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ABSTRACT 

Internet background traffic modeling and simulation is the 
main challenge when constructing a test environment for 
network intrusion detection experiments. However, a real-
istic simulation of network traffic through analytical mod-
els is difficult, because the classic distributions are usually 
ineffective when applied to traffic-related random vari-
ables. A modeling and simulation approach using heavy-
tailed mixture distributions is introduced in this paper. In 
the case study, this approach is used to build analytical 
models for random variables of several major Internet ap-
plications (FTP, HTTP, SMTP, POP3, SSH) of a campus 
network. Several statistical features of an NS2 simulation 
are compared against those of the traffic traces being simu-
lated. The comparison indicates that the simulation is sta-
tistically similar to the real traffic. 

1 INTRODUCTION AND BACKGROUND 

The modeling of the Internet traffic has long been impor-
tant to networking product developers, performance ana-
lysts, network administrators, and researchers. For in-
stance, when developing Intrusion Detection Systems 
(IDS), one needs a test bed composed of attack-free back-
ground traffic and intentionally inserted network attacks to 
evaluate the system’s performance. In this case, the main 
challenge is how to obtain a simulation of the Internet 
background traffic, which preserves essential characteris-
tics of the real traffic, or to be realistic. 

However, as discussed by Floyd and Paxon (2001), 
simulating the Internet traffic is a difficulty task due to the 
heterogeneous structure, immense size, and changing prop-
erty of the Internet. In the same work, Floyd and Paxon 
also point out that it is more appropriate to simulate the 
Internet traffic on the application level than the packet 
level. The reason is, the packet-level pattern of a network 
traffic is shaped by the network condition in which the traf-
fic occurs, while the application-level pattern usually is 
more stable. 
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Danzig and Jamin (1991) introduced a library, Tcplib, 
to help generate realistic TCP/IP network traffic. Tcplib is 
an application-level empirical model that models 5 differ-
ent types of Internet application traffic (FTP, SMTP, 
NNTP, TELNET and RLOGIN). Several limitations exist 
in Tcplib. First, it needs a better model of conversation ar-
rival rates. Second, it lacks several application-specific de-
tails. For example, the interarrival time of FTP control 
packets and the distribution of number of request-response 
handshakes that occur during SMTP and NNTP conversa-
tions were not modeled. Also, because this work preceded 
the growth of the web, Tcplib does not include the model 
of HTTP traffic, which is critical for today’s network traf-
fic simulation. 

Paxson and Floyd (1994, 1995) examined 3 million 
TCP connections from a number of wide-area traffic traces 
and a variety of sources.  Some analytical models were de-
rived to describe the random variables associated with 
TELNET, NNTP, SMTP and FTP connections. Paxson and 
Floyd’s work might be the most referenced literature in the 
network traffic simulation research. However, like the 
Tcplib, the HTTP protocol is absent from their models. 
Even for protocols that had been studied, it is still neces-
sary to revise their models, considering the long time since 
Paxon and Floyd first proposed their work and the applica-
tions may have changed their behavior significantly. 

When modeling network traffic related random vari-
ables, it has been noticed that some variables have heavy-
tailed features in their cumulative distributions (Willinger, 
Taqqu, Sherman, and Wilson 1995). By using traffic traces 
captured in February 2003 at University of Central Florida, 
the authors became aware that many statistical variables of 
modern Internet traffic differed from Paxon’s distribution 
models and preferred more than before to have heavy-
tailed features. Even using heavy-tailed distributions, some 
variables, such as bytes transferred by FTP, HTTP and 
SMTP protocols are less straight forward to be modeled. In 
this paper we document a successful modeling approach 
that leverages mixture and heavy-tailed distributions. We 
also present results from NS-2 simulation, which show our 
models are able to generate Internet background traffic 
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similar to the real ones in the sense that they have the same 
or close degree of several statistical features. The results 
should be of interest to those attempting to emulate net-
work traffic environments. 

2 HEAVY-TAILED DISTRIBUTION 

In the usual way, we denote the cumulative distribution 
function (cdf) of a random variable X as 

 
( ) [ ]XF x P X x= ≤  

 
and its associated probability density function (pdf) as 

 
 '( ) ( )X Xf x F x=  
 
when this derivative exists. The distribution of a random 
variable X is said to be heavy-tailed if 
 
          1 ( ) [ ] ~XF x P X x x α−− = > , as x→∞, 0<α<2. 
 

