
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

AN ONTOLOGY-DRIVEN FRAMEWORK FOR PROCESS-ORIENTED APPLICATIONS

Perakath Benjamin
Kumar V. Akella

Kaiser Malek
Ronald Fernandes

Knowledge Based Systems, Inc.

1408 University Drive East
College Station, TX 77840, U.S.A.

ABSTRACT

This paper describes an ontology-driven framework for
process-oriented applications. The research described in
this paper is motivated by the lack of information sharing
mechanisms at the semantic level among process-oriented
applications. Our approach addresses this problem through
the determination of inter-application information flow
requirements via an analysis of (i) application method
ontologies and (ii) application software tool ontologies.
The tool describes the overall ontology driven approach
and the inter-method ontology mappings that drive the
inter-tool information flow requirements. An example
information integration scenario is outlined in order to
illustrate the practical application of our approach. Lastly,
we summarize the research and outline the benefits.

1 MOTIVATION / PROBLEM DESCRIPTION

The complexity of managing process-oriented applications
in large organizations requires that work be distributed to
different functional areas and managed by smaller and
more versatile cross-functional teams within the larger
organization. Recent years have seen the development of
sophisticated software tools that support decision, design,
analysis, and other activities among these cross functional
teams, and these tools have greatly enhanced the
effectiveness of these activities. However, the distribution
of work in such a fashion generates a new problem: the
necessity of sharing information among the different
application contexts within the different functional areas
managed by these teams, and among the different tools
supporting the activities performed by those teams. Hence,
the usefulness of such tools in the sort of distributed
environment required by a complex system is a function of
the degree to which those tools (and the agents that use
them) can share information across their different contexts.
Typically, however, the data produced by software of this

23
kind is maintained in closed architecture databases. In the
overwhelming majority of cases, each software tool has its
own private data repository.

A complex representation (e.g., a simulation model or
a finite capacity scheduling model) carries the information
it does by virtue of some established, systematic
connection between the components of the representation
and the real world. It is this connection that determines the
semantic content of the data being represented. Typically,
however, the semantic rules of a representation system for
a given application and the semantic intentions of the
application designers are not advertised or in any way
accessible to other agents in the organization. This makes
it difficult, even impossible, for such agents to determine
the semantic content of a database. We refer to this as the
problem of semantic inaccessibility.

This problem manifests itself superficially in the forms
of unresolved ambiguity (as when the same term is used in
different contexts with different meanings) and
unidentified redundancy (as when different terms are used
in different contexts with the same meanings). But these
are just symptoms; the real problem is how to determine
the presence of ambiguity and redundancy in the first
place. That is, more generally, how is it possible to access
the semantics of process-oriented data across different
contexts? How is it possible to fix their semantics
objectively in a way that permits accurate interpretation by
agents outside the immediate context of this data? Without
this ability, the kind of coordination between multiple
applications and sub-systems necessary for effective
enterprise process management is not possible.

Previous approaches to mitigating the problem of
inter-operable simulations address syntactic
interoperability. Research attention has been focused on
the larger problem of modeling and simulation
composability (Davis and Anderson 2003; Petty and
Weisel 2003). A metadata approach to modeling and
simulation information exchange for military simulation
55

Benjamin, Akella, M
was described in (Morse, et al. 2003). The Extensible
Modeling and Simulation Framework (XMSF) adopts a
standard language-based approach to facilitate simulation
interoperability (Brutzman et. al 2002). Missing are useful
methods and tools for addressing simulation based
application interoperability at the semantic level.

In this paper, we describe an approach that addresses
the above problem through the determination of inter-
application information flow requirements via an analysis
of (i) application method ontologies and (ii) application
software tool ontologies. Our research focuses on the
problem of information sharing between process-oriented
applications: applications that depend significantly on the
use and manipulation of enterprise process or behavioral
information. Process-oriented application method types
that are within the scope of our research include finite
capacity scheduling, discrete event simulation, activity
costing, and project management.

