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ABSTRACT 

It is well known that randomness is present in daily life and 
that often it is desirable to recognize inherent characteris-
tics of this randomness.  Probability theory describes a 
quantification of the uncertainty associated with this ran-
domness.  Based on probability theory, the present research 
describes an alternative methodology to the traditional sta-
tistical method of the recognition of the probabilistic mod-
els that best represent randomness.  The main motivation 
of the methodology is to keep the largest possible amount 
of information present in the data.  This methodology dif-
fers from the traditional statistical method, mainly in as-
pects related to the division of the data into classes when 
the data are continuous. 

1 INTRODUCTION 

The Petrobras Research Center (CENPES), in partnership 
with the Federal University of Santa Catarina (UFSC), de-
veloped a tool named E&PRisk to support decisions con-
cerning drilling and completion of petroleum wells. 

E&PRisk performs Monte Carlo simulation and re-
lated statistical analysis to assist in the evaluation of the 
total time necessary for, and the risks with, the construction 
of a well.  It also assists in decision making with regard to 
the technological alternative to be used. 

The simulated operation time of a petroleum well pro-
vides an estimate of the total time of its construction. The 
time of each operation is expressed by a probability distri-
bution model that describes its randomness. 

The following research was elaborated for the con-
struction of a built-in tool for E&PRisk to recognize the 
probability distribution models that best represent the ana-
lyzed data. 

This document presents some of the related statistical 
concepts, the proposed methodology, and its implementa-
tion.  The document also describes the obtained results and 
their validation. 
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2 PROBABILITY 

Probability theory analyzes processes that involve variabil-
ity and randomness, applying mathematical models to fa-
cilitate analysis (Barbetta 2004). 

Probability theory is empirical; the theory is based on 
observation.  Probability theory describes what occurs in 
many proofs, and should utilize the results of many proofs 
in the effort to estimate probability (Moore and McCabe 
1999, Montgomery and Runger 1999). 

In probability, or probability models, there are two as-
pects to consider.  The first is related to the intuition used 
to make decisions based on facts that have a high probabil-
ity of occurring.  For example, if the sky is cloudy, then 
there is a considerable chance of rain, and one should carry 
an umbrella.  The second aspect is the inherent uncertainty 
of the decisions that can be taken with regard to a specific 
problem.  For example, even if the sky is very cloudy, it is 
possible that it will not rain, at least while one is outside. 

Some decisions become easier if it is possible to quan-
tify the uncertainty associated with each fact.  Probability 
theory allows a quantification associating uncertainty to 
one or more facts, therefore, is extremely useful in decision 
making (Barbetta 2004). 

Thus, in modeling a process with uncertainty, it is 
necessary that the variability of the randomness be repre-
sented by a probability distribution of the associated vari-
ables. 

2.1 Random Variable 

A random variable is a variable, usually represented by X, 
that has an unique random numerical value for each result 
of an experiment.  The word “random” indicates that the 
value is only known after the experiment (Triola 1998). 

Quantitative variables are divided into two categories, 
discrete and continuous. 

A discrete random variable admits a finite number of 
values or has a countable quantity of values (Triola 1998). 
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A continuous random variable can take an infinite 
number of values, and these values can be associated with 
measurements on a continuous scale, so there will be no 
gaps or interruptions (Montgomery and Runger 1999). 

2.2 Frequency Distribution 

One of the first steps of data mining is to calculate the fre-
quency distribution of each variable, especially when there 
are a great number of observations (n). 

The frequency distribution consists of data organiza-
tion according to the occurrences of the different observed 
results (Barbetta 2004).  

The frequencies can be presented in absolute, relative, 
or cumulative form.  They are presented in a table or visu-
alized in a graph format.  For discrete variables, the col-
umn graph is the most used, and for continuous variables, 
the histogram is the main graphical presentation. 

The traditional graphical presentation of discrete vari-
ables is to plot each value on the x axis and its frequency 
on the y axis.  For continuous variables, generally, the total 
data width is divided into intervals, denominated as 
classes.  Then the histogram is plotted with the minimum 
and maximum values of the classes on the x axis, and their 
respective frequencies on the y axis. 

2.3 Probability Distribution 

Besides identifying values of a random variable, frequently 
a probability can be attributed to each one of these values.  
When all values of a random variable and its respective 
probabilities are known, this creates a probability distribu-
tion. 

