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ABSTRACT 

Currently, there appears to be an over-preoccupation with  
building simulation validity in simulation credibility 
evaluation. However, today’s simulation systems become 
more complex and larger, the only validity metric can’t 
represent simulation credibility, and there is a need for 
other credibility metrics. Therefore, we should rethink the 
basic problem in the simulation community: what are the 
metrics of simulation credibility. In this paper, credibility 
metrics are deeply investigated and presented,  measure-
ment methods for credibility metrics are discussed, a new 
approach to synthesis of credibility metrics is presented, 
and a credibility metrics driven VV&A process is dis-
cussed. 

1 INTRODUCTION 

Model or simulation credibility is the user or decision 
maker’s confidence in the model or simulation, and verifi-
cation, validation, and accreditation (VV&A) is the neces-
sary way to build up model or simulation credibility. Any 
model or simulation must be credible before used. How-
ever, what make up simulation credibility? Which metrics 
can be used to represent and quantify simulation credibility? 

Currently, there appears to be an over-preoccupation 
with  building simulation validity in simulation credibility 
evaluation. However, both the size and complexity of mod-
eling and simulation (M&S) application are growing; the 
domains of application continue to expand; the larger M&S 
projects are requiring increased levels of involvement of 
people with diverse capabilities and background; the ex-
pected lifetime of M&S application is continually increas-
ing (Arthur et al. 1999). All these changes introduce more 
uncertainties and complexities into simulation credibility 
evaluation, which make credibility evaluation more diffi-
cult and make the users more difficult to demonstrate 
whether the simulation is credible. In this case, we cannot 
simply compare the simulation outputs with the real out-
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puts to assess the simulation validity that cannot represent 
simulation credibility yet, and there is a need for other 
credibility metrics. 

Therefore, we should rethink the basic problem in the 
simulation community: what are the metrics of simulation 
credibility. Furthermore, to solve the problem is the all-
important problem for current credibility evaluation.  

The remainder of this paper is organized as follows: 
Section 2 presents the credibility metrics, discusses meas-
urement methods for credibility metrics, and presents the 
approach to synthesis of credibility metrics; Section 3 pre-
sents the credibility metrics driven VV&A process; and 
Section 4 presents the summary.  

2 CREDIBILITY METRICS 

This session will present the definition of credibility met-
rics, discuss measurement methods for credibility metrics, 
and present the approach to synthesis of credibility metrics. 

2.1 Definition of Credibility Metrics 

The credibility of a model or simulation is an expression of 
the degree to which one is convinced that a particular 
model or simulation are suitable for an intended purpose. 
The degree of confidence in the model or simulation is 
only based on some metrics that reflect the property of the 
model or simulation. Based on our experiences and existed 
references, we think that at least five metrics contribute to 
the evaluation of simulation credibility, which are validity, 
correctness, reliability, usability and interoperability. Fig-
ure 1 gives the dependencies between these metrics and 
VV&A. Then these metrics will be in detail discussed. 

2.1.1 Validity 

Validity is defined as the quality of being inferred, deduced 
or calculated correctly enough to suit a specific application 
(Gross 1999). The validation process establishes the valid-
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ity of the model or simulation, and provides a crucial piece 
of evidence to support model or simulation credibility for a 
particular application. Although the validity of a model or 
simulation supports but cannot guarantee its credibility in 
all cases, validity is still the most important metric that 
represents and quantifies simulation credibility (DMSO 
2000). 
 

Credibility

Validity Correctness Reliability Usability Interoperability

Validation Verification

Accreditation

Supervise

Provide evidences for Provide evidences for

 
Figure 1: Dependencies Between Credibility Metrics and 
VV&A 
 

Validity is the basic problem of the study on credibility. 
Previous credibility study basically focused on validity, 
and this can be seen from Figure 2 (Sargent 2000). 
 

