
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

FROM SIMULATION TO GAMING:
AN OBJECT-ORIENTED SUPPLY CHAIN TRAINING LIBRARY

Alexander Verbraeck
Stijn-Pieter A. van Houten

Faculty of Technology, Policy and Managment

Jaffalaan 5
Delft University of Technology

Delft, 2628BX, THE NETHERLANDS

ABSTRACT

The development of web-enabled interactive training simu-
lations is far from easy, especially when all models have to
be developed from scratch for each training game. Actu-
ally, one would like to be able to reuse parts of existing,
off-line simulation models in an interactive setting. The
challenge is how to set-up simulation models or simulation
libraries that are developed for off-line simulations in such
a way that they can be reused for on-line situations, and
adapted for different educational settings. Using a supply
chain context as an example, this paper shows how librar-
ies of simulation components can be applied both for off-
line simulation studies and for on-line training. The paper
also describes the other functionality that is needed to cre-
ate a generally applicable component library for supply
chain training simulations.

1 INTRODUCTION

Due to the dynamic nature of supply chains, simulation is a
natural and important instrument for the analysis and de-
sign of supply chains and supply chain management. Mod-
els, particularly those that offer good insight through visu-
alization and graphs, can help companies to structure and
simplify their complex and dynamic supply chains. The
simulation models can help to structure, transform, con-
dense and visually display data in such a way that manag-
ers can quickly grasp a situation and act upon the presented
information (Boyson et al. 2004). Many of the supply
chain models are, however, created uniquely for one spe-
cific situation, and it is hard to reuse the developed model
or parts of the model for other situations.
 Another aspect that complicates the modeling of sup-
ply chains is that they are heavily distributed. For the man-
agement of supply chains, there is not one central organiza-
tion that has the authority to make decisions on behalf of
23
the entire supply chain. All actors take their own decisions,
based on limited information, as the other organizations do
not share all their data with others. This has a severe effect
on the models that are created for supply chain decision
making; many decisions have to be taken based on as-
sumptions of other organization’s information or behav-
iour.
 Many ‘traditional’ supply chain models disregard the
fact that suppy chain information is spread over multiple
organizations and that modern supply chains are highly
dynamic. Trade exchanges, short-term contracts, and spot
buy markets make that supply chains are not static entities,
but highly dynamic networks that work largely on a pull
basis rather than on a push basis. Many traditional model-
ing applications, therefore, deliver increasingly limited
value to companies struggling with these conditions.

This is not to say that modeling is not useful in today’s
fast-paced supply chains. On the contrary, Boyson et al.
(2004) state that modeling is more important and more
needed than ever before. Because of the nature of supply
chain dynamics, managers often do not have insight into
the ripple effects of their decisions. Effects also can easily
get lost in the overwhelming flood of data that crosses the
supply chain manager’s desk daily, weekly, or monthly. A
rapidly changing supply chain with a continuous change of
partners leads to different sets of decisions than a stable
chain with long-term contracts.

Most real world logistic problems have an inherent
dynamic character; objects operate in parallel, affect each
other and change over time. Descriptions of the real world
are moreover inherently subjective, dependent on the vi-
sion of the focal actor involved in the problem. Many
modeling techniques fail to describe and design this type of
chaotic and dynamic problem situations. Especially in
complex supply chain problems, with many actors in-
volved, and lots of complex technology, it is extremely
important to be able to show the different views of differ-
ent actors, and to allow for interaction with the model to

46

d
Verbraeck an

study the effects of parameter changes as seen by these ac-
tors. This may require distributing a model over more
computers.

When we want to prepare students or managers for
taking better decisions in dynamic supply chains, we of
course want realistic interactions in the models that are
used in these teaching situations. For logistics students, it
is extremely instructive to study complex systems by vary-
ing parameters in different parts of the system and look at
the effects on the most important performance indicators in
the model. Figure 1 shows part of a supply chain model as
we developed it for teaching purposes in the simulation
language Arena (Kelton et al. 2002). Students can vary all
kinds of parameters for the organizations in the supply
chain, and study the outcome of the model, both during the
run and after the run. Indicators such as inventory levels,
production times, cycle times, and costs can be studied in
detail per supply chain actor, as illustrated in Figure 2.

