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ABSTRACT 

FreeSML is a Java-based simulation language, providing 
support for process-oriented and event-oriented simulation, 
along with limited support for continuous-variable simula-
tion. The core simulation engine is indirectly derived from 
that of Silk 1.3, and the language’s public interface is 
based heavily on those of Silk and SSJ. Unlike earlier lan-
guages, FreeSML was developed with the specific intent 
that it be released as an open-source package, and has been 
released under the Free Software Foundation’s Lesser 
General Public License. 

1 INTRODUCTION 

1.1 Motivating Application 

Beginning in 2001, analysts at the MITRE Corporation’s 
Center for Advanced Aviation System Development 
(CAASD) undertook the development of a new discrete-
event simulation of air traffic control (ATC), focusing on 
the actions and interactions of controllers managing en-
route traffic in the National Airspace System (NAS). Of 
primary interest were the effects of changes in operating 
procedures and information awareness—at the level of in-
dividual en-route controllers and controller teams—on the 
overall performance of the NAS. 

In the initial version of this new ATC simulation, each 
air traffic controller (or more correctly, each ControlTeam) 
was associated with a sector of en-route airspace, and pos-
sessed a Resource instance representing their attention. 
Tasks requiring attention from the ControlTeam were 
placed in a priority queue, and the highest-priority waiting 
task was removed from the queue to be processed when the 
attention became available. 

As the new simulation took shape, the development 
team recognized a problem with this approach. In extant 
simulation languages, the ordering of elements in priority 
queues is determined based on the priority of each element 
at the time it is added to the queue. The priorities of wait-
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ing tasks, however, are not static and can vary with 
changes in system state. 

To better reflect these inherent priority variations, it was 
determined that another approach was required. The most 
natural approach (from a simulation developer’s standpoint) 
would be to utilize priority queues where the ordering of en-
tries would be automatically updated, based on the current 
priorities reported by the queue’s elements. Vaucher (1971) 
mentioned such an approach in passing, but no record exists 
in the literature of any previous implementation. 

This approach was not, however, used in the new ATC 
simulation, due to lack of management support for the re-
quired development effort. This author’s involvement with 
the ATC simulation project ended in 2003, and we elected 
to develop this new approach independently, in conjunc-
tion with our doctoral research (DiLeo 2005b). 

1.2 Modifications to Silk 1.3 

At the beginning of the new ATC simulation effort at 
CAASD, the development team selected Silk (Healy and 
Kilgore 1997) as the implementation language for the new 
simulation. Version 1.3 of the language had been released 
in early 2001, and was adopted (in conjunction with the 
Java 2 Software Development Kit, version 1.3) as the de-
velopment platform. 

Deployment of the new simulation was anticipated on 
several platforms, including Web-based execution. Unfor-
tunately, Silk 1.3 as released did not function correctly on 
all platforms; reliable execution was assured only on Win-
dows 2000 systems. As part of a cooperative agreement be-
tween CAASD and Richard Kilgore (then of ThreadTec, 
Inc.), this author developed a variant of the Silk 1.3 execu-
tive (dubbed “Silk 1.4-MITRE”) which executes correctly 
on all Java 2 platforms on which it has been tested. 

Under the terms of CAASD’s agreement with Dr. 
Kilgore, it was stipulated that the changes made by this au-
thor (using public funds) must eventually be incorporated 
into an open-source language, for use by the wider simula-
tion community. 
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1.3 Design Considerations 

As a result of the parallel developments described in the 
preceding sections, we found ourselves in possession of 
two “chunks” of software: a simulation executive derived 
from Silk 1.3 (i.e., “Silk 1.4-MITRE”) and a collection of 
data structures and algorithms supporting state-dependent 
and stochastic “reordering” of event sets and priority 
queues. By themselves, these “chunks” of software did not 
constitute a complete language; rather, they implemented 
specific elements that could be useful when incorporated in 
a complete language implementation. 

In the absence of an active open-source simulation lan-
guage effort to which these elements could be contributed, 
we elected to develop a complete language incorporating 
them. We have named this new language FreeSML, to em-
phasize its implementation as free software, released under 
the GNU Lesser General Public license (LGPL). 

It was never intended that an entirely new language be 
developed; rather, we sought to incorporate our new con-
tributions into an established, familiar framework. For this 
reason, we designed the FreeSML language to be similar to 
existing object-oriented simulation languages, and to adopt 
existing metaphors and modeling constructs whenever fea-
sible. The greatest influences on the design of FreeSML 
were Silk 1.3 (Healy and Kilgore 1997) and SSJ 
(L’Ecuyer, Meliani, and Vaucher 2002).  

Both Silk 1.3 and SSJ are implemented as Java pack-
ages, as is FreeSML. The core of the public interface to 
FreeSML is an integration of the interfaces published for 
these two languages. Additional features and metaphors 
were adopted from other languages, including SLX (Hen-
riksen 1993) and SIMSCRIPT II.5 (Russell 1994), where 
they represented concepts not present in either Java-based 
language (e.g., waitUntil and time-ordered event lists). 

