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ABSTRACT 

This research explores analytical models useful in the de-
sign of vehicle-based Automated Material Handling Sys-
tems (AMHS) to support semiconductor manufacturing.  
The objective is to correctly estimate the throughput and 
move request delay.  The analysis approach is based on 
queuing network models, but taking into account details of 
the operation of the AMHS.  We analyze the vehicles 
movement in the system using a Markov chain. This analy-
sis provides the essential parameters such as the blocking 
probabilities in order to estimate the performance meas-
ures.  A numerical example is provided to demonstrate and 
validate the queuing model. 

1 INTRODUCTION 

Automated Material Handling Systems (AMHS) play a cen-
tral role in today’s 300mm wafer fabrication facilities (fabs).  
Material handling operations are becoming more complex, 
with strong demand on these systems to support the produc-
tion system and function efficiently and robustly.   

A typical 300mm fab has a spine layout.  This layout 
has a central aisle with bays branching on both sides.  Pro-
duction equipment is located in the bays.  Wafers travel in a 
lot carried by a Front Opening Unified Pod (FOUP).  A lot 
moving from a tool in one bay to a tool in a different bay 
must travel through the main aisle, and therefore a transpor-
tation system is installed along the main aisle to accommo-
date this interbay traffic.  Similarly, a transportation system 
is installed within each bay to facilitate the intrabay traffic.   

Storage units in the 300mm fabs are known as stockers.  
A stocker is an Automated Storage/Retrieval System for lot 
exchange with the transport system.  Stockers are usually 
located at the head of each bay, and they usually serve two 
purposes: temporary storage for Work-in-Process (WIP) 
lots, and transfer mechanism between the bay transport sys-
tem (intrabay system) and the main aisle transport system 
(interbay system). 
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The AMHS in a typical 300mm fab is an overhead 
transport system (OHT) that consists of a collection of track 
segments forming a loop, Overhead Hoist Vehicles (OHV), 
and input/output load ports.  The input/output load ports are 
the interfaces where carriers are picked up or delivered from 
and to production equipment, as well as to storage stockers.  
Vehicles are suspended from ceiling-mounted rail mecha-
nisms and are capable of delivering to/retrieving from 
stocker ports and process tools from directly overhead.  An 
intrabay system is illustrated in Figure 1.   

Because of the space restrictions in the 300mm wafer 
fab, OHV travel is on a unidirectional closed loop without 
the ability to pass each other even when a vehicle stops to 
drop-off/pick-up a lot from the input/output buffer of a proc-
essor or the stocker.   
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Figure 1: Closed-Loop Unidirectional Interbay and Intrabay 
AMHSs 
 

Fundamentally, the role of the AMHS is to serve the 
production system, their interaction occurs at the transfer 
points in the facility.  Essentially, the AMHS should be able 
to handle the move requests generated by the production 
system. Once this basic level of service is achieved, AMHSs 
are distinguished from each other through their cost and per-
formance.  Tradeoffs are usually between these two meas-
ures.  AMHS Performance is usually measured in terms of 
its throughput (number of moves per unit time) and response 
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time; a MHS that responds faster to the move requests is 
generally more preferable.  We say “generally” because it 
might be the case that a faster delivery will not affect the 
lot’s cycle time, if its destination tool is not ready to start 
processing it as soon as it arrives. 

2 LITERATURE REVIEW 

In the literature, Analytical models of Material Handling 
Systems (MHS) are usually based on mathematical models 
and queuing models.  The former fails to capture queuing 
in the system which is essential to accurately estimate the 
key performance measures including the waiting times.  
Quite a few papers use queuing models to analyze MHS 
but their modeling assumptions decrease the accuracy of 
the approximations, Vis (2004) provide a survey of work in 
this area.  Johnson (2001), Johnson and Brandeau (1993, 
1994), and Kobza et al. (1998) develop the queuing models 
using M/G/c approximations (where c represents the num-
ber of vehicles), which gives good approximation provided 
that vehicle assignments are based on a First Come First 
Served (FCFS) discipline, but deviate considerably from 
simulation model results when the vehicle dispatching is 
system state-dependent, such as Nearest Vehicle Rule 
NVR.  Curry et al. (2003) propose a more accurate service-
dependent queuing network model that generates approxi-
mations that are close to the simulation results but will the 
time to solve the analytic model grows exponentially with 
the number of vehicles.  Srinivasan et al. (1994) propose a 
single-vehicle queuing model to estimate the throughput of 
the vehicle where the vehicle dispatching to move request 
is based on a modification of the First Come First Serve 
(FCFS) rule, basically after the vehicle delivers a load at 
the input buffer of a station, its searches for a move request 
at the output buffer of that station, if one or more requests 
are found, the vehicle is assigned to the oldest one.  In 
Bozer (1994), the authors use the throughput approxima-
tion in order to estimate the waiting time of move requests 
at each station, their results are quite close to the simula-
tion models’.  The authors propose an extension of their 
model to multi-vehicle systems by adjusting the travel 
times assuming that a K-vehicles AMHS can be replaced 
by a single device that travels K times faster.  Their results 
indicate that this works well to estimate throughput but 
cannot be used to estimate waiting times because it does 
not account for congestion and blocking delays.  In this re-
search, we extend their analytic model to multi-vehicle 
systems using a closed queuing network approach to esti-
mate the blocking delays. 