A probability distribution represents the possible val-
ues and the probability of each value of a random variable 
(Triola 1998). 

For a discrete random variable X, with possible val-
ues nxxx ,...,,... 21 , the probability function is: 

 
 )()( ixXPixf == . (1) 

 
A graphical representation is illustrated in Figure 1. 
 

 
Figure 1: Graphical representation of the probability distri-
bution of a discrete random variable X 
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The cumulative distribution function (CDF) is another 
form used to represent the probability distribution of a ran-
dom variable.  For a discrete random variable, the CDF is 
defined as: 

 
 ∑

≤
=≤=

xix
ixfxXPxF )()()( . (2) 

 
Its graphical representation is shown in Figure 2. 
 

 
Figure 2: Graphical representation of the cumulative prob-
ability distribution of a discrete random variable X 

 
For a continuous random variable X, the probability 

distribution is called the probability density function and is 
defined as: 

 
 0)( ≥xf , (3) 

 ∫
∞

∞−
= 1)( dxxf . (4) 

 
A histogram is an approximation of the probability 

density function, as illustrated in Figure 3.  For each histo-
gram interval, the bar area is equal to the relative frequency 
(ratio) of the variable values in the interval.  The relative 
frequency is an estimate of the probability that the values 
contained in the interval will occur. 

 

 
Figure 3: Histogram of the probability density function of a 
continuous random variable X 

 
The CDF of a continuous random variable X on the in-

terval ∞<<−∞ x  is: 
 

 ∫
∞−

=≤=
x

dxxfxXPxF )()()( . (5) 
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Its graphical representation is illustrated in Figure 4. 
 

 
Figure 4: Graphical representation of the cumulative prob-
ability distribution of a continuous random variable X 

 
Probability theory offers some theoretical models of 

probability distribution, for example, gamma, exponential, 
weibull, beta and normal (Law 1991, Jain 1991). 

Thus, from a set of observed values of a variable, one 
seeks to discover which model of probability can best rep-
resent these data.  This probability model recognition proc-
ess is a statistical test called Goodness-of-fit Test. 

3 GOODNESS-OF-FIT TEST 

The statistical tests are classified into two categories, 
the parametric and nonparametric tests. 

The parametric tests suppose that data follows a de-
terminate probability distribution.  However, the nonpara-
metric tests are used when the assumptions needed to apply 
the parametric tests are not satisfied. 

The goodness-of-fit tests are nonparametric tests.  The 
objective of a goodness-of-fit test is to verify if the data 
from one sample behave according to a theoretical distribu-
tion (Barbetta 2004). 

The chi-square goodness-of-fit test can be applied 
when one studies distributed data in classes and one has an 
interest in verifying whether the observed frequencies 
(sample data) in the K different classes ( )KiiO ,...,2,1, =  
are significantly distinct from a set of K expected frequen-
cies (probability distribution) ( )KiiE ,...,2,1, = .  The hy-
potheses are: 

 
iEiOH =:0  for each Ki ,...,2,1= , 

iEiOH ≠:1  for some Ki ,...,2,1= . 
 
The result of this test, called χ2, is a measure of the 

distance between the observed and the expected frequen-
cies of each class (Barbetta 2004).  Its expression is given 
by: 

 

 
( )

∑
=

−
=

K
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If there is a fit (H0 is true), the observed frequencies 
must be close to the expected ones, causing a small value 
for χ2: the obtained variations would be only accidental.  
However, if there is no fit (H1 is true), differences between 
the observed and the expected frequencies could be large, 
resulting in a large value for χ2: it is less probable that the 
variations have been accidental. 

3.1 The p-value 

Given a hypothesis H0 and a sample data set, the p-value 
reflects the tolerated probability of rejecting H0 even when 
H0 is, in fact, true.  The p-value is called the significance 
and is obtained from the data sample.  A very small p-
value constitutes evidence against the H0 hypothesis. 

In this research, when it is desired to accept or reject 
some hypothesis, it is common to establish, in the research 
planning stage, the tolerable probability of incurring an er-
ror in rejecting H0, even when H0 is true.  This value is 
known as the significance level of the test and is denoted 
by α.  It is common to adopt the significance level α = 
0.05.  But when more assurance is necessary in the affir-
mation of H1, α can adopt low significance levels, such as 
α = 0.01. 