The problem with these types of teaching or training
models is that it is very time consuming to develop them, it
is hard to incorporate the dynamics of the supply chain it-
self as the structure of the model is ususally fixed, and the
interaction with the model is very limited. Each student or
group of students is able to make the assignments by carry-
ing out a number of ‘what-if’ studies, but we are not able
to demonstrate the effects of decision making on a more
continuous basis. In this paper we present a Java-based ar-
23
 Van Houten

chitecture of supply chain components that overcomes the
above mentioned problems. The components can both be
used in a stand-alone ‘what-if’ mode and in highly interac-
tive supply chain training games. In developing the archi-
tecture, we tried to develop the component libraries in such
a way that the ‘mode of use’ (demonstration, what-if, in-
teractive, competitive game) is not visible in the compo-
nents themselves, but rather in additional services that are
used to deploy the supply chain library for a particular
mode of use. These additional services for gaming are also
briefly introduced in the paper.

2 A BASIC SUPPLY CHAIN ARCHITECTURE

As stated before, one of the major requirements of the sup-
ply chain architecture is to be applicable in multiple settings,
ranging from classical simulation to on-line gaming. In these
settings, many different problem contexts may be repre-
sented, such as inventory problems (Shapiro 2001, ch.11),
aliances and global integration (Simchi-Levi et al. 2003, ch.
6 and ch.8; Archibugi et al. 1999), the increasing role of cus-
tomers (Fredenhall & Hill 2001), the effects of e-business on
supply chains (Poirier & Bauer 2000), or the effect of portals
on supply chain management (Boyson et al. 2004). Specific
cases may demonstrate the effects of decisions on the bull-
whip effect in supply chains (Lee et al. 1997), the effects of
postponement on inventory levels (Chopra & Meindl 2001;
Figure 1:. Screen-Shot of a Supply Chain Teaching Game Developed in Arena
47

Verbraeck and Van Houten

Hoek 2001), see also Figure 1, or the information that is
needed for global sourcing and global sales (Waters 1999).
Addressing all these different contexts asks for a set of sup-
ply chain and supply chain management building blocks that
allow for flexible assembly.

Figure 2: User Output of a SupplyChain Teaching Model

Supply chains consist of a series of companies that con-
tribute to the production of the end product from raw mate-
rial and add value to it in each step. The network structure
consists of an arbitrary number of actors, which play differ-
ent roles in the supply chain. In order to reach the needed
flexibility, we chose for an object-oriented set-up of the sup-
ply chain library. To model the supply chain, an object
model has been developed that can capture the supply chain
generically. The object model focuses on the operational
level; the actors within the supply chain, their roles, and the
23
flows present between supply chain partners. Previous at-
tempts have been made to model supply chains, but to cap-
ture the supply chain with its complexity and dynamics, the
object model needs to consider the entire supply chain. This
model is constructed with the goal to give a thorough de-
scription of supply chains, and secondly to form a frame-
work for the development of a simulation library. With this
simulation library, an arbitrary supply chain can be modeled
and analyzed dynamically. Visualization can be put on top
of the simulation to provide insight in the supply chain. The
object model is made to define all relevant things in a supply
chain by recognizing them as objects. All objects have a cer-
tain behavior, state and identity (Zobrist & Leonard 1997).
Objects can interact using prescribed methods, and their be-
havior is dependent on their internal state, which can change.
This state is described by the present data, which is stored in
an object’s attributes.

2.1 Requirements

The object model will be used as a framework to make
a simulation library that will be used to specify different
supply chain models. The products for which the simula-
tion library is developed are analysis models, teaching
models and models that will be used as the engine in sup-
ply chain portals. The object model should be suitable to
describe any given supply chain for teaching models,
analysis models, or decision support models.