The intention of our work is to explore the use of 
queuing network models to estimate the throughput and 
move request delays of the AMHS.  These models for de-
sign and control of AMHS are scarce, and the semiconduc-
tor industry would benefit from the development and use 
of analytic modeling tools that have not been previously 
explored.  
24
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We will develop an analytical queuing model of an 
OHT system that is dispatched based on the First-
Encountered-First-Served (FEFS) rule for vehicle/job dis-
patch.  FEFS is a decentralized policy, first presented by 
Bartholdi and Platzman (1989); it is simple and efficient in 
the case of a discrete vehicle-based AMHS operating in a 
simple closed loop as long as the vehicles are not allowed to 
pass each other, which is the case in the 300mm fab due the 
space restrictions.  In the FEFS, an empty OHV circulating 
the loop inspects the output buffer of a station (stocker or 
processor), if there is a lot waiting, it picks it up and delivers 
it to its destination.  If the output buffer is empty, the vehicle 
travels to the next station and so forth until it encounters a 
waiting lot.  An OHV carrying a lot (loaded/full) might pass 
other input and output buffers and experience delays if it has 
to wait while other vehicles drop off or pick up loads at 
those buffers.  Our goal is to estimate these blocking delays 
in order to get a good approximation of the actual through-
put of the OHT system and average response time to move 
requests.  Based on FEFS dispatching, Bozer and Srinivasan 
(1991) developed a single-vehicle analytical model to ap-
proximate the utilization and the throughput capacity of the 
vehicle, given from-to move requirements and the distance 
matrix. They assume the move requests arrivals follow a 
Poisson process.  Our model differs because it is developed 
for is for multi-vehicles, where queuing and blocking of ve-
hicles is possible. 

3 VEHICLE-BASED CLOSED-LOOP AMHS 
DESCRIPTION 

3.1 Physical System 

Figure 2 illustrates an example of a closed loop overhead 
transport system.  This transportation system is used to serve 
the material handling requirements of the stocker(s) and the 
processors (also referred to as production equipment or pro-
duction tools) in the bay. Flow is unidirectional along the 
loop.  Multiple vehicles can be traversing each segment of 
the track simultaneously but they cannot pass each other. 

 

  
 
Figure 2: Unidirectional Closed-Loop Overhead Transport 
System 
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In order to accurately estimate the throughput, we 
need to estimate the blocking and queuing delays at each 
station.   These delays are a result of the limited space for 
vehicles at stations.  The main objective of the model is to 
quantify the length of these two types of delays at each sta-
tion as a function of the layout of the transportation sys-
tem, the demand rates, the speed of the vehicles and the 
number of vehicles circulating the loop.  The analysis is 
complex because the service rate of stations is state-
dependent, where the state is a function of where the vehi-
cles are located and whether or not they are empty or 
loaded.  It is not possible to analyze each station independ-
ently because the number of vehicles queued at a station 
impacts the service rate of another station.     

Let L(n) refer to the OHT directed loop with n vehi-
cles.   We use the term machine to refer to either the 
stocker or the production tool, let M be the set of machines 
in L(n).   Each machine has two load ports: input port 
where loads are dropped off by the vehicle and output port 
where loads are picked up by the vehicle to be delivered to 
their destination.  Each port can accommodate one vehicle 
at a time.  These pickup and drop-off ports are all modeled 
as stations that the vehicles visit while traveling on the 
loop, and we use the term station to refer to the input and 
output ports of the machines.  Thus, a loop serving m ma-
chines consist of s = 2m stations.  Let mi denote machine i, 
then mi has two stations: the drop-off station sd

i , and the 
pick-station s p

i . Figure 3 illustrates a network representa-
tion of the system in Figure 2 as a directed loop with sta-
tions represented as nodes, and the tracks as directed arcs. 