 
Figure 2: Simplified Version of the Modeling Process 

 
From Figure 2, validity can be divided into three as-

pects: conceptual model validity, data validity and result 
validity. Conceptual model validity is determining that (1) 
the theories and assumptions underlying the conceptual 
model are correct, and (2) the model representation of the 
problem entity and the model’s structure, logic, and 
mathematical and causal relationships are “reasonable” for 
the intended purpose of the model. Data validity is deter-
mining that data is appropriate, accurate, and sufficient and 
if any data transformations are made, they are correctly 
performed. Result validity is concerned with determining 
that the model’s output behavior has the accuracy required 
for the model’s intended purpose over the domain of its in-
tended applicability (Sargent 2000). 
25
Figure 2 also applies to complex simulation systems, 
but the latter increases the difficulty to quantify validity. 
Therefore, new approaches to measurement of validity of 
complex simulation systems are in demand. The mature of 
fidelity theory improves quantification of validity and a 
new way to measure validity based on fidelity in Figure 3 
is hopeful (Gross 1999). 
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Figure 3: Fidelity Conceptual Framework 

 
In summary, validity is the most important metric that 

contributes to simulation credibility evaluation. Although 
the fidelity theory provides a new way to measure the va-
lidity, this is still an important problem for further study. 

2.1.2 Correctness 

Correctness is dealt with by verification. When using a 
model or simulation, one expects them to be internally 
consistent, correctly described in all their different repre-
sentation forms, and completely consistent with each other. 
All these problems are concerned with correctness. The 
term “correctness” is also used in related fields, e.g., in 
software verification. However, software development is 
only one aspect of M&S, and M&S includes many other 
things, e.g., life simulation and virtual simulation. Thus, in 
the context of verification of models and simulation, the 
concept of correctness is used in a wider sense than in 
software verification (Brade 2003). 

Usually, model or simulation verification provides the 
following evidences for correctness: 
 

• Simulation requirement verification results, 
• Simulation design verification results, 
• Simulation implementation verification results. 

 
From the nature of verification and validation, correct-

ness and validity are the  basic elements of credibility. 
However, they are not sufficient for credibility evaluation 
in the context of complex simulation systems. 
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2.1.3 Reliability 

Advances in computing technologies are enabling the 
simulation community to assume more ambitious require-
ments in order to increase the overall accuracy and realism 
of simulation exercises. A complex simulation system of-
ten consists of many subsystems or components, which are 
interconnected in a local area network or in a wide area 
network. Such a complex simulation environment mainly 
includes network, simulation host platforms, operating sys-
tem, run-time support software and simulation application. 
On the one hand, this complexity causes such effects as 
communication delays, noise or sudden cut-offs; on the 
other hand, such a complex system hides many errors and 
faults. All these disadvantages momentously affect the 
simulation results, and consequently affect the use’s confi-
dence in simulation results. Credible simulation outputs are 
based on a reliable simulation system. Based on these con-
siderations, we think that reliability is one of important 
metrics that represent and quantify simulation credibility. 
For complex simulation systems, reliability should be 
taken into account in two levels: system level reliability 
and subsystem level reliability, and system level reliability 
is based on subsystem level reliability. Then, we will 
deeply discuss how to measure reliability of complex simu-
lation systems. 

Usually, reliability is defined as the ability of a product 
to perform a required function under stated conditions for a 
stated period of time, which is measured by reliability 
model. Reliability model refers to diagram and mathemat-
ics model that are used to predict or estimate system reli-
ability. By reliability model, one can decompose system 
reliability into reliability of simple components, and then 
quantitatively predict, allocate, estimate, and evaluate reli-
ability. Bruzzone presented a reliability example concerned 
with complex HLA simulation systems (Bruzzone et al. 
2002), which can give us some suggestions on how to 
measure reliability of complex simulation systems. 