2 IMPLEMENTING CORE LANGUAGE 
FEATURES IN FreeSML 

Kiviat (1969) enumerated six fundamental features a gen-
eral-pupose simulation language must possess to be of sig-
nificant utility: 

 
• Representation of simulated time; 
• Management of simulated entities, including: 

− Creation and destruction of entity instances; 
− Data structures for managing collections of 

entities; and 
− Management of entity states; 

• Generation of uniform pseudorandom numbers; 
• Generation of non-uniform random variates; 
• Statistical data collection; and 
• Reporting facilities, for summary and/or detailed 

performance data. 
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In the following sections, FreeSML’s support for each of 
these required capabilities will be addressed, along with 
other significant language features. 

2.1 Simulated Time 

In FreeSML, the simulated time is maintained by the clock 
field of the SimManager class. The value of the simulation 
clock is maintained in a double-precision floating-point at-
tribute (a Java double) within a DoubleStateVar instance. 
The underlying design of the DoubleStateVar class is 
adopted from Silk (along with IntStateVar and its abstract 
parent StateVar), and provides a mechanism for imple-
menting conditional delays based on changes in the vari-
able’s value. State variables, and their use in implementing 
conditional delays, are addressed in section 2.4. 

The value stored in the clock field represents the num-
ber of “time units” that have elapsed since the beginning of 
the simulation. All time-related operations within the simu-
lation executive (e.g., inter-event delays) are expressed in 
terms of time units. The relationship between time units 
and seconds of simulated time can be customized by the 
simulation developer, using the static setTimeUnitsPer-
Second method in the SimTime class. In many cases, the 
default 1:1 ratio is appropriate. The clock value is ad-
vanced using a conventional next-event mechanism, man-
aged by the Executive. 

The SimTime class provides several useful features for 
working with dates and times in FreeSML. SimTime retains 
a static baseDate field (an instance of java.util.Date), 
whose value represents the date and time corresponding to 
a clock value of 0.0. By default, baseDate is initialized to 
midnight on January 1 of the current year. The SimTime 
class provides static methods for converting clock values to 
dates and times, and vice versa; these methods make use of 
the value of baseDate, in conjunction with the time-
unit:second ratio. 

Instances of the SimTime class can be used to store in-
dividual time values. The SimTime class extends the ab-
stract Number class (defined in the java.lang package) and, 
as with other Number types (e.g., java.lang.Double), Sim-
Time instances are immutable. As a Number subclass, Sim-
Time also implements the Comparable interface. Several 
convenience methods are provided to support time-related 
comparisons (e.g., isBefore, isAfter, and timeUntil). 

2.2 Management of Simulated Entities 

The representation of simulated entities in FreeSML is 
based on a combination of those used in Silk 1.3 and SSJ. 
In Silk 1.3, all simulated entity types are implemented as 
subclasses of the abstract Entity class, and support is pro-
vided only for process-oriented entities. In SSJ, process-
oriented entities are implemented using subclasses of 
Process, while events are implemented using subclasses of 
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Event. In FreeSML, the abstract Entity class has two (ab-
stract) children—ProcessEntity and EventEntity. 

ProcessEntity instances represent entities within the 
simulated system that have a “lifetime”: they are created, 
perform a sequence of actions representing their behavior 
with respect to the system, and they eventually depart. 
While in the simulation, ProcessEntity instances can incur 
delays, including conditional delays while competing with 
other instances for constrained resources.  

Each process-oriented entity type in a simulation must 
be defined by the programer as a subclass of ProcessEntity, 
and its behavior must be specified by overriding the ab-
stract process method inherited from the parent class 

EventEntity instances represent “events” that cause in-
stantaneous changes in the system state. Because their exe-
cution is intended to span zero time, an EventEntity cannot 
incur delays. Each event type in the simulation must be de-
fined by the programer as a subclass of EventEntity, and its 
behavior must be specified by overriding the abstract ac-
tions method inherited from the parent class. 

2.2.1 Creation and Destruction of Entity Instances 

Instances of all Entity subclasses are “recycled” by the 
simulation engine, rather than created directly using the 
new operator and garbage collected after one use. This be-
havior is essential to the management of ProcessEntity in-
stances, due to high overhead and virtual machine restric-
tions associated with creation and destruction of threads. 

The EntityManager keeps track of all Entity instances 
that have been freed and, when a new instance of an Entity 
class is requested (using the getEntity method), satisfies the 
request with a recycled instance if possible. If no “recy-
cled” instances are available, a new instance created.  

In either case, the entity’s init method is invoked to 
place the instance in a programmer-defined initial state. 
This procedure (adopted from Silk 1.3) is used for object 
initialization because constructor code is invoked by the 
Java virtual machine (JVM) only when the instance is first 
created. Code contained in the init method is executed 
every time an entity instance is “created” whether or not it 
was “recycled.” 

Invocation of init methods is not automatically 
“chained” like that of object constructors, so the developer 
is responsible for invoking super.init when appropriate. 
The Entity class contains an empty init method, so no ini-
tialization is performed by default. 

Each Entity instance can create new instances of the 
same entity type using the createAnotherIn method. This 
method accepts a double argument specifying a delay (in 
time units) before creating the new instance.. 

Entity instances automatically terminate upon reaching 
the end of their process or actions method, and the simula-
tion executive invokes freeEntity to recycle them. It is also 
2

possible to explicitly invoke the terminate method on a  
ProcessEntity, to force its termination regardless of its cur-
rent state. The cancel method can be invoked to cancel a 
scheduled EventEntity activation. 