 

 
 
Figure 3: Network Representation of the Closed Loop 
AMHS 

3.2 Logic Description 

The vehicles are constantly circulating the unidirectional 
loop.  The vehicle encounters the unloading port (input) 
before the loading port (output) of a machine mi (Figure 3).  
As an empty OHV approaches mi , it passes through the 
drop-off station sd

i , then travels to the pick-up station s p
i .  

If there is a load (job) waiting at s p
i , it picks it up, which 

requires time delay l for loading the job and then delivers it 
to its destination, say machine j, visiting machines i+1, 
i+2,…, j-1, and finally the load’s destination the drop-off 
2466
station of mm, denoted by sd
j .  The vehicle does not stop at 

machines i+1, i+2,…, j-1 unless it is blocked by other ve-
hicles.  If the output port s p

i is empty, the vehicle travels 
to sd

i 1+ , then inspects the output port s p
i 1+  and so forth until 

it encounters a waiting lot.   

3.3 The Probabilistic Model 

In this section, we develop a probabilistic model of the sys-
tem L(n) described above.  Demands for transportation oc-
cur according to a Poisson process that depends on the 
production rates at the machines and the routing sequences 
for jobs.  Jobs that queue at the machines requesting trans-
portation are processed in first-come first-serve (FCFS) or-
der. A vehicle can experience two types of delays: 

 
1. Queuing delays that occur at pickup and drop-off 

stations due to the time needed for the other vehi-
cles to clear the station, illustrated in Figure 4, 
where vehicle 2 (v2) is queuing behind v1 until it 
finishes dropping off a load at sd

i . 
 

   

Figure 4: Queuing delay illustration 

 
2. Blocking delays that occur when a vehicle has fin-

ished its service at its current station but cannot 
move because the downstream station does not 
have any space to accommodate the vehicle.  This 
type of delay is illustrated in Figure 5, v2 finished 
its service at sd

i then got blocked by v1 while it 
finishes picking up a load from s p

i . 
 

  
Figure 5: Blocking Delay Illustration 

4 THE PROBABILISTIC MODEL ANALYSIS 

4.1 Notation 

M: set of tools and stockers in the system. 
S: set of stations, including all the output and input 

buffers of the tools and the stockers, |S|=2|M|. 
S p : set of pick-up stations | S p |=|M|. 
Sd : set of drop-off stations | Sd |=|M|. 
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mi : machine i, which could be either the output buffer 
of the input buffer of a tool or a stocker Mmi ∈ . 

s p
i : pick-up station of mi. Ss pp

i ∈ ; Mmi ∈  

sd
i : drop-off station of mi. Ss dd

i ∈ ; Mmi ∈  

t ii 1, + : time to travel from s p
i  to sd

i 1+ ; Mmi ∈  

ti : time to travel from sd
i  to s p

i ; Mmi ∈  

u: unloading time at sd
i ; S di ∈  

l: loading time at s p
i ; S pi ∈  

pij : probability that a load which is picked up from 

s p
i is destined to sd

j . 

λi : mean arrival rate of move requests picked up 

from s p
i   

Λi  : mean arrival rate of move requests dropped at sd
i   

θ : arrival rate of vehicles to stations, also referred to 
as the throughput of the AMHS.  

 
 As we mentioned earlier the objective is to quantify 
the length of queuing and blocking delays at each station.  
Due to the limited space for vehicles at stations and par-
ticularly at the pick-up stations, which can accommodate 
one vehicle at a time, blocking of upstream stations is 
likely to occur.  The service rate of stations is therefore 
state-dependent, where the state is a function of where 
every vehicle is located and its type.  The location of a ve-
hicle specifies the station the vehicle is receiving service or 
arriving at. The type of the vehicle specifies whether it is 
loaded, empty, blocked while empty, blocked while 
loaded, or receiving service (picking up or dropping off a 
load), we use f, e, b, k, and s  to denote each of these states, 
respectively.  Moreover, the order of the vehicle in the 
queue is important to determine the transition between the 
states.  Since only the first vehicles in stations’ queues can 
be blocked or receiving service, only these vehicles can be 
in states e, f, b, k, or s, while the other vehicles are either in 
state e or f.   Also, a vehicle can be blocked only if the im-
mediately downstream station has reached its capacity.   
 Let bi denote the capacity of si including the loadport, 
then the total number of possible vehicle locations in the 