2.1.4 Usability 

Our definition of simulation usability is not framed in 
terms of “ease of simulation use”, but rather in terms of 
"reduced probability of simulation misuse". This opera-
tional definition stems from the twin observations that 
simulations are credible only within a well-defined usage 
context, and only when they are properly used within that 
context. Any simulation attribute that reduces the probabil-
ity of simulation misuse enhances its credibility within a 
given context (Muessig et al. 2000). Thus we consider us-
ability as one of  important metrics to represent and quan-
tify credibility. 

By usability, then, we refer to that collection of simu-
lation user support features that facilitate credible use of 
the simulation and reduce the probability that it will be 
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employed inappropriately. Examples of such features are: 
training in proper simulation use and interpretation of out-
puts; accurate and comprehensive simulation documenta-
tion; on-call technical support for simulation users; simula-
tion user groups that meet on a regular basis; the existence 
and implementation of a sound configuration management 
process for the simulation, both during and after develop-
ment; the availability of trained simulation operators and 
analysts who can run the simulation and interpret its out-
puts correctly; and any other support feature that can help 
simulation users ensure credible use of the simulation.  

Note that simulation usability is a necessary, but not 
sufficient, condition for simulation credibility. No simula-
tion user support feature, no matter how well designed to 
minimize the probability of simulation misuse, will militate 
against improper use of the simulation (Muessig et al. 
2000). 

2.1.5 Interoperability 

As described above, complex simulation systems often 
connect lots of different kinds of subsystems. On the one 
hand, this expands the application range and purpose of 
simulation; on the other hand, this makes interoperability 
between simulation systems more difficult. Therefore, 
DMSO bring forward “fostering of the interoperability, re-
use, and affordability of M&S” (DODD 1994). Now inter-
operability has become an important but difficult problem 
in simulation development and validation. How the inter-
operability is realized heavily affects how the users’ needs 
are met, therefore, interoperability has become one of im-
portant metrics that affect credibility. 

At present, there is not a commonly accepted defini-
tion of interoperability. DMSO gives below definition “the 
ability of a model or simulation to provide services to and 
accept services from other models and simulations, and to 
use the services so exchanged to enable them to operate ef-
fectively together” (DMSO 1997). Like many other defini-
tions of interoperability, this definition still doesn’t address 
the basic issues that simulation focuses on. Interoperability 
is much more than data exchange. Interoperability has to 
include all the elements that make it possible for the inter-
connected models and simulations to operate effectively 
together, such as the context of the problem being ad-
dressed, the syntax and semantics of the data being pro-
vided and the level of detail and fidelity consistent across 
the entire simulation system (Clark et al. 2001). 

In order to measure interoperability, the elements of 
interoperability need to be understood. Therefore, below 
interoperability framework is developed, shown in Figure 4, 
which decomposes interoperability into three levels: physi-
cal, technical, and functional. 

The physical interoperability components refer to real, 
physical objects that have specific geo-spatial coordinates 
in real-time, including networks, nodes, circuits, equipment, 
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and platforms which are used to implement physical trans-
portation of simulation data. Interoperability of this level 
mainly includes hardware (e.g., network cards) compatibil-
ity, network protocols compatibility, and operating systems 
compatibility. 
 

 
Figure 4: Interoperability Framework 

 
The technical interoperability components include 

rules, services, interfaces, and standards, which are used to 
realize information and data management, and date ex-
change specifications definition. The interoperability of 
this level addresses Coordinated services (e.g., time man-
agement services, synchronization point services, save and 
restore services, and data distribution services), and stan-
dard (e.g., SOM and FOM) compliance. 

The functional interoperability components include 
entities and environments that are used to realize the simu-
lation purpose. This level in fact addresses the problems of 
substantial interoperability which includes interoperability 
among entities, and interoperability among entities and en-
vironments. Interoperability among entities includes entity 
level of representation, entity attribution, entity behaviors, 
temporal resolution, and spatial resolution. Interoperability 
among entities and environments include the effects of en-
vironment on entities, and the effects of entities on envi-
ronment (Dahmann et al. 1999). 