Heavy-tailed distributions have a number of properties 
that are qualitatively different from distributions more 
commonly used, such as Poisson, normal or exponential 
distributions (Crovella, A. Bestavros, 1997). As parameter 
α decreases, an arbitrarily large portion of the probability 
mass may be present in the tail of the distribution. In other 
words, a random variable that follows a heavy-tailed dis-
tribution can give rise to extremely large values with non-
negligible probability. 

To assess the presence of heavy tails in the traffic data, 
one can employ log-log complementary distribution 
(LLCD) plots. These are plots of the complementary cu-
mulative distribution ( ) 1 ( ) [ ]F x F x P X x= − = >  on log-
log axes. Plotted this way, heavy-tailed distributions have 
the property that 
  

 log ( )
log

d F x
d x

α= − , x>θ 

 
for some real threshold θ and the shape parameter α>0.  

Probably the most commonly used heavy-tailed distri-
bution is the Pareto distribution with pdf given by 
  
 1( )f x k xα αα − −= , α>0, k>0. 

 
The corresponding cdf is 
 

( ) [ ] 1 ( / )F x P X x k x α= ≤ = − . 
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 Note that parameter α can be measured by the slope of 
straight line behavior in LLCD plot; parameter k can be es-
timated by the minimum value of samples, starting from 
which the data shows heavy-tailed behavior. 

3 TRAFFIC MODELING 

In this section, we describe the procedure we used to 
model random variables of the FTP, HTTP, SMTP, POP3 
and SSH traffic of a campus traffic data set. We demon-
strate that how the random variables of a protocol are de-
termined, and how the distributions of these variables are 
modeled. Mixture and heavy-tailed distributions are used 
for several random variables. 

3.1 LAN Traffic Analysis 

We captured IP headers from millions of Ethernet frames 
from the Computer Science department at UCF during a 
10-hour period on February 05, 2003. Analysis shows that 
most packets are TCP packets, and more than half TCP 
connections belong to 5 Internet applications. See Figure 1 
and Figure 2.  

In this paper, we model random variables of 5 major 
Internet applications of the UCF CS department: HTTP, 
FTP, SMTP, POP3 and SSH. Our purpose is to propose a 
modeling procedure, by which a realistic background traf-
fic simulation of a specific network can be achieved. 

3.2 Modeling FTP traffic 

Each FTP session includes an FTP control connection and 
either zero, one, or multiple FTP-DATA connections in 
“active” or “passive” mode.  In this section we are inter-
ested in modeling distributions of the following random 
variables: 

 
• AFTP:   FTP session arrivals; 
• NFDC:   number of FTP-DATA connections per 

session; 
• BFDC:   number of bytes transferred per FTP-

DATA connection; 
• IFDC:   Idle-time between adjacent FTP-DATA 

connections. 
 
One difficulty of identifying the passive FTP-DATA 

traffic is that it does not use fixed port number in transfer-
ring. Not like transmissions in the active mode, which al-
ways use the port 20 on the server side, passive FTP trans-
missions might use any number above 1024 as the port 
number for the client or the server. We use the following 8 
rules to distinguish valid FTP-DATA connections from the 
synthetic background traffic: 
09
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Figure 1: Categories of Captured IP Packets 
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Figure 2: Categories of Captured TCP Connections 
 
• All connections on port 20 are valid FTP-DATA 

connections; 
• Connections with no actual data payload are not 

FTP-DATA connections; 
• Connections that send data from both ends are not 

FTP-DATA connections; 
• The port numbers of both ends of a passive FTP-

DATA must be above 1024; 
• If a connection is a passive FTP-DATA, the client 

of its parent control session must initiate the FTP-
DATA connection; 

• The time span of an FTP-DATA connection must 
be completely covered by the time span of its par-
ent  control session; 

• An FTP control session’s child data connections 
are not overlapped on the time; 

• The port numbers of FTP-DATA connections 
spawned by an FTP control session should always 
be increasing, when the FTP-DATA connections 
are ordered by their creation time. 
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We first introduce the procedure of modeling the ran-
dom variable BFDC, the number of bytes transferred during 
a single FTP-DATA connection.  