Models for teaching purposes have different demands
to the representation of supply chains than a real-life simu-
lation model as used in the portal model and analysis mod-
els. For real-life situations and decision support, a realistic
model is most important. This can imply that a company
that wants to get insight in the working of its chain can
visualize the flows of information and products in its sup-
ply chain The simulation of real-life supply chains will
need real-life data, which is often difficult to obtain.

In a teaching environment more emphasis is placed on
the outcome of the model. Concepts to be taught need to be
clear to students. The visualization must emphasize the
findings from their books. There is no need for a time-
consuming search for real-life data. The network structure
of the chain visualized however, can be extracted from
real-life. This means that the object model must provide a
generic model, which is suitable for both purposes.

The requirements to the object model are separated in
different fields: requirements to the translation into a simu-
lation library and requirements for the modeling of a vari-
ety of supply chains for analysis and for teaching purposes
(Corver 2001).

2.1.1 Requirements for Modeling and Simulation

R1. Clear Description. To be able to make a one-to-one
translation of the object model into a simulation library, the
48

Verbraeck and Van Houten

object model must provide a clear description. This de-
scription needs the right amount of detail in order to be
able to capture the supply chain dynamics and to provide a
picture of the supply chain but without giving an overload
of data.

R2. Right Level of Detail. A supply chain is difficult to
comprehend because of its complexity. With a structured
model it is possible to get better insight in the supply chain.
The dynamics in the supply chain networks and relation-
ships is a major part of this complexity. The object model
must be able to capture this dynamics from a supply chain.
In order to do this, it’s necessary to understand the flows of
information and products between actors. To get a control-
lable model, choices have to be made about the amount of
detail. With a limited amount of detail the functioning of a
supply chain must be described. There should also be
enough detail to provide a description of a variety of sup-
ply chains. If the description is too detailed, the translation
in a simulation library will be difficult and without enough
details the modeling of supply chains in not possible.

R3. Clear Structure. The object model must give a de-
scription that provides the builder of the simulation library
with a clear structure. This structure allows the one-to-one
translation of the object model into a simulation library.

2.1.2 Requirements for Teaching and Training

R4. Potential Link to Real Supply Chain Data. Simula-
tion models can be fed with real-life information in order
to be able to display the current situation. To achieve this,
a link will be made to the information systems and data-
bases of the individual actors. In this connection also the
desired data required in the supply chain model needs to be
extracted. The object model should be prepared to handle
these information systems. The object model must clearly
state which information must be extracted from the infor-
mation system. This information will consist of the objects,
attributes and methods stated in the object model.

In a situation with dummy data, the simulation model
must be able to function without extracting data from a
real-life information system. For the object model there
should not be a difference between the situation with or
without a real-life information system.

R5. Calculate Supply Chain Performance Indicators.
The object model must enable gathering of enough data to
provide statistics. The object model must define the input
data that is necessary to calculate performance measures.
Using this data, model users can compare different scenar-
ios, but also compare their organization to other companies
in the same line of business. These performance measures
should be taken over the entire supply chain but a drill
down function will allow focusing on smaller sections of
23
the chain. For displaying information to the users, choices
should be made which data and how much data should be
visible. Too much information will distract the user from
the core of the problem. Insufficient information makes it
impossible to make well-balanced decisions. The object
model, however, should be able to provide all the desired
information for different situations.

R6. Flexible Scope. The scope of the supply chain object
model is to consider the entire supply chain if needed.
When studying supply chain literature, one finds that some
authors only look at the focal company or the focal com-
pany with some external links to first tier suppliers and
customers. The object model must have the possibility for
modeling the entire chain, but if desired, just a small part
can be singled out. The reason for taking the entire chain
into account is because the effect of events can go far be-
yond the first tier customer or supplier. For instance when
the whole chain is taken into consideration the effects be-
come clear of a transport strike on the delivery of end
products to end-customers.

R7. Multi-Actor Visualization and Performance Indica-
tors. In order to visualize the whole chain, different actors
must be recognized. If only part of the supply chain is
visualized, the focal actor and its suppliers and customers
are described. Now it’s important to look beyond these ac-
tors. In the supply chain literature the most commonly
mentioned actors are: suppliers, manufacturers, distribution
centers, retailers and transporters. These actors all have
impact on the performance of the supply chain. The object
model must be able to store the information about these ac-
tors.