2.2.2 Management of Collections of Objects 

Because FreeSML utilizes the Java 2 Platform, collections 
of generic objects can be managed using the Java Collec-
tions API. In addition to these facilities, FreeSML includes 
a set of collection classes whose states (i.e., current length 
and capacity) can be monitored. 

ProcessEntity instances can reside in Queues. Two 
types of Queue are defined in FreeSML: FifoQueue and 
PriorityQueue. The determination of priority ordering for a 
PriorityQueue instance can be made when a new item is 
added to the queue (insertion-ordered) or when the “first” 
item is requested from the queue (removal-ordered). Re-
moval-ordered queues are discussed further in section 3. 

To permit monitoring of changes in the occupancy of a 
Queue instance, the length attribute of each queue is de-
fined as an IntStateVar. Using this mechanism, conditional 
delays can be defined for ProcessEntity instances, based on 
the state of one or more Queue instances (e.g., a processor 
remaining idle while its input queue remains empty). 

Support for occupancy monitoring of generic collec-
tions is provided by a set of three “wrapper” classes: Moni-
toredList, MonitoredSet, and MonitoredSortedSet. Each of 
these classes implements the corresponding Collections 
API interface; to permit monitoring, the occupancy of the 
collection is retained in an IntStateVar attribute. 

2.2.3 Management of Entity States 

Schriber and Brunner (2001) describe five states in which a 
simulated entity can reside within a simulation: Active, 
Ready, Time-Delayed, Condition-Delayed, and Passive. To 
incorporate the entire lifetime of Java objects used to rep-
resent entities, we have found it useful to add two “exter-
nal” states: Created and Terminated. Objects in the latter 
two states exist within the simulation program, but not 
within the simulated system. Figure 1 depicts the relation-
ships (transitions) among these seven states supported by 
FreeSML. 

Because events are defined to occur instantaneously 
and cannot incur delays, EventEntity instances are permit-
ted to exist in only a subset of the listed states—they can-
not occupy the Condition-Delayed or Passive states. 

The ProcessEntity and EventEntity classes provide 
methods to effect each of the permitted state transitions; 
for example, the delay method in ProcessEntity moves the 
entity from the Active to the Time-Delayed state. 
515
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Figure 1: States of Simulated Entities 

The sets of entities residing in the various states are 
maintained using several data structures. The set of Time-
Delayed entities is maintained in the simulation’s future 
events set (FES). The FES is an instance of an EventSet 
subclass. EventSet is defined as an abstract class, and sev-
eral concrete time-ordering implementations are provided 
in the current FreeSML release: 

 
• Doubly-linked linear list; 
• Doubly-linked linear list with median pointer 

(McCormack 1979); 
• Splay tree (Sleator and Tarjan 1985); 
• Two-list data structure (Blackstone, Hogg, and 

Phillips 1981a, 1981b); and 
• Array-based implicit binary heap (Gonnet 1976, 

McCormack 1979, Bentley 1985). 
 
Regardless of the data structure used to place events in 

increasing time-order, each entry in the FES is itself a col-
lection—an instance of NoticeQueue. Each NoticeQueue 
contains one or more EventNotice instances. This two-level 
data structure (a time-ordered collection of collections) 
permits the simulation developer to separately modify the 
algorithm used for time-ordering, and the ordering scheme 
used for time-tied events. 

Like the Queue class, NoticeQueue is abstract, and 
three implementations are provided: FifoOrdered, Inser-
tionOrdered, and RemovalOrdered. The same underlying 
data structures are used as for Queues (see section 3). 

The set of Ready entities is maintained in the current 
events set (CES), which is an instance of NoticeQueue. At 
each clock advance, the clock’s value is advanced to the 
time associated with the first NoticeQueue in the FES. That 
NoticeQueue is removed from the FES to become the CES. 

References to Condition-Delayed entities are stored in 
ValueListenerQueues maintained by the state variables 
whose states they are monitoring. ValueListenerQueue in-
stances support the three ordering methods discussed ear-
25
eo 

lier. Created and Passive entities are not automatically 
tracked by the simulation executive; they must be managed 
by the simulation developer. Terminated entities are stored 
in the free lists maintained by the EntityManager. 

2.3 Queues and Resources 

As noted earlier, the Queue class provides a mechanism for 
retaining ordered lists (in either FIFO or priority order) of 
ProcessEntity instances. Methods provided in the Proces-
sEntity class for interacting with queues include: 

protected final int enqueue( Queue toJoin ); 

protected final int enqueueConditional( Queue 
toJoin ); 

protected final boolean dequeue( Queue 
toLeave ); 

The enqueue method will add the invoking ProcessEn-
tity to the specified Queue, whether or not that Queue is at 
its specified capacity, while the enqueueConditional 
method blocks entry into the Queue if it is currently full. 
The first form should be used for uncapacitated Queues, or 
after a conditional wait involving a complex blocking con-
dition that includes a check on Queue capacity. 

Constrained resources (e.g., bank tellers) can be repre-
sented in FreeSML using instances of the Resource class. 
This class represents a passive resource with n identical 
units. ProcessEntity instances use the conventional re-
quest/release mechanism to obtain units of the resource as 
needed. The following methods are provided in FreeSML: 

protected final void request(Resource toUse); 

protected final void seize(Resource toUse); 

protected final void release(Resource toF-
ree); 

The methods list request, seize, or release one unit of 
the specified Resource, respectively. A second version of 
each method is available that accepts a second integer ar-
gument, specifying the number of units. The request 
method is used to obtain units of the Resource, as soon as 
sufficient units become available; a conditional wait occurs 
if enough units are not yet available.  