Extensive investigation indicates that the distribution 
of BFDC does not match any known classic model. In this 
one the distribution does have a heavy tail, which is seen 
clearly in its LLCD plot, Figure 3. 

 

 
Figure 3: LLCD of BFDC 

 
The straight-line behavior in Figure 3 begins roughly 

at x=4. The range of heavy-tailed behavior corresponds to 
byte numbers greater than 10000, which accounts for about 
15% of all sample values. Thus a good model for the upper 
15% of BFDC might be a Pareto distribution with parameter 
k=10000 and α=0.3090 (the negative slope of the straight 
line).  

Now let’s consider the lower 85% samples (or samples 
with a value less than 10000). CDF plot in Figure 4 of this 
part suggests an Exponential distribution with the rate pa-
rameter 0.00052.  

 

 
Figure 4: CDF of Lower 85% of BFDC 

 
Having determined distribution models for the upper 

and lower part of the distribution sample, we combine 
them together to build the final model for the random vari-
able BFDC., which is depicted in Figure 5. One Exponential 
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distribution and One Pareto distribution describes the 
lower and upper part of the sample distribution respec-
tively, and the final model is a mixture distribution. The 
results of Chi-square test  (indicated in Figure 5) support 
that there is no significant difference between the model 
and the real distribution. 

 

 
Figure 5: The Final Model of BFDC 

 
Analysis shows that the FTP session arrival is a typical 

Poisson process. The random variable NFDC also has a 
heavy-tail behavior in almost all its distribution mass, thus 
a single Pareto model can describe it well.  

When Modeling the idle time between two FTP-
DATA connections (IFDC), we noticed that one can best 
model this random variable when its values were divided 
into two groups, both of which can be described by a 
Gamma distribution. The first group includes values less 
than one second, which usually are results of using auto-
mated FTP client software. We call it automated group; 
The other group only contains values more than one sec-
ond, and these big idle times are usually produced by hu-
man’s manual manipulation of file transferring. We call the 
second group manual group. Although both groups can be 
well modeled by Gamma distributions, we found the auto-
mated group has to take the unit of microsecond when 
measured and need a logarithm transform first.  

Table 1 summarizes models of FTP-related random 
variables. 

3.3 Modeling HTTP traffic 

We model HTTP traffic by a page-oriented structure, 
which was used by Reyes-Lecuona et al. (1999), except 
that we do not include the packet level. On the top of this 
structure is a HTTP session, which is defined as a user’s 
continuous browsing activities. During one session, the 
user opens one or multiple web pages. One page contains 
one or multiple TCP connections to retrieve all objects 
embedded in that page. A research work by Casilari, Gon-
241
zalez, and Sandoval (2001) reveals that no matter the 

HTTP protocol uses persistent connection (HTTP 1.1) or 
separate connections (HTTP 1.0) to retrieve web page con-
tents, the statistic characteristics of traffic traces captured 
in both situations have no significant difference. Based on 
this conclusion, we restrict the HTTP structure up to the 
page level, and ignore any detail within a page. In this pa-
per, four HTTP-related random variables are modeled. 
They are: 

 
•  AHS: HTTP session arrivals; 
•  NHPS: number of pages per HTTP session; 
•  BHP:  bytes transferred per page; 
•  THP:  user thinking time between pages. 

 
Table 2: Models of HTTP Traffic 

Variable Distribution Parameters 
AHS Poisson λ varies every 1 min-

ute 
BHP Pareto 

(upper 36%) 
α=1.164, k=104.25 

 Exponential 
(lower 64%) 

rate=0.0002419939 

NHPS Pareto α=1.26, k=1 
THP Gamma shape=0.9936, 

rate=0.0504 
 
Another difference from Reyes-lecuona’s work is how 

we determine the beginning of an HTTP session and the 
beginning of an HTTP page. When we come up with a new 
connection from a user, two time periods are measured. 
One is the connection spacing, which is the time between 
the start of the new connection and the end of the last con-
nection from the same user. If this time exceeds 30 min., or 
1800s, we consider the new connection as the beginning of 
a new coming HTTP session. Another measurement is the 
difference of starting times of two consecutive TCP con-