The following general decision rule of the statistical 
test is applied once the α significance level is established: 

 
 α>p   accept H0, 

α≤p   reject H0. 

4 METHODOLOGY 

We now present the concepts that support this research.  
Traditional methods to select input for probability dis-

tributions include some difficult steps, especially those re-
lated to the choice of the number of intervals or classes (or, 
equivalently, their width) (Law 1991).  If few classes are 
adopted, then the distribution is presented in a much re-
duced form, not evidencing some relevant characteristics 
of the variable.  On the other hand, a distribution with 
many classes cannot enhance relevant aspects of the fre-
quency distribution (Barbetta 2004). 

To solve this difficulty, we opt to analyze the raw data, 
i.e., without grouping them.  In this approach, the use of a 
cumulative distribution function (CDF) becomes obliga-
tory.  This function allows one to work with the individual 
values. 

We made three changes to the traditional chi-square 
goodness-of-fit test. 

First, when the observed data (n) increase, the dis-
tance, χ2, also tends to increase, constituting evidence for 
the rejection of the tested model (tends to H1).  Therefore, 
from the observed data (n), a sample (ng) was extracted to 
calculate the distance, χ2, seeking a balance between the 
data sample (ng) and the distance, χ2, while keeping the 
26
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data information intact.  For example, see Table 1.  The 
calculations of this procedure are demonstrated in the im-
plementation section. 
 
Table 1: Samples to calculate of the distance χ2. Coeffi-
cient equals 95% and sample error margin equals 2.5%. 

n ng 
10 10 
30 29 
50 48 
60 58 
80 76 

100 94 
150 137 
200 177 
500 377 
900 568 
1000 606 
2000 869 

 
Secondly, traditionally the chi-square goodness-of-fit 

test follows approximately a chi-square distribution with 
K-1 degrees of freedom, where K is equal to the number of 
classes.  The proposed methodology in this research does 
not use data grouped in classes, instead each class is repre-
sented by only one value, therefore the chi-square distribu-
tion has n-1 degrees of freedom. But, as described above, a 
data sample was extracted (ng) from the set of observed 
values (n), therefore, the distribution contains ng-1 degrees 
of freedom. 

Thirdly and finally, to calculate the significance prob-
ability (p-value), the chi-square distribution was approxi-
mated by a normal distribution.  It was verified that as the 
degrees of freedom (ng-1) increase, the chi-square distribu-
tion becomes symmetrical, tending toward a normal distri-
bution. 

5 IMPLEMENTATION 

For each continuous variable X in the data sample, the fol-
lowing five steps are performed: 
 

1. (Frequencies Distribution): Read the data sample 
in ascending order and calculate the frequency 
distribution, including the absolute observed fre-
quency, absolute cumulative frequency, and rela-
tive cumulative frequency. 

2. (Summary of the data): Calculate the size of the 
observed data (n), mean ( x ), minimum, maxi-
mum, standard deviation (s) and variance (s2). 

3. (Probability distribution): In this research, the 
tested theoretical models are: uniform, exponen-
tial, triangular, normal and lognormal (Law 1991, 
Jain 1991).  Using the CDF, the probability distri-
bution of each model is calculated.  For normal 
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and lognormal models, which do not have a 
closed form CDF, a numerical integration method 
is used, known as Trapeze Rule to calculate the 
CDF (Leithold 1990). 

4. (Goodness-of-fit Test): Before starting the test, it 
is necessary to do the following calculations for 
sample size: 

 

25.0*
2
⎟
⎠
⎞

⎜
⎝
⎛=

sem
zcs , (7) 

 
 where: 
  cs = calculated size, 
  z = coefficient, 
  sem = sample error margin, 
  
 then: 
 

⎟
⎠
⎞

⎜
⎝
⎛+

=

n
cs

csng
1

, (8) 

 
 where: 
  ng = sample size of goodness-of-fit test, 
  n = data sample size, 
  cs = calculated size, 
 
 and: 
 

ng
nd = , (9) 

 
 where: 
  d = delta, 
  ng = sample size of goodness-of-fit test, 
  n = data sample size. 
 