2 ONTOLOGY-DRIVEN FRAMEWORK
SOLUTION APPROACH

Key concepts that underlie our architecture are as follows.

2.1 Inter-Application Ontology Mappings to
Determine Information Integration Requirements

The use of ontology mappings as the primary mechanism
for discovering inter-application information flow
23
alek, and Fernandes

requirements. Two types of ontology mappings were
investigated:

• Type I: Mappings between the process-oriented

application methods (scheduling, simulation, and
activity costing); and

• Type II: Mappings between the application
software tools that are used to implement the
application methods.

This paper will describe the representative Type I

mappings that we designed.

2.2 Neutral Process Language for Inter-Application
Translators

The use of a vendor-neutral process language as the basis
for building translators between process-oriented
applications. This approach has similar motivations as the
Process Specification Language (PSL) standard under
development by the National Institutes of Standards
Technology (NIST) [http://www.mel.nist.gov/psl/]. In our
research, we use the IDEF3 Process Modeling Language as
the vendor-neutral process language [www.idef.com].

The conceptual architecture of our ontology-driven
framework from process-oriented applications is shown in
Figure 1.

Scheduling Tool Simulation Tool Activity Costing Tool

(define-activity-role
:id #35
:name Inspect_Engine

:duration “30 hours”
:successors #44 #38
:object-types Entity

Insp_Equipment
Inspector

:preconditions
:postconditions)

Project Management Tool

Scheduling
Ontology

Project
Management

Ontology

Process
Ontology

Simulation
Ontology

Activity
Costing

Ontology

Scheduling Tool Simulation Tool Activity Costing Tool

(define-activity-role
:id #35
:name Inspect_Engine

:duration “30 hours”
:successors #44 #38
:object-types Entity

Insp_Equipment
Inspector

:preconditions
:postconditions)

Project Management Tool

Scheduling
Ontology

Project
Management

Ontology

Process
Ontology

Simulation
Ontology

Activity
Costing

Ontology

Scheduling
Ontology

Project
Management

Ontology

Process
Ontology
Process

Ontology

Simulation
Ontology

Activity
Costing

Ontology

Figure 1: Ontology Driven Framework for Process-Oriented Applications
56

Benjamin, Akella, Malek, and Fernandes
Translators enable the information flow between the
different process-oriented application such as scheduling,
simulation, activity costing, and project management to a
“neutral” process language, IDEF3. The advantage of
using a neutral language to facilitate information flow
between multiple languages is that it provides translation
efficiency. The efficiency gain in a generalized application
integration situation involving ‘n’ applications is illustrated
in Figure 1.

T1 T2

T4T3

Neutral
Format

With Pair-wise Translators
T1

T2

T3

T4

With Neutral Language

O(n2) O(n)

Developing translators without a neutral intermediary language requires n•(n-1) translators

T1 T2

T4T3

Neutral
Format

With Pair-wise Translators
T1

T2

T3

T4

With Neutral Language

O(n2) O(n)

Developing translators without a neutral intermediary language requires n•(n-1) translators

Figure 2: Using a Neutral Language to Increase
Application Integration Efficiency

Determining the information flow requirements for

these inter-tool translators occurs through an analysis of
the application (method and tool) ontologies shown at the
bottom of Figure 1. The IDEF3 “neutral” process language
depicted at the center of the figure facilitates the efficient
transfer of information between multiple (process-oriented)
tools. The absence of a neutral (i.e., vendor-independent)
process language would require the design and
development of pair-wise translators between the tools,
leading to additional translator development and
maintenance effort. Once the neutral language has been
designed, the translator design involves the development
and analysis of the ontologies of (i) the different methods
and (ii) the different tools. A key step is to determine
mappings between the different method and tool ontologies
(a formal specification of their concepts). The steps
involved in implementing our ontology-driven approach
are described in the following list.