Table 1: Models of FTP Traffic 
Variable Distribution Parameters 

AFTP Poisson λ varies every  
5 minute 

NFDC Pareto α=1.0595, k=3 
BFDC Pareto 

(upper 15%) 
α=1.15, k=10000 

 Exponential 
 (lower 85%) 

rate=0.00052 

IFDC Manual Group shape=0.227, 
scale=73.962 

 Automated 
Group 

 shape=202.04, 
scale=0.079 
1
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nections from a user, which is intended to represent the 
time between two mouse clicks (i.e., the openings of two 
web pages by a user). Reyes-Lecuona (1999) uses 30 sec-
onds as the threshold to distinguish two pages. Thirty sec-
onds may be appropriate for wireless networks (Reyes-
Lecuona’s work  was done on analysis of wireless traffic), 
but for wired networks, it is too large. Our experiments 
suggest that 1 second is a good threshold for wired net-
work. 
 Table 2 summarizes the models for random variables 
of the HTTP traffic. Both NHPS and BHP have heavy-tailed 
feature, and the modeling of BHP involves mixture distribu-
tions. 

3.4 Modeling SMTP and POP3 traffic 

The SMTP and POP3 traffic are both modeled on the con-
nection level.  

Our experiments show that even the simplest SMTP 
connection (which includes one email having no message 
in the body, no attachment, but only sender and receiver’s 
addresses and a very short one-word subject) has a data 
payload slightly more than 500 bytes in its TCP packets. 
We discard all SMTP connections with payloads less than 
500 bytes before modeling. We assume they are generated 
by scans. 

Experiments on POP3 connections show that, POP3 
client software would always issue several commands, 
such as LIST and UIDL, after the connection with the 
server established and the authorization passed, trying to 
get information about the maildrop on the server. The 
server responds to each command from the client; how-
ever, the length of the response depends on how many 
email messages of the user account exist on the server.  

Experiments also show that a successful POP3 conver-
sation with a remote server, which has an empty maildrop, 
has a sum about 90 bytes of data payload in its connection. 
One POP3 connection that actually receives emails from 
server will have a data payload at least about 1000 bytes in 
its connection. Here we classify captured POP3 connec-
tions into 3 categories: invalid connections are POP3 con-
nections with payload less than 90 bytes, which cannot 
possibly complete the simplest conversation; unloaded 
connections are those with payload between 90 and 1000 
bytes; loaded connections as those with payload more than 
1000 bytes. Unloaded POP3 connections log in to a server 
successfully, and check the information of the maildrop, 
but do not download any email. Loaded connections com-
pose all actions of the unloaded connections, and retrieve 
at least one email from the server. It is possible that some 
connections have more than 1000 bytes of payload but re-
trieve nothing, and they should be classified as unloaded. 
In practice, we cannot distinguish them from the loaded 
connections only by TCP header information. It is appro-
priate and more feasible to think them as loaded connec-
24
tions. The following random variables are needed to model 
SMTP and POP3 traffic: 

 
• ASC:  SMTP connection arrivals; 
• BSC:  bytes transferred per SMTP connection; 
• APC:  POP3 connections arrivals; 
• BPC:  bytes transferred per POP3 connection. 
 
The SMTP and POP3 connection arrivals are close to 

Poisson processes, when measured in small (1-minute) 
time intervals. Modeling of BPC uses mixture distributions. 
Table 3 lists all models, and Figure 6 compares the model 
and the actual distribution of the variable BPC. 

 
Table 3: Models of SMTP and POP3 Traffic 

Variable Distribution Parameters 
ASC Poisson λ varies every 1 min-

ute 
BSC Pareto α=0.8454, k=1250 
APC Poisson λ varies every 1 min-

ute 
BPC Gamma 

(loaded) 
shape=40.6029, 

rate=2.8903 
 Pareto 

(unloaded) 
shape=1.873, k=90 

 

 
Figure 6: The Final Model of BPC 

 

3.5 Modeling SSH traffic 

Generally, the usage and communication pattern between 
an SSH client and the server are similar with those of 
TELNET. We then use the same four random variables as 
those in Paxon’s work (1994, 1995) used to model 
TELNET traffic for SSH traffic modeling. The random 
variables are: 

 
• ASSH: SSH connection arrivals; 
12
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• NSSH: number of originator packets per connec-
tion; 

• TSSH: time between adjacent originator pack-
ets; 

• BSSH: bytes per SSH response. 
 