R8. Represent Relevant Objects. To provide insight in
the supply chain only relevant objects in the physical sup-
ply chain need to be visible. This includes the network
structure and the different flows. Even though the object
model should be prepared for real-life information, it is not
desirable to model the actual information systems. The
main reason is that for the visualization, the modeling of
information systems will add nothing for the user of the
display/control panel. The origin and the destination of the
information flow are of interest, not the manner in which
data is received. Training how to use an ERP system is
usually offered as a separate course. The internal function-
ing of actors, including the processing of information, is
also not relevant for the visualization.

R9. Allow Capturing of a Variety of Supply Chains.
Most supply chains look like a tree where the branches and
roots are the network of suppliers and customers. The focal
company will deal with a number of suppliers and custom-
ers. Each of these links will have it’s own suppliers and
customers. The network structures will differ per product
49

Verbraeck and Van Houten

or actor. It should be prevented that every industry needs
its own template. A pharmaceutical product will require a
different supply chain then for instance a car. Both supply
chains should fit into the supply chain object model. The
objects should be described on a generic and high level.
Making the objects generic, will enable their use for differ-
ent models. The aspects of a supply chain that can be rec-
ognized in every supply chain need to be described, not the
specific instances for one supply chain.

R10. Extensibility. For specific situations, a supply chain
might have to be described in more detail, so the object
model must allow for extensions. An example is to allow
for a more detailed description of actors. An example is
that some internal processes in one version of the object
model have not been taken into account. The black box, as
the internal processes are now implemented, can be
changed into a description with more detail but this has
not been the primary goal of the object model. In prepara-
tion to extensions, several objects are present in the object
model as placeholders for future extensions, such as ad-
vanced transportation modeling.

2.2 The Architecture and Object Model

The architecture has been set-up as a layered architec-
ture, which captures the essence of supply chain operations
and supply chain management. The first layer is formed by
a set of definitions of actors that are able to communicate
through messages.

The second layer is formed by a set of supply-chain
specific actor definitions, such as SupplyChainActor,
Trader, Retailer, Manufacturer, Customer, and Sup-
plier. These actors exchange supply-chain specific mes-
sages such as RequestForQuote, Quote, Order, Bill, and
Payment. When orders are accepted, the actors also ex-
change instances of a Product in the form of a Shipment.
The business logic of the actors is implemented in a very
flexible way. When receiving messages of a certain type,
these messages are handled by instances of a message-type
specific Handler. Each handler contains a parameterizable
set of business logic that in turn can send out replies or
other buisiness messages through the communication logic
that is present in the actor layer. Handlers can be added or
removed during the simulation run, which allows for flexi-
ble business logic. An example of a handler for handling
an incoming Bill is the BillTimeOutHandler, which sends
out an extra bill with a fine when the original bill has not
been paid on time.

In addition, the second layer of the supply chain librar-
ies contains reference implementations for financial man-
agement, demand generation, inventory management, pro-
duction, and transportation.

After carrying out several projects with the library, it
turned out that there was one very important component
235
missing, which is not normally present in supply chain
simulation libraries; the database of work on hand, prom-
ises, and history of information exchange. We dubbed this
object the ContentStore. This object is close to the data
that one could retrieve from an ERP system in a supply
chain organization. The supply chain library we developed,
keeps all messages that have been sent or received in the
course of the simulation run in the ContentStore, thereby
allowing the business logic to retrieve historical and status
information for making decisions. For large simulations, an
extension of the ContentStore has been defined, the so-
called LeanContentStore, which deletes the references to
messages after full delivery and payment of bills. If we
would not do this for large simulations, memory would fill
up fast. A possible extension that we have not yet devel-
oped would be the DatabaseContentStore, which would
store the historical information on all exchanges with other
actors in an actual database. After implementing the con-
cept of a ContentStore, the implementation of business
logic became much easier, because the references to all
relevant information that is needed to handle incoming re-
quests or orders, are present.