1. Determine Inter-Method Mappings: This activity

involves (i) developing an ontology of the
different application methods that are within the
scope of the application integration effort and (ii)
analyzing the ontologies to identify the mappings
between the ontologies. The method ontologies
that are the focus of the mappings described in
23

this paper are (i) Process Modeling, (ii) Finite
Capacity Scheduling, and (iii) Simulation.

2. Determine Inter-Tool Mappings: This activity
involves (i) developing an ontology of the specific
software tools used to implement the application
methods entailed by the integration effort and (ii)
analyzing the tool ontologies to identify the
mappings between the tool ontologies.

3. Determine Inter-Tool Information Flow
Requirements: In this activity, the results of the
inter-method and inter-tool ontology mappings
are used to derive the meaningful information
flows among the applications that need to be
integrated.

4. Design Tool Translators: In this activity, the
software translator between the different
application tools is designed. Each translator may
be (i) one-way or (ii) two-way according to the
specific needs of the target enterprise application
scenario.

5. Build and Test Translators: This activity involves
(i) building the translators designed in step 4 and
(ii) testing the application with test models and
test data.

6. Use the Translators in the Context of Process-
Oriented Integrated Enterprise Application
Scenarios: This final activity refers to the
operational use of the translators in the context of
actual application executions.

The next section describes a set of inter-method

mappings and a strategy for determining the inter-tool
mappings.

3 PROCESS METHOD AND TOOL MAPPINGS

This section summarizes the mappings between three
(process-oriented) methods: (i) Process Modeling, (ii)
Simulation Modeling, and (iii) Finite Capacity Scheduling.
We also outline a strategy for determining mappings
between the corresponding tools that provide automated
support for these methods.

3.1 Method Mappings

Table 1 summarizes the concept (ontology) mappings
between process modeling, simulation modeling, and finite
capacity scheduling (for commonly re-occurring concept
types).
57

Benjamin, Akella, Malek, and Fernandes

Table 1: Inter-Method Mappings: Process Modeling, Simulation Modeling, and Finite Capacity Scheduling
Process Concepts Simulation Concepts Scheduling Concepts Discussion
Flow Object,
Participant Object

Entity Item, Part The inputs and outputs for activities are
declared explicitly in process and simulation
models; activity inputs and outputs are often
implicit in a scheduling model.

Process Process, Activity Activity, Task Differences between the process, simulation,
and schedule models are observed in the types
of attributes that are relevant for each method
and in the level of abstraction that is typically
adequate to address the modeling goals.

Waiting Space Queue, Buffer N/A Because simulation is often used for the
analysis of queue behaviors, waiting spaces
are often modeled in greater detail in
simulation than in process modeling. It is not
common to explicitly model queues in
schedule models.

Agent, Resource
Resources are often
classified in different
ways: (i) Dedicated vs.
Shared; (ii)
Consumable vs. Non-
Consumable; (iii)
Human, Equipment,
Facilities, etc.

Resource Resource Differences in how resources are modeled in
process, simulation, and schedule models are
observed in the types of attributes that are
relevant for each method and the level of
abstraction that is typically adequate.

Intra-Activity
Constraints (Resource,
Timing, etc.)

Intra-Activity
Constraints are often
expressed as Resource
- Activity
Dependencies and
Activity Time
Specifications (Often
Stochastic)

Intra-Activity
Constraints are often
expressed as Resource
- Activity
Dependencies, Activity
Time Specifications
(Usually
Deterministic), and
Calendar Constraints

Differences occur in both the constraint types
and in the level of constraint specification
detail.

