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ABSTRACT 

We used a discrete-event simulation model of the natural 
history of Colorectal Cancer (CRC) to do a cost-
effectiveness analysis comparing the latest CRC screening 
strategies recommended by the American Gastroen-
terological Association (AGA) and the newest screening 
modalities for which clinical efficacy has been established. 
Cost-effectiveness was based on discounted costs and qual-
ity-adjusted life-years.  A probabilistic sensitivity analysis 
examined the uncertainty in important parameter estimates.  
Considering all populations (average and high risk), annual 
Fecal Occult Blood Test (FOBT), Sigmoidoscopy every 
five years and annual FOBT, and Colonoscopy every ten 
years were the three strategies that demonstrated a greater 
than 50% probability of not being dominated in probabilis-
tic sensitivity analysis. Depending on the maximum ac-
ceptable marginal cost-effectiveness value, any of these 
procedures have a high likelihood of becoming preferred 
(most effective strategy given a specific cost limit per 
Quality-Adjusted Life-Year (QALY) saved). 

1 INTRODUCTION 

Colorectal cancer (CRC) is the second leading cause of 
cancer death in the United States. This cancer has a very 
long asymptomatic phase and most patients are not aware 
of its presence until it enters an advanced stage when the 
survival rate is very low. Evidence from several studies 
suggests that screening for colorectal cancer and precan-
cerous adenomatous polyps can reduce the incidence of 
CRC and related mortality. There are a number of screen-
ing strategies designed for this purpose based on existing 
screening methods, which vary considerably in their per-
formance characteristics and cost. However, it is not possi-
ble to conduct clinical trials of all possible screening 
strategies for CRC.  Simulation models offer an alternative 
means to evaluate and compare screening strategies.  
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We employ the Vanderbilt/NC State (V/NCS)  dis-
crete-event simulation model of the natural history of CRC 
(Cubbage 2004).  We built a screening structure onto the 
model to perform deterministic and probabilistic cost-
effectiveness analysis on the screening strategies recom-
mended by the AGA’s clinical guidelines (Winawer et al. 
2003). The enhanced V/NCS model is capable of modeling 
homogeneous cohorts over time. Any modeled cohort in-
cludes a certain number of patients with specific birth year, 
race, gender, and family history of colorectal neoplasia.  
The model can simulate the effects of various screening, 
surveillance and treatment interventions to lessen CRC 
morbidity and mortality in a specific cohort over time. This 
model also computes the discounted costs and quality-
adjusted life-years (QALYs) that are the main outcomes 
measures of this analysis. 

1.1 CRC Screening  and Surveillance Strategy 

CRC screening strategies include an initial screening test 
followed by colonoscopy for positive tests.  Strategies can 
be categorized into two groups depending on whether the 
initial test is endoscopic or non-endoscopic.  Endoscopic 
tests provide direct views of the lining of the colon. The 
two types of endoscopy employed in CRC screening are 
sigmoidoscopy (evaluation of the colon distal to the splenic 
flexure) and colonoscopy (evaluation of the entire colon). 

Non-endoscopic methods rely on consequences of 
adenomas or cancers present in the colon. One type of non-
endoscopic tests, such as the fecal occult blood test 
(FOBT) and fecal DNA test, indirectly check the colon 
through examination of the stool. A second type uses non-
endoscopic imaging tests, such as virtual colonoscopy and 
double contrast barium enema (DCBE) which apply radio-
graphic techniques to  indirectly image the lining of colon. 

The accuracy of each screening test is judged by its 
sensitivity and specificity. A test with high sensitivity 
means that the test is nearly always positive when the dis-
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ease is present.  A test with high specificity means that the 
test is nearly always negative when the disease is absent.  
The usefulness of a test – predictive values of positive and 
negative tests - is dependent not only on the sensitivity and 
specificity of the test but the prevalence of disease in the 
screening population. 

Screening tests are administered to asymptomatic in-
dividuals  who are at risk for developing colorectal cancer. 
The tests are used to detect colorectal adenomas (the pre-
cursor of CRC) or cancer.  Since the tests are not perfectly 
sensitive or specific, and since the prevalence of colorectal 
cancer is low in a general screening population, screening 
tests can generate many  false positive and false negative 
results. 

CRC surveillance refers to the follow-up examination 
of the colon in patients with a prior history of colorectal 
adenomas or cancer. Because a history of colorectal ade-
nomas or cancer is a risk factor for future colonic neopla-
sia, surveillance regimens are more aggressive than stan-
dard screening strategies, meaning the frequency of the 
screening test is increased.  

For any test to be effective, patients must be willing to 
have the test performed.  CRC screening compliance is de-
fined as a criterion that expresses an individual person’s 
potential willingness over his/her lifetime to adhere to a 
screening strategy.   

1.2 Clinical Guidelines 

The most recently updated guideline for colorectal cancer 
screening and surveillance strategies was released in 2003 
by the American Gastroenterological Association 
(Winawer et al.  2003). Based on new evidence and experi-
enced judgment, clinical guidelines include different rec-
ommendations for people at average and increased risk. 