The third layer is the layer that extends the supply
chain library for a certain mode of use. One mode of use is
educational use by individual students. Individual users
work with the supply chain models to be confronted with a
certain aspect in supply chain management. Examples are
models for experiencing the bullwhip effect, models for
make-to-order supply chains versus make-to-stock supply
chains, and models for comparing a normal strategy to a
postponement strategy. These models can be used in pure
demonstration mode, i.e. a teacher shows the models to a
group, or in an interactive training mode, i.e. a student or
a student team uses the model to answer some questions by
carrying out a number of experiments involving different
parameter settings. The layered architecture of the supply
chain library is such that the individual training models
should not lead to extra object classes. For all organiza-
tions (actors) in the model, several handlers are already
available. If extra business logic is needed for the interac-
tive mode (linking the handler to a user interface), the new
handlers can easily replace the existing handlers in the use
specific layer.

Another mode of use is the gaming mode of use, where
some actors are controlled by the computer, and other ac-
tors are controlled by the students. Actually, actors are
usually hybrid, where the students control some behavior
of the organization while other business logic is carried out
automatically by the algorithms in the handlers.

0

Verbraeck and Van Houten

First layer
S

econd layer
Third layer

Figure 3: Example Hierarchy for the Actor Objects

It was an interesting question whether an interactive
gaming mode of use could be easily designed on top of the
supply chain layer. Because of the clear triggers of the
business logic by messages, and the bundling of the busi-
ness logic in the handlers, interactive and hybrid behavior
was very easy to incorporate in the architecture. For those
business messages where the students would have to make
decisions themselves, the business logic is such that the
relevant information for making the decision is first re-
trieved, for instance from the ContentStore. Instead of
23
making calculations, making decisions, and send out new
business messages as is the case in the fully automated
handlers, the information is readied for display on the
screen in the case of the interactive training mode. The
player can react to the information, submit the answer in
terms of the same variables that are calculated in the case
of the automated handlers (e.g. price, order size, promised
delivery dates), and based on that information, the Actor
logic sends out the appropriate messages to one or more
other actors, be it fully automated, hybrid, or fully human
controlled actors. For an interactive mode of use, the im-
plementation of the third layer would involve some spe-
cific handlers that are able to retrieve and prepare the in-
formation for the users, and process the fields that are
based on the choices of the students, but again there is no
need to change the core objects for the mode of use.

Concluding we can say that by staying close to a
multi-actor, message-based supply chain architecture, we
are able to use this architecture for multiple modes of use
in training, without having to make time-consuming exten-
sions to the existing architecture.

3 A REFERENCE IMPLEMENTATION IN JAVA

In order to test the architecture, an implementation was
made in Java, on top of the Distributed Simulation Object
Library DSOL, see Jacobs et al. (2002) for more informa-
tion on DSOL. One of the main reasons for choosing for
DSOL is that it is ready for distributed, web-based simula-
tion, which is especially important for the individual train-
ing mode of use, e.g. portaled access to simulation models,
and for the interactive gaming mode of use, where different
players will have to interact with the model of the supply
chain, or where the model of the supply chain is really dis-
tributed over the computers of the players, close to the
structure of a real supply chain.

The three layer structure was implemented in three dif-
ferent projects in Java, using the DSOL environment as the
simulation kernel. One project, called ‘actor’ is the imple-
mentation of the actor and messaging functionality. In Fig-
ure 3, an illustration is given to demonstrate how the Actor
class is extended into an InteractiveRetailer class using
the architectural choices as described in the previous sec-
tion. The abstract Actor class is centered around commu-
nication (with Message objects), where each Message ob-
ject has a certain Content. One is able to add or remove
Handlers to or from Actor objects (a handler is defined by
an object that implements the HandlerInterface) through
the addContentHandler and RemoveContentHandler
methods. Actors have a name and a geographic location
(defined by a LocationInterface), so they are named, lo-
catable objects that are able to communicate.