2.2 Measurement of Credibility Metrics 

Many methods exist for measuring credibility metrics, and 
in the followings, only two kinds of these methods are dis-
cussed. 

2.2.1 Statistical Techniques 

The statistical techniques require the system being mod-
eled to be completely observable, i.e., that all data required 
for model validation can be collected from the system. The 
model is validated by using the statistical techniques to 
compare the model output data with the corresponding sys-
tem output data after the model is run with the same input 
data as the real system. The classical and widely used sta-
tistical techniques are confidence interval and hypothesis 
testing. Statistical techniques provide objective measure-
ment for credibility metrics, so they should be made full 
use of. However, it is frequently not possible in practice to 
use either of these techniques because (a) the statistical as-
sumptions required cannot be satisfied or only with great 
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difficulty (assumptions usually necessary are data inde-
pendence and normality) and/or (b) there is insufficient 
quantity of system data available that causes the statistical 
results not to be “meaningful” (Sargent 2000). 

2.2.2 Expert Assessments 

Although statistical techniques are the most effective 
methods, expert assessments are the most widely used 
methods. Classical expert assessment methods contain in-
spection, walkthrough, Turing test, and face validation, 
which are used throughout the life cycle of simulation de-
velopment. This kind of validation technique is widely 
used both because its capabilities can provide insight about 
model and simulation capabilities and because adequate 
real world (experimental) data are often not available to 
allow robust quantitative validation. 

To make expert assessments more effective, Pace in 
detail discusses the ways that experts are selected, man-
aged, and used (Pace and Sheehan 2002). Besides, the 
fuzzy set theory can be used in acquiring expert assessment 
opinions, and rough set theory can be used in simplifying 
expert assessment opinions and credibility metrics. 

2.3 Synthesis of Credibility Metrics 

After measurement of credibility metrics, lots of certain 
and uncertain assessment results are produced, and then we 
need synthesize these assessment results in order to obtain 
the ultimate assessment values for each credibility metrics. 
As these assessments results are  the mixtures of uncertain 
and certain information, we find that the Dempster Shafer 
(D-S) theory (Shafer 1976) is an effective method to syn-
thesize these results. 

The D-S theory is based on the specification of a triple 
(S, £, m), where (i) S is a frame of discernment that con-
tains everything that could occur in the particular universe 
under consideration, (ii) £ is a countable collection of sub-
sets of S, and (iii) m is a function defined on subsets of S 
such that m(E )> 0 if E�£, m(E)=0 if E⊂S and S∉ £, and 
ΣE�£ m(E)=1. For a subset E of S, m(E) characterizes the 
amount of likelihood that can be assigned to E but to no 
proper subset of E. 

In the terminology of the D-S theory, (i) S is the sam-
ple space or universal set, (ii) £ is the set of focal elements 
for S and m, and (iii) m(E) is the basic probability assign-
ment (BPA) associated with a subset E of S. 

The belief, Bel(E), and plausibility, Pl(E ), for a subset 
E of S are defined by Bel(E)= ΣU�E m(U) and Pl(E)= 
ΣU∩E≠Φ m(U). 

In concept, Bel(E) is a measure of the total amount of 
belief in E and not the amount committed precisely to E by 
the evidence corresponding to the belief function m. The 
quantity Pl(E) expresses the plausibility of E, i.e., the 
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maximum extent to which the current evidence could allow 
one to believe E.  

The information contained in Belief concerning a 
given subset E may be conveniently expressed by the Be-
lief interval [Bel(E), Pl(E)]. 

By means of the Bel(E) and Pl(E), uncertain informa-
tion can be represented in Figure 5. Therefore, the Belief 
interval is also an effective way to represent uncertain ex-
pert opinions in credibility evaluation. 
 