In a normal SSH connection, the client (or the origina-
tor) sends small packets the server, and the server responds 
to each originator packet with one or more packets which 
vary in size. It is more reasonable to measure a server’s re-
sponse by its number of bytes, instead of the number of 
packets. 

Table 4 summarized the models used for SSH traffic 
modeling. 

 
 Table 4: Models of SSH Traffic 

Variable Distribution Parameters 
ASSH Gamma Shape=0.2784 

Rate=0.2260 
NSSH Log2-normal μ=7.9613, σ=2.8304 
TSSH Log10-normal μ=3.4624, σ=1.6275 
BSSH Pareto α=1.079, k=32 

 

4 SIMULATION DESIGN 

After the models of all considered random variables are de-
termined, we simulate the CS traffic traces in the NS-2 
simulator. Our purpose is to generate network traffic which 
is statistically similar to the captured one. We choose NS-2 
as the simulating platform because: 1) it provides authentic 
support for TCP, which means that in NS-2 TCP runs real-
istically with virtually all options supported; 2) the trace 
and monitoring support provided by NS-2 makes it con-
venient to collect all packet traces produced by the simula-
tion. 

All simulated TCP connections are scheduled as 
events in NS-2. The models of a specific protocol decide 
when a TCP connection of this protocol should be 
launched and how many bytes should be sent during this 
connection. 

Figure 7 depicts a simple network structure we used in 
the NS-2 simulation. In this structure, all traffic of a spe-
cific protocol occurs between a client node and a server 
node. For example, an HTTP client sends out all simulated 
web requests; an HTTP server receives all  the requests and 
generate all responding web pages. The client nodes of five 
protocols are connected to a router via high speed links, 
representing a LAN environment. The five servers are con-
nected to another router also via high speed links. A large-
delay high-throughput link connects the two routers, repre-
senting a typical Internet backbone connection. A traffic 
monitor is place on the backbone link, thus all TCP packets 
24
produced by the simulation can be captured and saved to 
files on the hard disk for further analysis. 

We simulated the entire 10 hours of collected CS traf-
fic on the NS-2 platform. The running time of the simula-
tion in the Debian Linux 3.0 on a PC with Pentium 4 2.0 
GHz CPU and 1GB memory is about 40 minutes.  

5 EXPERIMENT RESULTS 

The goal of the simulation is to produce network traffic 
that is similar to that being simulated. The similarity is ex-
amined by the following traffic features: 

 

 
 Figure 7: The Network Structure of NS-2 Simulation  

 
• Application-level traffic pattern; 
• Packet arrivals; 
• Self-similarity; 
• Correlation integrals and fractal dimension. 
 
A successful simulation should have similar or close 

degree of the above statistical features with the real traffic. 
Being built on the application level, the models of the 

five protocols in our experiment produced values of appli-
cation-level elements (session arrivals, bytes per connec-
tion, connection idle time, etc.) in the same distributions as 
those of the CS traffic. Because of the limit of the space, 
we only plot the session arrivals of the HTTP traffic and its 
simulation in Figure 8. 

We also compare the packet arrivals in the time period 
from the second 21000 to the second 25800, when the 
packet arrivals are most intense. Figure 9(a) and 9(b) de-
pict the packet arrivals in this period of the CS traffic and 
the simulation, respectively. 

Figure 9 shows that the mean and standard deviation 
of the packet arrivals of the simulation are close to the CS 
traffic. Furthermore, the burstiness of the simulation is also 
similar to the CS traffic: in most time, the arrival rate 
(packets/sec.) is below 1000; a few bursts are near 2000; 
the biggest burst is about 5000.  
13
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Figure 8: HTTP Session Arrivals 

 

 
(a)  Packet Arrivals of the CS Traffic 

 

 
(b)  Packet Arrivals of the Simulation 

Figure 9: Comparison of Actual Packet to Simulated 
Packet Arrivals 

 
As shown by Leland et al. (1994), and supported by 

later research (Beran 1995, Paxon 1995), the distribution of 
traffic in Local Area Networks and on the Internet com-
monly exhibits self-similarity, and the degree of the self-
similarity can be measured by a Hurst parameter H. We 
test the self-similarity on the packet arrivals of both the CS 
24
 Marin 

traffic and the simulation. The self-similarity is computed 
with a log-log spectra-density plot near its origin. This 
method is described by Crovella (1997) and Willinger 
(1995). Figure 10(a) and 10(b) depict the test results for the 
CS traffic and its simulation. The Hurst parameter H is 
computed from the slope of the linear regression. The Fig-
ure shows that the simulation produced a very close degree 
of self-similarity, compared against the CS traffic. 