loop is ∑=
=

S

i
ibB

1
.  We represent a state by a string of size 

B, where each character in the string represents a possible 
location. For example, consider a system with four station, 
s1-s4, where b1=1, b2=2, b3=1, and b4=2.  State (0 s  f  0  0 
0) indicates that there are two vehicles at the second sta-
tion, the first one is receiving service (unloading) and the 
other is arriving loaded. 
 We assume that travel times, and loading and unload-
ing times are deterministic, however, the model is prob-
24
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abilistic because the Poisson arrival process of move re-
quests determines the transitions between system states. 
Based on the FEFS dispatching discipline, Bozer and 
Srinivasan (1991) developed a single-vehicle analytical 
model to approximate the utilization and the throughput 
capacity of the vehicle, given from-to move requirements 
and the distance matrix. They assume the move requests 
arrivals follow a Poisson process.  Our model differs be-
cause it is developed for is for multi-vehicles, where queu-
ing and blocking of vehicles is possible, and we assume 
that the vehicle travels from si to si 1+  with probability 1.   
 We propose to analyze the system using a Markov 
Chain.  Since the move request (loads) arrivals follow a 
Poisson process, by the PASTA property (Poisson Arrivals 
See Time Averages), we can assume that the instant at 
which a vehicle arrives to s p

i is a random point in time, 
and the system transition between the possible states is 
Markovian. 
 Consider the transition matrix R, which specifies the 
movement of the system between the states.  The position 
and type every vehicle (e, f, b, k, or s) determines the sys-
tem transitions, but the vehicles that are at the head of the 
stations’ queues control the probabilistic transitions.  For 
instance, if there are two empty vehicles arriving at some 
pickup station s p

i , the transition to the next state depends 
on whether or not the first vehicle will encounter a waiting 
load; in any case, the next state will have the second vehi-
cle arriving empty at s p

i . 
An empty vehicle arriving to a drop-off station will 

certainly move to the next pick-up station, and so is the 
case for a loaded vehicle arriving to a pick-up station.  
However, a loaded vehicle approaching a drop-off sta-
tion sd

i will leave empty if the load was not destined to that 
station, this happens with probability (1-ri) which depends 
on the rate of moves destined to this station and also on the 
rate of loaded vehicle arrivals that pass through the station.  
Similarly, an empty vehicle approaching a pick-up sta-
tion s p

i will leave empty if there was no load waiting at s p
i , 

this happens with probability qi which depends on the rate 
of moves originating at this station and on the rate of 
empty vehicle arrivals to the station.  A vehicle receiving 
service at sd

i must be dropping off its load, and thus it will 
certainly move empty to s p

i , and a vehicle receiving ser-
vice at s p

i must be picking a load and thus it will certainly 
move loaded to sd

i 1+ .     

4.2 Transition Probabilities  

Consider again the transition matrix R, which specifies the 
movement of the system between the states.  We demon-
strate the transitions through the following example. 
67



Nazzal and

Example: consider a closed-loop OHT system with two 
vehicles (n=2) and four stations (Figure 6). The pickup sta-
tions ( s p

1 , and s p
2 ) have capacity for one vehicle each, 

while the drop-off stations ( sd
1 and sd

2 ) have capacity for 
two vehicles each. 

 

 
 

Figure 6: A 4-Station 2-Vehicle Example 
 
This simple system has two machines each sends loads 

to the other, thus 12112 == pp .  Also, λλ 22121 ==Λ p , 
and λλ 11212 ==Λ p .  