 
Figure 5: Representation of Uncertain Information 

 
Let Bel1, Bel2 and m1, m2 denote two belief functions 

and their corresponding BPAs, respectively. And the focal 
elements are B1,…, BI, and C1,…, CJ, respectively. The D-S 
combination rule defines a new BPA, denoted m1⊕m2, 
which represents the combined effect of m1 and m2. The 
corresponding belief function, denoted Bel1⊕Bel2, may 
then be computed from m1⊕m2 by definition of a belief 
function. And m1⊕m2 is expressed as 
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The D-S theory can effectively deal with certain and 
uncertain information, so it is an effective way to combine 
all kinds of opinions in credibility evaluation. In order to 
apply the D-S theory to credibility evaluation, we begin at 
a definition of the frame of discernment S. For example, 
we define S as (V1, V2, V3, V4)=(higher, high, low, lower) 
for the validity metric and its sub-metrics. Then we de-
compose the credibility metrics into their sub-metrics, 
which is shown in Figure 6. Finally, we use the D-S theory 
to  synthesize the expert opinions and then synthesize the 
sub-metrics. Figure 7 presents the approach to applying the 
D-S theory to credibility evaluation. 

 

 
Figure 6: Credibility Evaluation Model 
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Figure 7: Approach to Applying the D-S Theory to Credi-
bility Evaluation 

3 CREDIBILITY METRICS DRIVEN  
VV&A PROCESS 

We strongly believe the above five credibility metrics can 
effectively represent and quantify simulation credibility. 
As the establishment of confidence in the simulation is the 
purpose of VV&A, we present below credibility metrics 
driven VV&A process, shown in Figure 8, under the guid-
ance of which, we can more effectively perform simulation 
VV&A and credibility evaluation.  
 

Measure
credibility metrics

Define
credibility metrics

Develop
VV&A plan

perform
V&V plan

Accreditation

Synthesize
V&V results

Synthesize
credibility metrics

Credibility metrics

Verification and validation (V&V)  
Figure 8: Credibility Metrics Driven VV&A Process 

3.1 Develop VV&A Plan  

In the beginning, by means of the simulation purpose and 
requirements, the VV&A agent, experts, and users together 
define required level of credibility, and further define  the 
levels of credibility metrics. Then the credibility metrics 
are decomposed into measurable sub-metrics. This process 
can be done through the dendritic analysis structure 
(Youngblood and Senko 2002). For example, the interop-
erability metric is decomposed into functional, technical, 
and physical aspects. Then the functional interoperability is 
decomposed into interoperability between entities and enti-
ties, interoperability between environments and environ-
ments, and interoperability between entities and environ-
ments. Besides, this decomposition can be further 
performed. 

According to the definition and decomposition of 
credibility metrics, the VV&A plan is developed. 
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3.2 Perform V&V Plan 

In this phase, the VV&A agent performs the V&V plan, 
measure the sub-metrics of credibility, and collect all of 
valuable assessment results as the sources of the values of  
sub-metrics of credibility.  

3.3 Synthesize V&V Results 

In this phase, by means of the collected assessment results, 
the VV&A agent synthesize the credibility metrics and 
V&V results, form the final documents, and then present 
these documents to the accreditation agent for a accredita-
tion decision. 

As the credibility metrics driven VV&A process is 
very complex, such tools as metrics definition tool, data 
collection tool and statistics tool have to be used to assist 
in this process. At present, we have developed the CSCW 
integrated tool platform to assist in this process (Zhang et 
al. 2002). 

The credibility metrics driven VV&A Process has been 
applied to some large complex simulation system, and it 
has been proved that this process has below advantages: 
 

• This process effectively implements the definition, 
measurement, and synthesis of simulation credi-
bility metrics. 

• This process makes the VV&A agent focus on the 
most interested things, thus reducing cost, but in-
creasing efficiency. 

4 CONCLUSIONS  

In this paper, we discuss a basic problem in the simulation 
community: what are the metrics of simulation credibility. 
Solving this problem is essential for current credibility 
evaluation. The approach to definition, measurement, and 
synthesis of credibility metrics and the credibility metrics 
driven VV&A process presented in this paper have been 
applied to some large complex simulation system and 
proved effective. 
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