 

 
(a) Self-similarity Test of the CS Traffic 

 

 
(b) Self-similarity Test of the Simulation 

 
Figure 10: Comparison of Self-Similarity of Actual Traffic 
to Simulated Traffic 
 

That network traffic also exhibits “fractal-like’ behav-
ior has been observed and studied by Leland (1994), Will-
inger and Paxson (1998). Grassberger and Procaccia (1983) 
give one method to calculate the fractal dimension of a 
time series through correlation integrals. Let xi be the 
packet arrivals at the ith second, we use the following for-
mula to calculate its correlation integrals: 
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2
, 1,

1( ) lim ( | |)
N

i jN i j i j
C r r x x

N
θ

→∞ = ≠

= − −∑ , 

 
where |xi-xj| is the Euclidean norm and θ is the Heaviside 
function 

 
0, 0

( )
1, 0

x
x

x
θ

<⎧
= ⎨ >⎩

. 

 
The distance |xi – xj| is defined as the difference of the 

number of the packet arrivals between the ith and the jth 
second.  

 

 
(a) The Correlation Integrals and the Fractal Dimension of 
the CS Traffic 
 

 
(b) The Correlation Integrals and the Fractal Dimension of 
the Traffic Simulation 
Figure 11: Comparison of Correlation Integrals and Fractal 
Dimension of Actual Traffic to Simulated Traffic 
 

Grassberger and Procaccia (1983) also show that for 
small r, the correlation integral C’(r) grows according to a 
power law: 

 

24
'( ) ~ vC r r , 
 

where v is the estimation of the correlation fractal dimen-
sion, and it can be determined by plotting C’(r) vs. r on a 
log-log plot. 

Figure 11(a) and 11(b) depict the correlation integrals 
and the fractal dimension for the CS traffic and the simula-
tion. The correlation integrals are displayed as a sequence 
of dots in the figure, while the fractal dimension is the 
slope of the linear regression on small values of the dis-
tance r. 

The fractal dimension of the CS traffic data is 0.912, 
while it is 0.863 of the simulation. 

6 CONCLUSION 

In this paper, we introduced an approach to model the 
Internet background traffic by using mixture heavy-tailed 
distributions. The approach is proposed because traditional 
distributions are ineffective for a number of random vari-
ables that are essential in modeling the Internet traffic. Our 
approach has been demonstrated for five major Internet 
protocols (HTTP, FTP, SMTP, POP3 and SSH) based on 
data collected from the CS LAN at UCF. An NS-2 simula-
tion environment has been built and used for simulating the 
Internet background traffic. The experimental results are 
discussed and compared with the original traffic. The 
simulation results show that our models can produce realis-
tic network traffic in regard to the following: 
 

• The random variables of the simulation traffic 
have similar distributions with those of the real 
traffic; 

• The pattern of the packet arrival of the simulation 
compares favorably with that of the actual arri-
vals; 

• The simulation and the real traffic have close de-
gree of self-similarity; 

• The correlation integral results are comparable for 
both; 

• The fractal dimension results are comparable for 
both. 

7 FUTURE WORK 

One limitation of this approach is that the models are pro-
tocol-specific. One must build different models for differ-
ent Internet applications, and usually need to re-estimate 
parameters for each model when applying the method in a 
new network environment. One direction of future work is 
to classify the Internet traffic into major different catego-
ries by traffic patterns. Different applications/protocols can 
be classified into the same category, as long as they have 
the same communication pattern at the application/packet 
15
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level. Then the mixture-modeling approach can be applied 
on each traffic category.  
 We also found that, although a close degree of self-
similarity to the CS traffic was achieved by the simulation, 
the simulated traffic does not have extremely high packet 
arrivals that characterize the real traffic in several specific 
periods of time. The simulation traffic looks less bursty 
than the real traffic during those periods. The reason may 
lie with the Pareto distribution that we used to model the 
heavy-tailed behavior of random variables. Other distribu-
tions with more obvious heavy-tailed feature might be suit-
able to produce extremely high bursts. 
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