The seize method grabs units of the Resource without 
first checking availability; a runtime exception is generated 
if insufficient units exist. The latter should be used only 
after a conditional wait involving a complex blocking con-
dition that includes availability of the Resource.  

2.4 State Variables and Conditional Delays 

In FreeSML, support for conditional delays is provided by 
StateVar instances. The functionality provided in FreeSML 
is based on that found in Silk, and is similar to that pro-
vided by control variables in SLX. All conditions on 
which a simulation developer wishes to base a conditional 
delay must be expressed in terms of the values of one or 
more StateVar instances.  
16
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FreeSML provides four StateVar subclasses: Condi-
tion, IntStateVar, DoubleStateVar, and ContinuousState-
Var. IntStateVar and DoubleStateVar, as their names im-
ply, store int and double values, respectively; 
Condition instance store boolean values. Each StateVar 
has an associated ValueListenerQueue, used to maintain 
references to the ProcessEntity instances currently moni-
toring changes in that StateVar’s value. 

The value contained in a StateVar instance can be ac-
cessed in one of two ways: using the getValue method, 
which causes no simulation side-effects; or using the 
checkValue method, which does generate side-effects, and 
whose invocation must be associated with a ProcessEntity 
instance. Updates to the value contained in a StateVar are 
made by invoking the setValue method, with an argument 
of the appropriate type. 

A ProcessEntity instance enters a conditional delay by 
invoking its condition method. To generate a conditional 
delay, this method must be passed a Boolean argument that 
(directly or indirectly) invokes the checkValue method of 
at least one StateVar. If the Boolean argument evaluates to 
true, the invoking ProcessEntity enters the Condition-
Delayed state until the value of a referenced StateVar 
changes. 

When the value of any referenced StateVar changes, 
the ProcessEntity is notified and returns to the Ready state, 
awaiting subsequent activation. On the entity’s return to 
the Active state, the condition method immediately exits, 
and the invoking entity should re-check the condition to 
determine if it has in fact become false. In practice, calls 
to the condition method are “wrapped” in an empty while 
loop, to permit repeated checks of the Boolean condition: 

while( condition( <Boolean expression> ) ); 

This construct, taken as a whole, is essentially a “wait 
while” statement, semantically equivalent to the wait 
until statement provided by many languages, including 
SLX. In addition to this construct, the ProcessEntity class 
provides two waitUntil methods for interacting with Con-
dition instances: 

protected final void waitUntil( Condition 
toWaitFor ); 

protected final void waitUntil( Condition 
toWaitFor, boolean state ); 

In the first form, the ProcessEntity waits until the 
specified Condition instance reports a value of true; in 
the second, the value to await is specified by the caller. 

Selected attributes of several FreeSML classes are re-
tained in StateVar instances, and those classes provide 
“pass-through” methods for accessing their values. These 
classes, their StateVar-based attributes, and the attributes’ 
types are listed in Table 1. 

The ProcessEntity class defines a set of convenience 
methods for interacting with frequently referenced state 
variables. Each of these methods simply makes a pass-
through call to the corresponding checkValue method for 
25
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the appropriate attribute (see Table 1). For example, the 
definition of the checkLength method is as follows: 

protected int checkLength( Queue toCheck ) { 
 if( toCheck == null ) { 
  throw new IllegalArgumentException( ); 
 } 
 return toCheck.length.checkValue( this ); 
} 

Though these methods are not strictly necessary, they pro-
vide a means of expressing entity behavior from the active 
entity’s “point of view.” All of these methods are declared 
to be protected, as they are intended for use only by 
ProcessEntity instances “acting on their own behalf.” 

2.5 Uniform Pseudorandom Number Generation 

The behavior of FreeSML objects implementing pseudo-
random number generators is specified by the Random-
Stream interface. This interface is based on the like-named 
interface in SSJ, and incorporates several of the conven-
ience methods defined in the class java.util.Random. The 
primary method defined in this interface is nextDouble, 
which generates a double-precision floating-point value 
uniformly distributed on the interval [0.0, 1.0) each time it 
is invoked. The procedure used to generate these pseudo-
random values is determined by the implementing class. 

The current FreeSML release includes a default gen-
erator (DefaultRandomStream) implemented as an exten-
sion of the linear congruential generator in Java’s Random 
class. A second class (MersenneRandomStream) incorpo-
rates a 32-bit integer implementation of the Mersenne 
Twister (Matsumoto and Nishimura 1998). Continuing ef-
forts include the development of additional RandomStream 
implementations. 

Table 1: StateVar-Based Attributes in FreeSML Classes 

FreeSML Class Attribute Type 
Executive clock DoubleStateVar 
SimManager replication IntStateVar 
EventSet size IntStateVar 

length IntStateVar Queue capacity IntStateVar 
availability IntStateVar 
numBusy IntStateVar 

numActive IntStateVar Resource 

capacity IntStateVar 
count IntStateVar 

minimum DoubleStateVar 
maximum DoubleStateVar

mean DoubleStateVar
StatObject 

variance DoubleStateVar
MonitoredList 
MonitoredSet 
MonitoredSortedSet 

size IntStateVar 
17
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2.6 Non-Uniform Random Variate Generation 

In FreeSML, the simulation developer has access to 20 pre-
defined distributions (defined as subclasses of Random-
Variable), along with facilities for defining empirical dis-
crete (RandomStep) or continuous (RandomLinear) distri-
butions. 