On the second layer of the supply chain libraries, the
Actor class is extended into a SupplyChainActor class.
The SupplyChainActor is an actor with a BankAccount.
51

Verbraeck and Van Houten

and a ContentStore, the ERP-like data structure as ex-
plained in the previous section. The BankAccount illus-
trates that one of the core elements in trading is the ex-
change of money related to the exchange of products or
services. The SupplyChainActor is still an abstract class,
as we don’t want users to directly instantiate this class, as
the SupplyChainActor itself is still too abstract to carry
any meaning in a supply chain teaching implementation.

Still in the second layer, the SupplyChainActor class
is instantiated into a Trader class. A Trader is a Supply-
ChainActor that really owns products at a certain moment
in time. In other words, the Trader has an inventory, repre-
sented by the StockInterface.

In the second layer, we also find recognizable reference
implementations of actors that can really be recognized in
the supply chain, for example the Retailer, Manufacturer,
Customer, and Supplier. In the implementation, we could
really see that the Retailer, as shown in Figure 3, did not
need any extra attributes or methods to make it a retailer.
The characterization of the retailer is done by giving it a
specific set of handlers, and by leaving open another set of
handlers to give the retailer its specific behavior.

public boolean handleContent(final Serializable
content)
{
 if (super.handleContent(content))
 {
 Bill bill = (Bill) content;
 try
 {
 bill.getSender().getSimulator().
 scheduleEvent(
 bill.getFinalPaymentDate()
 - bill.getSender().getSimulatorTime()
 + this.maximumTimeOut, this, this,
 "checkPayment", new Object[]{bill});
 } catch (Exception exception)
 {
 Logger.severe(this, "handleContent",
 exception);
 }
 return true;
 }
 return false;
}

Figure 4: Example of an Implementation of a Handler

Figure 4 illustrates how the core method of a handler

can be implemented. In Figure 4, we see the handleCon-
tent method of the BillTimeOutHandler. This handler re-
acts to an incoming Bill. It calls its super.handle-
Content() method, which actually takes care of trying to
pay the bill. This message in addition checks on the final
payment date plus a timeout whether the bill has actually
been paid, and schedules an event at the appropriate time
to check this. At the timeout date, special measures can be
taken for paying the bill anyhow, when the finances were
apparently not such that the bill could be paid. One could
think of business logic for borrowing money from the
23
bank, or taking the money from a savings account to pay
the bill on the timeout date to avoid a fine for paying late.

The reference implementation of the InteractiveRe-
tailer in Figure 3, also lacks extra attributes and methods.
The specific constructor of this class adds all kinds of in-
teractive handlers to the InteractiveRetailer in addition
to automated handlers for other business messages.

Please note that the implementations of the Retailer
and the InteractiveRetailer are example, reference im-
plementations. Using these classes as an example, any pro-
grammer can implement different types of supply chain ac-
tors with a different business logic in a very short amount
of time.

During implementation we found out that in addition
to the external messages that are sent by the other actors,
we also need internal messages that are for instance the re-
sult of inventory levels dropping below a certain, pre-set
value. An example is the InternalDemand message that the
actor sends to itself when it might have to start ordering
new products, which is handled by a certain InternalDe-
mandHandler handler class. We also observed that in inter-
active gaming, other information was needed for the hu-
man players than the information present in the standard
ContentStore. Therefore, a GameActorContentStore was
created that stores the additional information needed for
human players. As this store implements the same interface
by extending the existing ContentStore, no changes in any
other part of the code had to be made to accommodate this
extended ERP system for the human players in the interac-
tive game.

4 EXPERIENCES WITH THE SUPPLY CHAIN
LIBRARY

We tested the supply chain library for the two modes of
use as indicated in section 3, the demonstration / individual
training mode and the interactive gaming mode of use.