 Starting the calculation of the χ2 distance, as ex-
pressed in (6), the value of the absolute cumulative 
frequency is used as Oi.   The value of the CDF is used 
as Ei, transforming it to the absolute form: 
 

nxFiE *)(= . (10) 
 
 where: 
  n = data sample size. 
 
 First, a sum (s_oi) for the first Oi values, and an-
other sum (s_ei) for their respective Ei, are calculated.  
This occurs as long as: 
 

5_ <ies . (11) 
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 For later use, the stop position (sp) is saved from 
one of the sums (s_oi or s_ei).  These sums are taken as 
the first term of the distance, χ2. 
The second term of distance, χ2, is composed of the 
position values: 
 

dsppv += . (12) 
   
 where: 
  pv = position value, 
  sp = stop position in the vector, 
  d = delta. 
 
 The next terms are the position values given in 
(13), successively until the end of the data. 
 

dpvpv += , (13) 
  
 where: 
  pv = position value, 
  d = delta. 
 
5. (The p-value calculation): The p-value is calcu-

lated only for models with distance: 
 

lux _2 ≤ , (14) 
 
 for: 
 

1−= ngdf , (15) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛+= 2*15_ σμlu
, (16) 

df=μ , (17) 

df*22 =σ , (18) 
 
 where: 
  u_l = upper limit, 
  df = degrees of freedom, 
  ng = sample size of goodness-of-fit test, 
  µ = mean, 
  σ2 = variance. 
 
 If the condition of (14) is not satisfied, the tested 
model is rejected.  This means that, p = 0.0001.  Oth-
erwise, the distance, χ2, is divided in 100 intervals of 
delta 0.01*u_l, these intervals are assumed as the val-
ues of x-axis and applied to the normal density func-
tion with the parameters (mean and variance) of (17) 
and (18). 
 To obtain the area (ar), an integration sum of the 
results generated by the normal density function is ob-
252
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tained (numerical integration method, Trapeze Rule 
(Leithold 1990)).  Finally, the p-value is obtained: 
 

 arp −= 1 . (19) 
 
 To conclude, the following hypotheses are elabo-
rated: 
 
 H0: there is no difference between the observed 
data and the theoretical model tested; 
 H1: there is a difference. 
 
Getting the p-value as a reference, the tested models 

are ordered from the best-fitting to the worst-fitting, as in 
Figure 5. 

 

 
Figure 5: Interface for the goodness-of-fit test from the 
software developed in this research 

 
Remember that a very small p-value constitutes evi-

dence against the hypothesis H0 (Triola 1998).  This means 
that the tested model does not represent the observed data. 

To visualize the distribution graphs, a histogram is 
build with the relative cumulative frequencies and a line 
graph (over the histogram) with the results of the cumula-
tive distribution function of the tested model, as can be 
seen in Figure 6.  Thus it is possible to visualize and verify 
whether there is fitting or not. 

 

 
Figure 6: Graphics interface of the software developed in 
this research 
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As observed on Figures 5 and 6, software was devel-
oped (C++) based on the proposed methodology in this re-
search.  The objective of this software is to recognize prob-
abilistic patterns of continuous data. 

6 COMPARISON OF METHODOLOGIES 

We performed a comparative test between our proposed 
methodology (PM) and the traditional chi-squared method-
ology.  We utilized Input Analyzer, a statistical software 
application, to generate nine random samples (n=30, 200, 
2000) for each model.  Using the p-value as our measure of 
fit, we compared the results of PM, Input Analyzer, and 
Statistica (another statistical software application) on the 
data (Rockwell 2000, StatSoft 2001). 

We present the results of this test in Table 2.  Observe 
that the significance level α = 0.05. 
 

Table 2: Results of the test 
  p-value 

Model 
(Parameter) 

Sample 
(n) PM Input Statistica 

0.0001 0.0545 0.0093 
0.2077 0.7500 0.0688 30 
0.9983 0.2560 0.1687 
1.0000 0.1500 0.8603 
0.0001 0.2570 0.0484 200 
1.0000 0.6000 0.5410 
1.0000 0.7500 0.9064 
1.0000 0.7500 0.6208 

Uniform 
(2 ; 12) 

2000 
1.0000 0.6380 0.3872 
0.9969 0.5700 0.5167 
0.9849 0.0050 0.9288 30 
0.9996 0.3780 0.8700 
1.0000 0.6790 0.2103 
1.0000 0.4860 0.6390 200 
1.0000 0.3180 0.1824 
1.0000 0.7110 0.9109 
1.0000 0.7420 0.2306 