To introduce a random variable into the simulation, 
the developer creates an instance of the desired class, pro-
viding appropriate values for the required parameters. 
Samples from the specified distribution are obtained by in-
voking the sample method on that instance. Each Random-
Variable instance is associated with a RandomStream; any 
number of RandomStreams can be defined in a simulation. 

To permit the user to specify distributions for model 
elements at run time, the RandomVariable class includes a 
static createInstance method, permitting the user to specify 
the distribution type and parameters as system properties. 
The createInstance method requires the base name for a set 
of properties as an argument, as in:  

RandomVariable.createInstance("svcTimes"); 

The base name specified is used to obtain up to five 
properties from the SimManager. First the 
'<baseName>.distType' parameter is requested, and an at-
tempt is made to create an instance of the specified type; 
the 'distType' property must contain the name of a valid 
RandomVariable subclass (e.g., "Exponential"). 

Once created, the new instance is queried for the num-
ber of required parameters using its getParameterCount 
method. For each parameter required, the SimManager is 
queried for the value of the '<baseName>.distParamX' 
property ('X' is between 1 and the number of parameters). 

2.7 Statistical Data Collection 

The current version of FreeSML provides a collection of 
four Java classes (defined in the org.freesml.stat package) 
to support statistical data collection: StatObject, Observa-
tional, Weighted, and TimeWeighted. The Weighted class is 
unique to FreeSML, providing a general capability to com-
pute statistics on system state information using arbitrary 
weighting schemes. 

The Observational and TimeWeighted classes imple-
ment the weightings most frequently used in simulations. 
In the Observational class, all weights are defined to be 
unity; for TimeWeighted instances, the weights used are the 
proportions of simulated time for which each particular 
value is retained. Fields and methods common to all three 
object types are defined in the abstract StatObject class, 
along with several utility methods. 

All StateVar instances (including those in Table 1) 
provide built-in support for the collection of TimeWeighted 
statistics on their values. This mechanism is used in 
FreeSML to automate collection of commonly-requested 
statistics, such as queue occupancy and resource usages. 
25
The values of the observation count, mean, minimum, 
maximum, and variance of each StatObject are stored in 
StateVar instances, to support conditional delays based on 
collected statistics (e.g., terminating the warmup period 
when the variance of a measure reaches a threshold value). 

2.8 Reporting Facilities 

Report generation in FreeSML is handled by the classes of 
the org.freesml.logging package. Interaction with the log-
ging facilities takes place using public methods of the 
LogManager class: 

public static void systemMessage(String msg); 

public static void outputMessage(String msg); 

public static void errorMessage(String msg); 

public static void traceMessage(Level level, 
String msg); 

For each of the four message types listed, the Log-
Manager maintains a collection of Handler instances (de-
fined as part of the java.util.logging package), including a 
default instance created for each type (the console is the 
default destination for system messages only). If a graphi-
cal user interface is available, the default destination for 
trace, output, and error messages will be instances of the 
WindowHandler class, also defined in the logging package. 
The simulation developer is free to attach any number of 
Handler instances to each of the loggers. 

By default, each message is time-stamped with the 
current value of the simulation clock, converted to an 
elapsed time in “DD:HH:MM:SS.d” format, using a cus-
tomized LogRecord subclass, SimLogRecord (the default 
behavior of LogRecord is to use the system clock). A sec-
ond version of each method is provided that accepts a 
scond, Boolean argument. Invoking one of these methods 
with a value of false in the second argument suppresses 
output of the timestamp value. 

3 REMOVAL-ORDERED PRIORITY QUEUES 

FreeSML incorporates one feature that is unique among 
simulation languages: built-in support for the transparent 
“reordering” of priority queues in response to changes in 
entity priorities. This support is included in the implemen-
tations of NoticeQueue, Queue, and ValueListenerQueue, 
the classes used to manage future events, programmer-
specified queueing, and conditional waits, respectively. 

In FreeSML, support is provided for three user-
selectable orderings: insertion-ordered priority-based (the 
“traditional” method), removal-ordered priority-based, or 
first in-first out (FIFO). In response to a user request, sup-
port for last in-first out (LIFO) ordering will be added in a 
subsequent release. The data structures and algorithms 
used to implement “removal-ordered” queues are detailed 
in a separate publication (DiLeo 2005a). A brief descrip-
tion of each will be given herein. 
18
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FIFO-ordered queues are maintained as doubly-linked 
lists. Insertion of new entries occurs at the tail of the list, 
and removals are always from the head. 

Insertion-ordered priority-based queues are imple-
mented using array-based implicit binary heaps (Gonnet 
1976, Bentley 1985), as modified by McCormack (1979). 

To obtain a relatively efficient implementation for re-
moval-ordered queues, a simplifying constraint was placed 
on the behavior of entities in FreeSML: the priority values 
reported by entities must remain constant for a given value 
of the simulation clock. This behavior is accomplished us-
ing two methods: getPriority and computePriority.  

The getPriority method is defined in the Entity class, 
and is the method invoked when requesting an entity’s cur-
rent priority. In this method, the value of the simulation 
clock is checked, and a check is made to determine if the 
entity’s priority has been computed at this time already. If 
so, the previously computed value is simply returned; if 
not, the computePriority method is invoked, and the com-
puted value is stored locally and returned to the caller. 