Inter-Activity Logical
Constraints
(a) Input – Output
Dependencies
(b) Convergence (Fan-
In) and Divergence
(Fan-Out)
Dependencies

Inter-activity logical
Constraints
(a) Push and Pull
Interactivity Flow
Dependencies
(b) Convergence often
manifests as
Assembly constraints
and Divergence often
manifests as
Disassembly
Constraints

Inter-Activity Logical
Constraints
(a) Task Input and
Task Output
Specifications
(b) Convergence often
manifests as Logical
“AND” convergence
constraints and
Divergence often
manifests as Task
Parallelism (divergent
“AND”) Constraints

Differences occur based on whether the
representation of a flow object (“entity”) is
implicit or explicit. We have observed that
flow objects are often implicit in schedule
models and almost always implicit in
simulation models. The modeling of the
assembly and dis-assembly of physical
systems is often common in simulation
models and less common in schedule models.

Inter-Activity
Temporal Constraints
(Precedence
Constraints)

Inter-Activity
Temporal Constraints
(Precedence
Constraints)

Inter-Activity
Temporal Constraints
(Precedence
Constraints)

Differences occur in both the constraint types
and in the level of constraint specification
detail.

2358

Benjamin, Akella, Malek, and Fernandes
3.2 Inter-Tool Mapping Development Strategy

Once the inter-method ontology mappings have been
developed, an important next step is to determine
mappings between the tools that support these methods.
We will summarize our strategy for developing these
mappings based on an ongoing research and development
project called TEAMS (Toolkit for Enabling Adaptive
Modeling and Simulation) (Benjamin, Graul, and
Erraguntla 2002). TEAMS facilitates space transportation
system operations process analysis using multiple analysis
methods including simulation, scheduling, and cost
analysis. The use of a standard and expressively rich
process modeling language, IDEF3, provides the basis for
the rapid generation of analysis models. The PROSIM®
commercial tool provides automated support for IDEF3-
based process modeling. Automated support for
generating different types of analysis and execution
support models has been implemented: (i) discrete event
simulation (Arena and Witness) models, (ii) scheduling
models (WorkSim and MSProject) models, and (iii) cost
(SMARTABC® and SMARTCOST®) models. Additional
analysis tool interfaces are under development to facilitate
rapid and cost effective space transportation system
operations analysis. The TEAMS process-oriented, re-
configurable, plug-and-play analysis framework solution
concept is illustrated in Figure 3 (Benjamin, Graul, and
Erraguntla 2002).

Suppose that tools T1 and T2 need to exchange
information and that their ontologies are TO1 and TO2,

23

respectively. Further, we’ll refer to the IDEF3 Neutral
Process Representation Language as NPRL. The strategy
for determining the information flow requirements between
T1 and T2 is summarized in the following steps.

1. Determine TO1 <-> NPRL mappings
2. Determine TO2 <-> NPRL mappings
3. Use (1) and (2) to determine TO1 to TO2

mappings

In addition to the translator efficiency gains described
earlier in Section 2, the advantage of using NPRL in this
process is that it effectively assists with the conceptual
disambiguation. The generic concept descriptions (NPRL)
provide a reference point that is unaffected by
terminological or implementation-specific ontology
differences and similarities. For example, the NTRL might
use the term “Unit of Behavior (UOB)” to generically
denote terminological variants of this concept such as
“Activity,” “Task,” and “Operation.”

The disambiguated inter-tool ontology mappings that
result from step 3 (above) provide the foundation for
developing the inter-tool (TO1 <-> TO2) information
exchange requirements.

In the TEAMS framework, we’ve established the
technical viability and practical benefits of the above
strategy by developing translators between the ARENA
simulation tool and the WorkSim scheduling tool using
IDEF3 as the intermediary NPRL (Benjamin, Graul, and
Erraguntla 2002).

Figure 3: The TEAMS Process-Centric Operations Analysis Framework Solution Concept

Simulation
Arena
Quest

Witness
….

Optimization
GA
SA

Tabu Search
….

Scheduling
WorkSim
MSProject

Artemis
….

Cost Analysis
OCM

NAFCOM
SmartCost

…

Neutral Process Representation Language

IDEF3 Process Models

Simulation
Arena
Quest

Witness
….