For the individual use mode, three models were de-
signed and built; exploring make-to-stock versus make-to-
order strategies, comparison of normal supply chains with
postponement supply chains, and a demonstration of the
bullwhip effect as a result of a sales promotion. All three
models could be instantiated in the DSOL-based Java li-
brary by setting the parameters for the reference actor im-
plementations, such as the Retailer, Manufacturer, Cus-
tomer, and Supplier, and by allocating the appropriate
handlers, again with a number of parameters. No structural
addition of object classes was needed to extend the supply
chain library to specific individual training assignments.

For the interactive gaming mode, the so-called ‘Dis-
tributor Game’ was developed, which places students in
the role of the logistics manager of a distribution center,
and shows all the operational decisions that have to be
taken to manage the distribution firm in terms of sales,
purchases, inventory management, and financial manage-
52

Verbraeck and Van Houten

ment. The game was implemented by instantiating the in-
teractive reference implementations of the mode-of-use
layer for the interactive players, and the standard imple-
mentations from the supply chain layer for the fully auto-
mated actors. Of course, the game implementation had to
be extended with many other services that were specific for
the gaming mode of use and for the game itself, but these
did not lead to severe changes in the architecture in any of
the three layers. The ‘Distributor Game’ was actually im-
plemented and successfully used in a class of 32 MBA stu-
dents in Spring 2005 at the Supply Chain Management
Center at the R.H. Smith School of Business of the Univer-
sity of Maryland. More information about the game can be
found on <http://www.gscg.org>.

5 DISCUSSION AND CONCLUSIONS

When matching the implementation with the requirements
that were posed in section 2.1, we can see that we were
able to meet most of the requirements. The supply chain
library offers a clear description of supply chain concepts
(R1) at the right level of detail (R2), which was shown in
the interactive Distributor Game, where it was very easy to
map real-world organizations on the supply chain actors as
defined in the library, and to map their business logic on
the developed handlers (R8). In that sense, the structure is
also very clear (R3). Input (R4) and output (R5) could be
easily linked to the supply chain models through the open
Java-based structure of the DSOL simulation library. In
addition, the ContentStore object, which acted as a kind
of mini ERP-system, provided us with past, present and fu-
ture information about the organization for which we
wanted to calculate output statistics and visualization (R7).
The scope of the models is flexible (R6), as there is no
rigid structure with which modelers have to comply when
building their supply chain models. The whole range from
small supply chains with two or three actors to thousands
of interacting organizations in a global network is sup-
ported with this architecture (R9). There is no lock-in on
certain types of organizations, or types of products in this
architecture. All classes are extensible, and interfaces are
used wherever appropriate to allow programmers to extend
or adapt the concepts for their specific supply chain needs
(R10). When reviewing the two projects in the two differ-
ent modes of use (individual training and interactive gam-
ing) we can say that we were truly able to extend an object-
oriented supply chain simulation library into a training and
gaming library with all the flexibility that is needed for ap-
plication in multiple contexts.

The implementation in three layers provided us with a
very flexible and extendible framework for supply chain
modeling with several modes of use. The advantage of the
architecture chosen is that the core supply chain classes do
not need to be changed for different modes of use. The sepa-
ration between communicating actors on the first layer, sup-
23
ply chain specific actor extensions and behavioral represen-
tations on the second level, and use of specific classes in the
third layer resulted in an intuitive and easy to maintain set of
supply chain libraries for multiple modes of use.

ACKNOWLEDGMENTS

The authors acknowledge support from the Supply Chain
Management Center at the R.H. Smith School of Business
of the University of Maryland, in particular prof. Sandor
Boyson and prof. Thomas Corsi.

REFERENCES

Archibugi, D. J. Howells, and J. Michie. 1999. Innovation
policy in a global economy, Cambridge, UK: Cam-
bridge University Press.

Bowersox , D.J., D.J. Closs, M.B. Cooper. 2002. Supply
chain logistics management. New York: McGraw-
Hill.

Boyson, S., T.M. Corsi, M.E. Dresner, and L.H. Harring-
ton. 1999. Logistics and the extended enterprise. New
York: John Wiley.

Boyson, S., L.H. Harrington, T.M. Corsi. 2004. In Real-
time: Managing the new supply chain. Greenwood
Publishers / Praeger.