The computePriority method has a simple default im-
plementation in the Entity class: a constant value (stored in 
the priorityConstant field) is returned. This method can be 
overridden by subclasses to define more complex priority 
behavior. The implementation of computePriority can 
make use of any information on the current system state, 
including the current time, and may incorporate one or 
more stochastic components as well. 

In the current FreeSML implementation, removal-
ordered priority queues alternate between two states: an 
unordered array-based list, and an array-based implicit bi-
nary heap (like that used for insertion-ordered queues). 

As elements are first added to the queue, they are sim-
ply added to the end of the array. When a request is made 
for the “first” element in the queue, the contents of the ar-
ray are converted in-place into an array-based implicit bi-
nary heap, and the first entry is removed. Until the simula-
tion clock advances, the queue is maintained as a heap; the 
ordering of the entries remains stable because priority val-
ues are not permitted to change. 

Once time advances, entity priorities are again permit-
ted to change. The queue is again treated as an unordered 
list, and subsequent additions are made to its tail. On a 
subsequent “remove first element” request, the ordering is 
regenerated, and the queue is again treated as a heap. 

The behavior defined for removal-ordered queues is 
optimized for operation of the NoticeQueue instances 
comprising an EventSet. All EventNotices in each No-
ticeQueue, by definition, have the same associated event 
time, and they are processed by the Executive “all at once.” 
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4 EXAMPLE MODELS IN FreeSML 

When introducing a simulation language to a new audi-
ence, the simplest initial example is the classic single-
server exponential (M/M/1) queueing model. As FreeSML 
supports model expression in both process-oriented and 
event-oriented forms, both forms will be presented. 

The models presented herein are nearly identical to 
those given (in SSJ) by L’Ecuyer, Meliani, and Vaucher 
(2002); they have been “ported” to FreeSML. We chose 
this approach for our example models to demonstrate the 
similarities between models defined in FreeSML and those 
defined in other Java-based languages (such as SSJ). 

4.1 Process-Oriented Single-Server Model 

In the process-oriented model, the majority of the work is 
performed by entities representing arriving customers. 
They arrive according to a specified Exponential inter-
arrival distribution, await service from the server, and de-
part the system immediately after completing service. 

The customers in this model are implemented as a 
subsclass of ProcessEntity named Customer, and the server 
is represented by a Resource instance with a single unit ini-
tially available. Statistics are collected on system occu-
pancy (L), queue occupancy (Lq), sojourn times (W), queue 
waiting times (Wq), and server availability (p0). 

The mean customer inter-arrival time is 10.0 time 
units, and the mean service time is 8.0 time units. The 
simulation is executed for 10 replications, with a length of 
11,000 time units each, and a 1,000 time unit warmup pe-
riod.The FreeSML source for the main application program 
(SingleServer_Process) is given in Figure 2, and that for 
the Customer class is given in Figure 3. 

4.2 Event-Oriented Single-Server Model 

In the event-oriented version of this model, we have two 
significant events to handle: arrivals and departures. Rather 
than an active player in the simulation, each customer is 
now a “token” being maneuvered through the system by 
the actions performed in each event’s logic. As such, the 
class representing a customer in the system is simply a 
subclass of Object, and is named CustomerObj. The 
FreeSML source for CustomerObj is given in Figure 4. 

Arrivals and departures are represented by the Arrival 
and Departure classes, respectively. Each class extends the 
EventEntity class. The FreeSML source for these classes is 
given in Figures 5 and 6. 

The SingleServer_Event class (Figure 7) provides the 
main program entry point, implements the Replication-
Handler and ExperimentHandler interfaces, and defines 
required system queues and resources. 
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public class Customer extends ProcessEntity { 
 static Observational iaTimes = new Observational( "Inter-Arrival times" ); 
 static Observational services = new Observational( "Service times" );    
 static Observational queueWaits = new Observational( "Customer queue times" ); 
 static Observational sojournTimes = new Observational( "Customer sojourn times" ); 
 double svcTime; 
// Constructor 
 public Customer( ) { } 
 public void init( ) { this.svcTime = svcTimes.sample( ); } 
 public void process( ) { 
  double delay = arrTimes.sample( ); 
  createAnotherIn( delay ); 
  double arrivalTime = Executive.getTime( ); 
  enqueue( SingleServer_Process.serverQueue ); 
  request( SingleServer_Process.server ); 
  dequeue( SingleServer_Process.serverQueue ); 
  queueWaits.update( Executive.getTime( ) - arrivalTime ); 
  delay( this.svcTime ); 
  release( SingleServer_Process.server ); 
  sojournTimes.update( Executive.getTime( ) - arrivalTime ); 
 } // End of process( ) method 
 static void scheduleFirst( ) { 
  Customer firstCust = (Customer) EntityManager.getEntity( Customer.class ); 
  LogManager.systemMessage( "Scheduling start of first Customer" ); 
  firstCust.startAt( arrTimes.sample( ) ); 
 } // End of scheduleFirst( ) method 
} // End of Customer class definition 

