPHIES

JORGE R. RAMOS is a Ph.D. candidate in Computer
Sciences at Purdue University. He received a Masters
degree in Computer Sciences from Purdue University in
2003. His current research interests include simulation
systems, steganography, time series data mining, pattern
recognition and machine learning. His e-mail address is
<jrramos@cs.purdue.edu>.

VERNON REGO is a Professor of Computer Sciences at
Purdue University. He received his M.Sc.(Hons) in Math-
ematics from B.I.T.S. (Pilani), and an M.S. and Ph.D. in
Computer Science from Michigan State University (East
Lansing) in 1985. He was awarded the 1992 IEEE/Gordon
Bell Prize in parallel processing research, and a 1988
DFG German Research Council Network Research Award.
His research interests include parallel & stochastic simu-
lation, probability modeling, distributed computing, soft-
ware, and financial engineering. His e-mail address is
<rego@cs.purdue.edu>.
2607

<jrramos@cs.purdue.edu>
<rego@cs.purdue.edu>

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