Optimization
GA
SA

Tabu Search
….

Scheduling
WorkSim
MSProject

Artemis
….

Cost Analysis
OCM

NAFCOM
SmartCost

…

Neutral Process Representation Language

IDEF3 Process Models
59

alek, and Fernandes

Benjamin, Akella, M

4 EXAMPLE ONTOLOGY-ENABLED PROCESS
INFORMATION INTERCHANGE
APPLICATION

This section describes an example application scenario to
illustrate the working of the ontology driven application
integration framework approach. The example is based on
a simulation-based application that was developed in
(Benjamin, Graul, and Erraguntla 2002).

4.1 Background

The goal of the application was to answer the following
types of questions: (i) What is the estimated throughput of
the current process (estimated number of items processed
per year, estimated average processing time, and estimated
processing time variability)?; (ii) What is a feasible
schedule for executing this process given a predetermined
(a) start date and (b) end date? Simulation modeling is
used to address questions of type (i) and finite capacity
scheduling is used to address questions of type (ii).

In our example application, we studied a space
transportation system ground operations process. The
scope of the model encompasses the existing facilities,
Ground-Support Equipment (GSE), and range
infrastructure along with the flight hardware elements.
The following activities were performed in order to answer
the application questions.

1. Develop IDEF3 Process Model
2. Design and Generate Simulation Model
3. Design and Generate Schedule Model
4. Perform Simulation Experiments
5. Analyze Simulation and Schedule Model Outputs

23

4.2 Example Ontology Mapping Descriptions

The purpose of the example description is to illustrate the
working of the ontology-driven approach for process
application integration. We will focus on explaining the
inter-model and inter-tool ontology mappings. The inter-
tool mappings are described relative to three tools: the
PROSIM® process modeling tool, the Arena simulation
modeling tool, and the WorkSim scheduling tool.

4.2.1 Flow Object Mappings

Figure 4 represents a process flow network in PROSIM®
with two flow objects / participants objects: ELV ET Barge
and RLV ET Barge. Flow objects are characterized by
simulation-specific information such as inter-arrival time,
batch size, and arrival point. Active flow objects are
introduced into the system and assigned to a process upon
arrival.

Figure 5 represents the “corresponding” process flow

network in Arena with two flow objects (“entities”): ELV
ET Barge and RLV ET Barge. In addition to the process
information specified in PROSIM®, Arena allows for the
representation of additional information such as the
maximum number of entities generated, the time when the
first entity is generated, and time units. Active entities are
always generated at the system entry point, and these
entities are removed from the system at the system exit
point.

RLV ET Barge

ELV ET Barge

Flow Object /
Participant Object

ELV_ET_Barge: Batch Size: 1, IAT: 8

RLV_ET_Barge: Batch Size: 1, IAT: Expo(3)

RLV ET Barge

ELV ET Barge

Flow Object /
Participant Object

ELV_ET_Barge: Batch Size: 1, IAT: 8

RLV_ET_Barge: Batch Size: 1, IAT: Expo(3)

Figure 4: Flow Object Representation in PROSIM®

60

Benjamin, Akella, Malek, and Fernandes

Flow Object /
Participant Object

ELV_ET_Barge: Batch Size: 1, IAT: 8 days

RLV_ET_Barge: Batch Size: 1, IAT: Expo(3) days
Simulation Detail

Flow Object /
Participant Object

ELV_ET_Barge: Batch Size: 1, IAT: 8 days

RLV_ET_Barge: Batch Size: 1, IAT: Expo(3) days
Simulation Detail

Figure 5: Flow Object Representation in Arena

Flow objects are represented as items (or parts) in

WorkSim. Some of the information related to simulation
(and represented in PROSIM® and Arena) is irrelevant to
scheduling and thus not represented in WorkSim. Other
information about the flow object (item) is relevant for
scheduling / WorkSim such as the scheduled start date (for
forward scheduling) or desired end date (for backward
scheduling). This type of information is often not
represented in process and simulation models.