Figure 3: The Customer Class (Process-Oriented Single-Server Model) 

public class CustomerObj { 
 static RandomVariable arrTimes = new Exponential( 10.0 ); 
 static RandomVariable svcTimes = new Exponential(  8.0 ); 
 static int instanceCount = 0; 
 String name; 
 double arrivalTime; 
 double serviceTime; 
 public CustomerObj( ) {  
  this.serviceTime = svcTimes.sample( ); 
  this.name = "Customer #" + ++instanceCount; 
 } 
 public String toString( ) { return this.name; } 
} // End of CustomerObj class definition 

Figure 4: The CustomerObj Class (Event-Oriented Single-Server Model) 

public class SingleServer_Process implements ReplicationHandler, ExperimentHandler { 
 static Resource server = new Resource( "Server", true, true, false ); 
 static Queue serverQueue = new FifoQueue( "Server Queue", true ); 
 public SingleServer_Process( ) { 
  SimManager.setReplicationHandler( this ); 
  SimManager.setExperimentHandler( this ); 
 } // End of constructor 
 public static void main( String[ ] args ) { 
  SimManager.setModelName( "SingleServer -- Process-Oriented" ); 
  SingleServer_Process program = new SingleServer_Process( ); 
  SimManager.setRunLength( 11000.0 ); 
  SimManager.setWarmupPeriod( 1000.0 ); 
  SimManager.setReplicationCount( 10 ); 
  SimManager.startSimulation( ); 
 } // End of main( ) method 
 // ReplicationHandler and ExperimentHandler methods omitted 
} // End of SingleServer_Process class definition 

Figure 2: The SingleServer_Process Class 
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public class Departure extends EventEntity { 
 public void actions( ) { 
  CustomerObj cust = (CustomerObj) SingleServer_Event.serviceList.remove( 0 ); 
  SingleServer_Event.systemList.remove( cust ); 
  LogManager.traceMessage( LogManager.TRACE_PROCS, "<-- Processing Departure for" + cust ); 
  SingleServer_Event.sojournTimes.update( Executive.getTime( ) - cust.arrivalTime ); 
  if( SingleServer_Event.serverQueue.size( ) > 0 ) { 
   cust = (CustomerObj) SimEnv.serverQueue.remove( 0 ); 
   LogManager.traceMessage( LogManager.TRACE_PROCS,  
    "    " + cust + " departed server Queue and entering service" ); 
   SingleServer_Event.queueWaits.update( Executive.getTime( ) - cust.arrivalTime ); 
   SingleServer_Event.serviceList.add( cust ); 
   Departure departure = (Departure) EntityManager.getEntity( Departure.class ); 
   departure.scheduleIn( cust.serviceTime ); 
  } 
 } // End of actions( ) method 
} // End of Departure class definition 

Figure 6: The Departure Class (Event-Oriented Single-Server Model) 

public class Arrival extends EventEntity { 
 public void actions( ) { 
  Arrival next = (Arrival) EntityManager.getEntity( Arrival.class ); 
  double iaTime = CustomerObj.arrTimes.sample( ); 
  next.scheduleIn( iaTime ); 
  CustomerObj currCust = new CustomerObj( ); 
  LogManager.traceMessage( LogManager.TRACE_PROCS, "--> Processing arrival for " + currCust ); 
  currCust.arrivalTime = Executive.getTime( ); 
  if( SimEnv.serviceList.size( ) > 0 ) { 
   LogManager.traceMessage( LogManager.TRACE_PROCS,  
    "    Server is busy..." + currCust + " joining server Queue" ); 
   SingleServer_Event.serverQueue.add( currCust ); 
  } 
  else { 
   SingleServer_Event.serviceList.add( currCust ); 
   LogManager.traceMessage( LogManager.TRACE_PROCS,  
    "    Server is idle..." + currCust + " starting service" ); 
   Departure departure = (Departure) EntityManager.getEntity( Departure.class ); 
   departure.scheduleIn( currCust.serviceTime ); 
   SingleServer_Event.queueWaits.update( 0.0 ); 
  } 
 } // End of actions( ) method 
 static void scheduleFirst( ) { 
  Arrival firstArrival = (Arrival) EntityManager.getEntity( Arrival.class ); 
  LogManager.systemMessage( "Scheduling arrival of first Customer" ); 
  double iaTime = SimEnv.arrTimes.sample( ); 
  firstArrival.scheduleAt( iaTime ); 
 } // End of scheduleFirst( ) method 
} // End of Arrival class definition 

Figure 5: The Arrival Class (Event-Oriented Single-Server Model) 
5 SUMMARY 

We have developed a new Java-based simulation language, 
similar to existing languages, but incorporating a number 
of unique features. The development of FreeSML took  
place not merely for the sake of developing another lan-
guage, but as a vehicle for making these new features 
available to the simulation community. 

FreeSML has been released as free, open-source soft-
ware under the Free Software Foundation’s Lesser General 
Public License (LGPL). As such, members of the simula-
tion community are free to adapt and improve upon the 
language, with the concommittant obligation to contribute 
their improvements to the development community. 
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It is sincerely hoped that practitioners will find 