Each state is defined by the string that specifies the 
type of vehicle at each location, the first character refers to 
the single buffer of s p

1 , the second and third characters re-
fer to the two buffers of sd

1 , the fourth character refers to 
the single buffer of s p

2 , and the last two characters refer to 
the two buffers of sd

2 .  State : (e e 0 0 0 0) indicates that 
there is one empty vehicle at s p

1 and one empty vehicle at 
sd

1 . The transitions from this state depends on whether or 
not the first vehicle finds a load at s p

1 , which happens with 
probability 1-q1.  If the vehicle finds a load it starts receiv-
ing its service at s p

1 while the second vehicle is blocked 
while empty, and the system enters state (s b 0 0 0 0).  The 
first vehicle does not find a load waiting with probability 
q1, and in this case, the first vehicle moves empty 
to sd

2 while the second vehicle moves empty to s p
1 , and the 

system enters state (e 0 0 0 0 e).  Consider the transition 
from state (e 0 0 0 f 0) to state (s 0 0 0 s 0): in the first 
state, one vehicle is arriving empty to s p

1 , and the other is 
arriving loaded to sd

2 , in the second state, both vehicles are 
receiving service at the same stations they were at.  This 
transition happens if the first vehicle finds a load waiting at 
s p

1 with probability 1-q1, and the second vehicle drops off 
its load at sd

2 with probability r2.  Part of the 5454 × transi-
tion matrix for this example is provided in Figure A-1. 

 Note that in the above example r1=r2=1, because the 
two machines send loads only to each other.   

If we can estimate the steady-state probability of each 
state, we can estimate the blocking probabilities and the 
system throughput.  

Let Cr be the expected time between two consecutive 
visits to state r, r=1,…,|R|.  Without loss of generality, as-
sume that C1  is the expected time between two visits to 
state (1).  Let v ={vr} r=1, …, |R|, where vr denote the visit 
ratio to state r, which is the number of times the system 
24
 McGinnis 

visits state r between two successive visits to state (1), by 
this definition, v1=1, and the visit ratios are uniquely ob-
tained from:  

 
 vvR =   (1) 

 
 11 =v   (2) 

 
 The number of unknowns in the above equations is |R| 
unknowns for the visit ratios, plus |m| for the unknown 
probabilities sqi ' .  

Let Ei be the set of states where the first vehicle in 
queue at pickup station s p

i  is arriving empty i=1, …, Sp, 
Let Ei

v denote the visit ratio to state set Ei , which, con-

ceptually, is the number of times empty vehicles visit s p
i in 

a cycle of length C1 .  Let ep
i denote the arrival rate of 

empty vehicles to s p
i , therefore:  

CeEv p
ii 1= , Si P∈∀  (3) 

For a stable system, the rate of pickups from s p
i must 

equal the rate of move requests generated at s p
i , which is 

λi .  The rate of pickups from s p
i is the rate of empty vehi-

cle arrivals to s p
i (denoted by ep

i ) multiplied by the prob-

ability of finding a load waiting at s p
i , thus the stability 

conditions are: 
 

  
Ev
Cq

i

i
i

11 λ−= , Si P∈∀   (4) 

This set of equations provide |m| equations but intro-
duces one unknown, C1 . 

4.3 Expected Transition Times 

We can develop an expression for C1  by considering the 
transition times for the system to move from one state to 
the next.  Let T r denote the expected time from the instant 
the system enters state r until the instant it enters the next 
state. C1  defined as the expected time between two suc-
cessive visits to state (1), can be obtained from: 

 
 ∑=

∈∀ Rr
rr TvC1  (5) 

 
The terms T r , Rr ∈ can be determined similar to the 

transition probabilities based on the positions and types of 
the vehicles that are at the head of the stations’ queues.  
For instance, if there are two empty vehicles arriving at 
some pickup station s p

i , the time the system spends in this 
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state depends on whether or not the first vehicle will en-
counter a waiting load; with probability qi , the first vehicle 

will move to the next drop-off station sd
i 1+ and the expected 

transition time is simply t ii 1, + .  With probability qi−1 , the 
vehicle will find a load and in the next state this vehicle 
will be receiving a service at s p

i and thus the transition time 
is zero.  The expressions forT r , Rr ∈ become more com-
plicated when more than one vehicle is able to change its 
position and/or its status.   

Combining equations (1), (2), (4) and (5), we have 
|R|+|m|+1 equations and |R|+|m|+1 unknowns, therefore we 
can find the unique solution to the system of equations and 
calculate the visit ratio to every state, the blocking prob-
abilities and system throughput. 

To estimate the throughput, choose a pick-up station 
s p

i arbitrarily, let Li be the set of states where the first ve-
hicle in queue at pickup station s p

i  is arriving loaded i=1, 
…, Sp, Let Lv

i
denote the visit ratio to state set Li , which, 

conceptually, is the number of times loaded vehicles 
visit s p

i in a cycle.  Recall that Ev
i
 denote the number of 

times empty vehicles visit s p
i in a cycle, the throughput is 

the sum of empty and loaded arrivals divided by the cycle 
length: 

 

 
C

EvLv
ii

1

+
=θ  (6) 

 
The choice of s p

i is arbitrary since the system is a 
closed loop and the arrival rate of vehicles should be equal 
for all the stations.  