4.3 Intra-Activity Constraint Mappings

Figure 6 shows how resource rules and waiting spaces are
assigned to activities in PROSIM®. Resource rules are
used to represent the restrictions on the use of resource
objects with flow objects at an activity. Waiting spaces,
the physical areas where flow objects wait for resources,
are assigned to the activity. Multiple activities may be
assigned to a single waiting space. Different types of
dispatching rules may be assigned to waiting spaces such
as first-in-first-out, last-in-first-out, etc.

Unlike PROSIM®, both resource rules and waiting
spaces are assigned to processes in Arena. Queues /
buffers are inherently tied to processes, but the user has the
option of assigning multiple processes to a single queue.
The processing times are categorized as value added,
transfer, wait, and non-value added. Unlike PROSIM®,

23
Arena allows for the grouping of similar resources skill
sets. This feature is not available in PROSIM®.

The concept of waiting spaces is not commonly used
in scheduling (and not currently represented in WorkSim).
However, WorkSim provides for the representation of
different types of resource rules. Unlike Arena, processing
times in WorkSim are not tagged as value added, transfer,
wait, etc.

4.4 Agent / Resource Mappings

PROSIM® allows for the specification of information such
as system-wide capacity and per-hour resource use cost for
agents / resources. Arena and WorkSim allow for the
representation of additional information such as calendar
constraints, capacity and efficiency exceptions, categories
based on skills/capabilities, etc.

4.5 Inter-Activity Constraint Mappings

Figure 7 illustrates the representation of inter-activity
convergence (Fan-In) and divergence (Fan-Out) constraints
in PROSIM®. PROSIM® Fan-In and Fan-Out “Junction
Boxes” are used to represent different logical inter-activity
constraints such as “And (&),” “Exclusive Or (X),” and
“Inclusive Or (O).” The process flow diagram in Figure 7
illustrates examples of Fan-In and Fan-Out “&”
constraints.
61

Benjamin, Akella, Malek, and Fernandes

Process: Prepare Ret Vessel

Flow Object: RLV ET Barge, Duration: 1, Resource Rule: Retrieval Vessel # 1, Waiting Space: Object_61

Flow Object: ELV ET Barge, Duration: 1, Resource Rule: Retrieval Vessel # 1, Waiting Space: Object_61

Intra-
Process

Constraints

Process: Prepare Ret Vessel

Flow Object: RLV ET Barge, Duration: 1, Resource Rule: Retrieval Vessel # 1, Waiting Space: Object_61

Flow Object: ELV ET Barge, Duration: 1, Resource Rule: Retrieval Vessel # 1, Waiting Space: Object_61

Intra-
Process

Constraints

Figure 6: Process, Waiting Space, and Resource Rule Representation in PROSIM®

Fan-Out Constraints Fan-In Constraints

Destination Activities:

Minor Ops
Major Ops

Model As: Assembly Machine

Fan-Out Constraints Fan-In Constraints

Destination Activities:

Minor Ops
Major Ops

Model As: Assembly Machine

Figure 7: Representing Fan-In and Fan-Out Constraints in PROSIM®

Both convergence (Fan-In) and divergence (Fan-Out)

constraints may be represented in Arena. Arena also
allows for the specification of additional details such as the
cost associated with cloning and assembly based on user-
defined entity attributes (e.g., perform assembly operations
on entities whose weight is less than 10 lbs, etc.).

WorkSim allows for the representation of “And
(&)”inter-activity constraints types. “Exclusive Or (X)”
constraints are not currently supported by WorkSim.