FreeSML useful, and that sufficient interest will be gener-
ated to sustain the language as a community-supported 
open-source initiative. In other arenas, many open-source 
applications are considered to be the best available; with 
sufficient interest and support in the simulation commu-
nity, FreeSML could eventually fill that role in the dis-
crete-event simulation arena. 
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public class SingleServer_Event implements ReplicationHandler, ExperimentHandler { 
 static MonitoredList serverQueue = new MonitoredList( new Vector( ), "Server queue" ); 
 static MonitoredList serviceList = new MonitoredList( new Vector( ), "In-Service List" ); 
 static MonitoredList systemList = new MonitoredList( new Vector( ), "In-System List" ); 
 static Observational queueWaits = new Observational( "Customer queue times" ); 
 static Observational sojournTimes = new Observational( "Customer sojourn times" ); 
 public SingleServer_Event( ) { 
  SimManager.setReplicationHandler( this ); 
  SimManager.setExperimentHandler( this ); 
 } // End of constructor 
 public static void main( String[ ] args ) { 
  SimManager.setModelName( "SingleServer -- Event-Oriented" ); 
  LogManager.systemMessage( "Constructing single-server simulation", false ); 
  SingleServer_Event program = new SingleServer_Event( ); 
  SimManager.setRunLength( 11000.0 ); 
  SimManager.setWarmupPeriod( 1000.0 ); 
  SimManager.setReplicationCount( 10 ); 
  SimManager.startSimulation( ); 
 } // End of main( ) method 
 // ReplicationHandler and ExperimentHandler methods omitted 
} // End of SingleServer_Event class definition 

Figure 7: The SingleServer_Event Class 
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APPENDIX: OBTAINING AND USING FreeSML 

The first release of FreeSML (version 1.0) is available via 
SourceForge <www.sourceforge.net>. Interested 
parties may obtain FreeSML there, or by contacting the au-
thor. Javadoc-generated API documentation is included 
with the software. A User’s Manual is in preparation, with 
publication anticipated by January 2006. 

To use FreeSML, a Java 2 Software Development Kit 
(SDK), version 1.4 or later, is required, as the source code 
contains assert statements. FreeSML is deployed as a 
single Java Archive (JAR) file, FreeSML.jar. This JAR file 
must be included in the CLASSPATH for both the com-
piler and the virtual machine. A build.xml file is included, 
for use with the Ant build management tool. 

REFERENCES 

Bentley, J.L. 1985. Thanks, heaps [Programming pearls]. 
CACM 28 (3): 245 – 250. 

DiLeo, J.J. 2005a. Adding support for state-dependent and 
stochastic priorities to a discrete-event simulation lan-
guage. Submitted for publication. 

DiLeo, J.J. 2005b. Discrete-event simulation with state-
dependent and stochastic process priorities. D.Sc.  
diss., The George Washington University. 

 

25
Gonnet, G.H. 1976. Heaps applied to event driven mecha-
nisms. CACM 19 (7): 417 – 418. 

Healy, K.J., and R.A. Kilgore 1997. Silk: A Java-based 
process simulation language. In Proceedings of the 
1997 Winter Simulation Conference1, D.J. Medeiros, 
E.F. Watson, J.S. Carson, and M.S. Manivannan, eds. 
475-482. Piscataway, New Jersey: Institute of Electri-
cal and Electronics Engineers. 

Henriksen, J.O. 1993. SLX, the successor to GPSS/H. In 
Proceedings of the 1993 Winter Simulation Confer-
ence, G.W. Evans, M. Mollaghasemi, E.C. Russell, 
and W.E. Biles, eds. 263–268. Piscataway, New Jer-
sey: Institute of Electrical and Electronics Engineers. 

Kiviat, P.J. 1969. Digital computer simulation: Computer 
programming languages. Santa Monica, CA: The 
RAND Corporation. RAND doc. no. RM-5883-PR. 

L’Ecuyer, P., L. Meliani, and J. Vaucher. 2002. SSJ: A 
framework for stochastic simulation in Java. In Proc. 
2002 WSC, E. Yücesan, C.-H. Chen, J.L. Snowdon, 
and J.M. Charnes, eds. 234 – 242. 

Matsumoto, M., and T. Nishimura. 1998. Mersenne 
twister: A 623-dimensionally equidistributed uniform 
pseudo-random number generator. ACM TOMACS 8 
(1): 3 – 30. 

McCormack, W.M. 1979. Analysis of future event set al-
gorithms for discrete event simulation. Ph.D. diss., 
Syracuse University. 

Russell, E.C. 1994. SIMSCRIPT II.5 programming lan-
guage. La Jolla, CA: CACI Products Company. 

Sleator, D.D., and R.E. Tarjan. 1985. Self-adjusting binary 
search trees. JACM 32 (3): 652 – 686. 

Vaucher, J.G. 1971. Simulation data structures using 
Simula 67. In Proceedings of the 1971 Winter Simula-
tion Conference, 255–260. Piscataway, New Jersey: 
Institute of Electrical and Electronics Engineers. 
22

http://www.sourceforge.net/


Leo 
Di

AUTHOR BIOGRAPHY 

JOHN J. DiLEO received his D.Sc. in Operations Research 
from The George Washington University in May 2005. He 
received his B.S.E.E. from The Johns Hopkins University, 
his M.S. in Operations Research from The George Washing-
ton University, and his M.S.A. from Central Michigan Uni-
versity. Formerly, he worked as a simulation software engi-
neer at the U.S. Army Materiel Systems Analysis Activity, 
and the MITRE Corporation’s Center for Advanced Avia-
tion System Development. In August 2005, he joined the 
faculty of ECPI College of Technology’s Greenville cam-
pus, as an instructor of computer technology, information 
systems, electronics, and mathematics. His e-mail address is 
<dileo@direcway.com>. 
2523

mailto:dileo@direcway.com

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