We now apply the above method to the system with 
two vehicles and four stations.  Recall that the pickup sta-
tions ( s p

1 , and s p
2 ) have capacity for one vehicle each, 

while the drop-off stations ( sd
1 , and sd

2 ) have capacity for 
two vehicles each. The total number of states for this sys-
tem is 54, provided in Table A-1. 

We use the layout in Figure 6 to validate the estimates 
of system throughput using discrete event simulation.  The 
layout was analyzed with various data sets that result in 
different AMHS throughput.  The error percentage when 
comparing the throughput estimated using the queuing 
model to that using the simulation is reported in Figure 7, 
for different release rates.  

The queuing model can be used to study the system 
behavior.  For example to investigate the effect of increas-
ing the number of vehicles on the AMHS throughput.  The 
behavior is similar to what would be expected in a closed 
queueing network with finite buffers, as illustrated in Fig-
ure 8.  As the fleet size increases the system throughput in-
creases until the point where the blocking delays start to 
2
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adversely affect the throughput and increasing the number 
of vehicles will reduce the throughput.  For our example, 
the maximum throughput is achieved at n=3. 
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Figure 7: Comparison of Queuing and Simulation Model 
Throughput Estimates at Different Release Rates. 
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Figure 8: Impact of Increasing AMHS Fleet Size on 
Throughput. 

5 FUTURE WORK 

We are currently working on further validation of the 
model for more realistic systems.  Later, we will develop 
expressions for the expected waiting time of loads for a 
vehicle.  From there, we will explore the possibility of us-
ing the AMHS analytic model as a tool used in conjunction 
with simulation to provide quick performance evaluation 
of large-scale simulation models such as those used to 
simulate 300mm wafer fabrication facilities.  Detailed 
AMHS simulation models are capable of capturing the 
variability of the fab, but this capability comes with the 
high price of excessive development, validation and run-
ning times.    Specifically, we will explore the possibility 
of linking the AMHS queueing model with a detailed 
simulation model of the production equipment and lot 
scheduling system.  This approximation will tremendously 
reduce the running time of the simulation model. 
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APPENDIX: ADDITIONAL DATA  

Table A-1 lists the possible states for the numerical exam-
ple in Section 4.2.  Part of the transition matrix is displayed 
in Figure A-1. 
 
Table A-1: Possible States of the System in Figure 6 

State String State String State String State String State String State String 
1 0s0e00 11 e000s0 21 0s0s00 31 ef0000 41 000sk0 51 f00e00 
2 0e00f0 12 0s00f0 22 e00f00 32 e00e00 42 f00s00 52 f00f00 
3 ss0000 13 ee0000 23 000ef0 33 0e00s0 43 0s0f00 53 000ff0 
4 e000e0 14 s00e00 24 0e0e00 34 0s00e0 44 000ss0 54 000ee0 
5 s00f00 15 se0000 25 0f0e00 35 ff0000 45 s000s0   
6 0000sf 16 000sf0 26 f000e0 36 0sf000 46 0se000   
7 fe0000 17 f000f0 27 sf0000 37 000se0 47 0s00s0   
8 e000f0 18 s00s00 28 f000s0 38 e00s00 48 0000se   
9 0e00e0 19 0f00e0 29 0f00f0 39 sb0000 49 000fe0   

10 0e0f00 20 0f0f00 30 000sb0 40 0f00s0 50 sk0000   
 

 
1 2 3 4 5 .......... 45 46 47 48 49 50 51 52 53 54

1
2
3
4 (q1)
5
6
7
8 (1-q1) (1-r2) (1-q1) (r2) (q1)(r2) (q1) (1-r2)
9

10
11 (q1)
12
13 (q1)
14 (q2)
15
16
17 (1-r2)
18
19 (r1) (1-r1)
20
21
22
23
24
25 (r1)(q2)
26
27
28
29 (r1)(r2) (1-r1) (1-r2)
30
31 (1-q1) (r1) (1-q1) (1-r1)
32
33
34
35
36
37
38
39
40 (r1) (1-r1)
41
42
43
44
45
46
47
48 1
49
50
51 (q2)
52
53
54  

 
Figure A-1: Transition Matrix 
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