5 SUMMARY

This paper described an ontology driven approach to
facilitating semantic information sharing among process-
oriented applications. A key idea is the use of a Neutral
Process Representation Language (NPRL) to increase the
translation effectiveness among applications that must
share information. The role of domain and tool ontologies
in determining translation information requirements was
described. Attention was focused on determining
mappings between Process Modeling, Simulation
Modeling, and Finite Capacity Scheduling method
ontologies. The practical benefits of the approach were
illustrated through a space transportation system ground
processing operations analysis example.
23
ACKNOWLEDGMENTS

The research described in this paper was partially
supported by NASA, contract number NAS10-02040, and
the Office of Naval Research, contract number N00014-05-
C-0072.

REFERENCES

Benjamin, P., Graul, M., and Erraguntla, M. 2002.
Methods and tools for aerospace operations modeling
and simulation: Toolkit for enabling adaptive
modeling and simulation (TEAMS). WSC '02:
Proceedings of the 2002 Winter Simulation
Conference, San Diego, California, 763-771.

Brutzman, D., Zyda, M., Pullen, M. J., and Morse, K. J.
2002. Challenges for Web-based modeling and
simulation, Findings and Recommendations Report:
Technical Challenges Workshop, Strategic
Opportunities Symposium, October 22, 2002. The
MOVES Institute, Monterey, CA.

Davis, K. and Anderson R. H. 2003. Improving the
composability of Department of Defense models and
62

Benjamin, Akella, Malek, and Fernandes

simulations, RAND National Defense Research
Institute, Santa Monica CA, 2003.

Morse, K. L., M. D. Petty, P. F. Reynolds, W. F. Waite,
and P. M. Zimmerman. 2004. Findings and
recommendations from the 2003 Composable Mission
Space Environments Workshop,” Proceedings of the
2004 Spring Simulation Interoperability Workshop,
313-323, Arlington VA.

Petty, M. D., and E. W. Weisel, 2003. A composability
lexicon, Proceedings of the Spring 2003 Simulation
Interoperability Workshop, 181-187, Orlando FL.

AUTHOR BIOGRAPHIES

PERAKATH BENJAMIN, Ph.D., a Vice President at
Knowledge Based Systems, Inc. (KBSI), manages and
directs the R&D activities at KBSI. He has over 18 years
of professional experience in systems analysis, design,
development, testing, documentation, deployment, and
training. Dr. Benjamin has a Ph.D. in Industrial
Engineering from Texas A&M University. Dr. Benjamin
has been responsible for the development of process
modeling, software development planning, and simulation
generation tools that are being applied extensively
throughout industry and government. At KBSI, Dr.
Benjamin was the principal architect on an NSF project to
develop intelligent support for simulation modeling that
led to the development of the commercial simulation
model design tool, PROSIM®.

KUMAR V. AKELLA, Ph.D. a researcher at Knowledge
Based Systems, Inc. (KBSI), received a Ph.D. in
Mechanical Engineering from Texas A&M University. Dr.
Akella's areas of expertise include simulation modeling,
design of experiments, numerical modeling, data mining,
and text mining. His current work at KBSI includes
simulation modeling and analysis, planning and
scheduling, enterprise modeling, computer based training,
and ontology development.
236
KAISER MALEK, a systems analyst at Knowledge
Based Systems, Inc. (KBSI), received a Master's degree in
Industrial Engineering from Oklahoma State University.
Mr. Malek has been working as a systems developer at
KBSI since 2001. Mr. Malek's responsibilities include
analysis, design, and development of software applications,
simulation and modeling of business processes, web-based
technology for software development, enterprise
integration, and project coordination.

RONALD FERNANDES, Ph.D. a senior research
scientist at Knowledge Based Systems, Inc. (KBSI),
received a Ph.D. in Computer Science from Texas A&M
University (TAMU). His areas of expertise include data
mining, neural networks, process modeling, knowledge
management, workflow systems, the design of large-scale
computer software, parallel and distributed computing,
communication / network protocols, network design and
analysis, and network management. Dr. Fernandes directs
and manages the commercial software development group
at KBSI.
3

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