Chopra, S. and P. Meindl. 2001. Supply chain manage-
ment: Strategy, planning and operations. New York:
Prentice-Hall.

Churchman, C.W. 1971. The design of inquiring systems,
New York: Basic Books.

Corver, A. 2001. Supply chain visualization: Simulation as
a means to gain insight in the supply chain. M.Sc. the-
sis, Delft University of Technology.

Fredenhall, L. and E. Hill. 2001. Basics of supply chain
management, New York: St. Lucie Press.

Hoek, R. van. 2001. The rediscovery of postponement: a
literature review and directions for research”, Journal
of Operations Management, 19(2), pp. 161-184.

Jacobs, P.H.M., Lang, N.A., Verbraeck, A. 2002. D-SOL:
A distributed Java based discrete event simulation ar-
chitecture. In Proceeding of Winter Simulation Con-
ference, ed. E. Yucesan, C.-H. Chen, J. L. Snowdon
and J. M. Charnes, 793-800, San Diego, California.
Available via http://www.informs-
sim.org/wsc02papers/102.pdf [accessed
april, 15, 2005].

Kelton, W.D., R.P. Sadowski, and D.A. Sadowski. 2002.
Simulation with Arena, 2nd Edition. New York:
McGraw-Hill.

Lee, H.L., V. Padmanabhan, S. Whang, 1997. The bull-
whip effect in supply chains. Sloan Management Re-
view, 38 (3), pp. 93-102.
53

http://www.informs-sim.org/wsc02papers/102.pdf
http://www.informs-sim.org/wsc02papers/102.pdf

Verbraeck and Van Houten

Poirier, C.C. 1999. Advanced supply chain management.

San Francisco, CA: Berrett-Koehler Publishers.
Poirier, C.C. and M.J. Bauer. 2000. E-Supply Chain – Us-

ing the internet to revolutionize your business. San
Francisco, CA: Berrett-Koehler Publishers.

Shapiro, J.F. 2001. Modeling the supply chain. Pacific
Grove, CA: Duxbury.

Simchi-Levi, D., P. Kaminsky, and E. Simchi-Levi. 2003.
Designing & managing the supply chain, 2nd Edition.
New Yrok: McGraw-Hill.

Sol, H.G. and P.W.G. Keen. 2005. Decision support next
generation. (forthcoming).

Waters, D. (Ed.). 1999. Global logistics and distribution
planning. 3rd Edition. Boca Raton: CRC Press.

Zeigler, B.P., H. Praehoffer, and T. G. Kim. 2000. Theory
of modeling and simulation, second edition: Integrat-
ing discrete event and continuous complex dynamic
systems. Elsevier Science, San Diego.

Zobrist, G.W. and J.V. Leonard (Eds.). 1997. Object ori-
ented simulation: reusability, adaptability, maintain-
ability. New York: IEEE Press.
235
AUTHOR BIOGRAPHIES

STIJN_PIETER A. VAN HOUTEN is a Ph.D. student at
Delft University of Technology. His research is focused on
gaming services for decision support environments.
His e-mail address is
s.p.a.vanhouten@tbm.tudelft.nl
and his webpage is
www.tbm.tudelft.nl/webstaf/stijnh.

ALEXANDER VERBRAECK is chair of the Systems
Engineering Group of the Faculty of Technology, Policy
and Management of Delft University of Technology, and a
part-time full professor in supply chain management at the
R.H. Smith School of Business of the University of Mary-
land. He is a specialist in discrete event simulation for real-
time control of complex transportation systems and for
modeling business systems. His current research focus is
on development of generic libraries of object oriented
simulation building blocks in C++ and Java.
His e-mail address is
a.verbraeck@tbm.tudelft.nl,
and his web page is
www.tbm.tudelft.nl/webstaf/alexandv.

4

mailto:s.p.a.vanhouten@tbm.tudelft.nl
http://www.tbm.tudelft.nl/webstaf/stijnh
mailto:a.verbraeck@tbm.tudelft.nl
http://www.tbm.tudelft.nl/webstaf/alexandv

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