Exponential 
(6) 

2000 
1.0000 0.4460 0.7406 
0.9761 0.0050 0.0217 
0.9991 0.0050 0.2093 30 
0.9991 0.0050 0.7120 
1.0000 0.2670 0.5034 
1.0000 0.6850 0.3400 200 
1.0000 0.6820 0.1768 
1.0000 0.1940 0.1914 
1.0000 0.3670 0.2672 

Normal 
(8 ; 2) 

2000 
1.0000 0.6740 0.9208 
0.9991 0.0050 0.0616 Lognormal 

(0.6 ; 1) 
30 

0.9635 0.0050 0.7173 
252
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0.0404 0.0050 0.0001 
1.0000 0.0050 0.5849 
0.9999 0.5790 0.8214 200 
0.0001 0.0194 0.1253 
1.0000 0.6380 0.4164 
1.0000 0.1100 0.4456 2000 
1.0000 0.0476 0.0506 
0.0849 0.0651 
0.6188 0.2810 30 
0.0001 0.2870 
0.0001 0.0230 
0.6774 0.7500 200 
0.0001 0.5040 
0.9998 0.2480 
0.0001 0.3780 

Triangular 
(4 ; 10 ; 16) 

2000 
1.0000 0.2270 

Not ap-
plicable. 

 
Analyzing Table 2, the PM recognizes the data pattern 

of all cases of the exponential and normal models.  The PM 
fails in some cases, for example, uniform, triangular, and 
lognormal models. 

The gray cells indicate the cases where there are di-
vergences between the applications tested.  After a detailed 
analysis of these divergent cases, we observed that the ran-
dom fluctuations in the process of the generation of the 
data influenced the estimates of the parameters.  The PM 
has high sensitivity to the estimates of the models’ parame-
ters, because the PM works with the individual data (with-
out grouping). 

This high sensitivity is observed in the cases of the tri-
angular model, which has three parameters. The PM failed 
to recognize the triangular model more often than any other 
model (i.e. p-value ≤ 0.05).  In general, the models have 
one or two parameters.  On the other hand, in the cases 
where the PM does not recognize the triangular pattern, it 
suggests the normal model, which it is acceptable. 

It is possible to verify that in the majority of the tested 
models, the PM presents the best p-value.  Remember that 
a very small p-value signifies rejection of the tested model. 

7 FINAL REMARKS 

This research details the study of a methodology, an alter-
native to the traditional method, for recognition of models 
of probability distribution, using the chi-square test. 
 The proposed methodology possesses the following 
characteristics: 
 

1. The methodology works without grouping the 
data.   In this sense, the methodology does not 
suffer some of the disadvantages that the tradi-
tional method presents, for example, the lack of 
representation of data (median values of each 
9
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class) and the difficulty of specifying a satisfac-
tory quantity of classes to be utilized in the group-
ing of data. 

2. The methodology utilizes the cumulative distribu-
tions.   This characteristic is necessary because the 
cumulative form permits the methodology to work 
with individual values. 

3. The methodology calculates the significance (p-
value) by approximating the normal distribution 
instead of the chi-squared distribution.  In this 
manner, the methodology has a mathematical ad-
vantage, because the normal function is easier to 
process than the chi-squared function.  On the o-
ther hand, it has a disadvantage with respect to 
symmetry, which can be lacking for small sample 
sets. 

4. The methodology permits a systematic selection 
of values to calculate the χ2 distance.  In addition 
to this advantage the methodology does not dem-
onstrate difficulty in the grouping of data points.  
Furthermore, the systematic selection of data po-
ints to participate in the χ2 distance calculation  
also differentiates this methodology from the tra-
ditional method. 

 
Comparative tests were done with the objective of 

validating the precision of the implemented software with 
respect to others software (Rockwell 2000, StatSoft 2001) 
that also performs recognition of probability models using 
the traditional chi-squared method of data fitting. 

We observed that the PM had excellent performance 
with respect to the normal, exponential, lognormal, and 
uniform distributions, compared to other software applica-
tions.  However, the PM presented limitations with respect 
to the triangular distribution. We believe that this must be 
due to the estimates of the parameters of this distribution. 
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