The well-established approach to examining effective-
ness of a medical intervention is the clinical trial. How-
ever, clinical trials are expensive, require a long length of 
time to establish results and cannot feasibly examine a 
large number of alternative strategies.  A simulation model, 
however, can examine the cost-effectiveness of many al-
ternative strategies in a timely fashion.  In addition, a simu-
lation model can explore strategies that might not be possi-
ble to include in a clinical trial as a result of current 
medical theories and practice paradigms that might be 
faulty, yet firmly established.. This paper is the first effort 
to compare all the CRC screening strategies recommended 
by the latest AGA’s clinical guidelines and the most re-
cently developed screening modalities.   

2 BASIC DESIGN OF THE MODEL 

The model has been constructed using a general object-
oriented, open-source, discrete-event simulation platform 
implemented in the Microsoft .NET environment.  The 
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model has been programmed using managed C++.NET and 
VB.NET to be efficient in the Windows operating system.  
The simulation platform on which the CRC model is con-
structed provides a recent random number generator 
(L'Ecuyer et al. 2002) and uses inverse transform genera-
tors to attach a unique source of randomness to each ran-
dom variable in the model. Consequently identical popula-
tions of individuals have “common random numbers” that 
reduce the sampling error throughout the simulation and 
statistically enhance the comparison of any given set of 
screening scenarios. A modeling scenario is defined as the 
unique set of parameters developed to inform a specific 
simulation. The simulation base provides for the automatic 
definition of entities, the creation and management of one 
or more event calendars, the processing of actions, and the 
collection of statistics.   

The simulation model is constructed in this .NET ob-
ject-oriented environment so that base objects can be used 
to define higher-level objects and specify their behavior 
without modifying lower-level objects. The individual pa-
tients and their adenomas are objects constructed from ba-
sic objects. In a dynamic modeling environment like CRC, 
not only data change, but also the modeling structure has to 
be frequently revised to accept new ideas, alternative uses, 
and improved calibration.  An object-oriented simulation 
provides a general and convenient platform for implement-
ing these changes. 

In developing this model we used the inheritance fea-
ture to modularize the discrete-event simulation structure. 
Modules are defined in two separate levels. The lower 
level includes the general modules needed for a simulation 
program that define basic classes like the event calendar, 
simulation event, simulation entity, and other classes re-
quired for collecting observation-based and time-persistent 
statistics. The higher level consists of the modules related 
to the CRC natural history along with the added screening 
and surveillance procedures. 

Model input has been separated from model execution 
through the use of an Access database. The database allows 
the definition of new variables, including random variables 
and the specification of their distributions to be added or 
modified without changing the simulation model. The da-
tabase also stores scenarios for later retrieval and retains all 
of the output from a given scenario for future review. 

2.1 Objects 

To employ the object-oriented modeling capability, the 
V/NCS CRC model defines new “higher-level” objects and 
creates their interactions. The central object is an individ-
ual person, which is instantiated from the person class that 
is derived from the entity class. In each replication of the 
simulation, a person object is created and it flows  in its 
own pathway among events. Each person has unique per-
37



Tafazzoli, Roberts, Ness, and Dittus 

 
sonal characteristics, which are sampled from the cohort 
variables that are to be studied. 

The other important class of objects associated with 
each person in this model is the collection of colorectal 
neoplasms for that person. Whenever an adenoma is cre-
ated, it is assigned characteristics that determine if and 
when it will become CRC. Once formed, a CRC can pro-
gress through various stages and lead to patient death. Each 
neoplasm has a separate event calendar that stores all the 
future events associated with it. This design is a key to ef-
ficient simulation of screening, since removing a neoplasm 
eliminates all the events related to that neoplasm so they 
can be removed from the event calendar. The total simula-
tion efficiency gained from this modeling structure is con-
siderable. 

The scenario is another object that is instantiated from 
the scenario class only once at the beginning of the simula-
tion run to define the characteristics of the cohort to be 
studied and the screening intervention that is to be per-
formed. Parameters for each random variate generator are 
assigned based on scenario definitions.  Parameters for 
each scenario are stored and retrieved from the database, 
which also stores the calibrated variables for the natural 
history simulation.   

2.2 Events 

The base simulation objects include events, which are 
managed in event calendars.  The base simulation also re-
moves events, advances time, and calls event actions.  
When a person object is created, several procedures are 
executed within its new object initialization. The model is 
constructed by employing an event graph. The event graph 
portrays all events in the simulation and, when relevant, 
what conditions are required for an event to be scheduled.  
If no conditions are stated, the event is always scheduled. 
Events in the CRC simulation are documented by their de-
scription, predecessor events (events that must take place 
prior to this event occurring), next events scheduled, and 
statistics collected.   

3 MODEL VERIFICATION 

The main purpose of the verification was to ensure that the 
screening and surveillance models worked properly. The 
screening model is programmed in Microsoft Visual Stu-
dio.NET 2003, which provides a very strong development 
environment for constructing, compiling, testing and exe-
cuting code. Taking advantage of these tools and other 
techniques, two methods were employed to verify the 
model: (1) stepping through the screening source code line 
by-line and routine-by-routine to verify the general pro-
gram flow, while watching the key variables, and (2) creat-
ing and examining an output trace file. 

 

2

3.1 General Flow Verification 

General flow analysis was the primary step used to verify 
the general program flow and insure the correct execution 
of the code and the behavior of the event calendars. Sev-
eral people were processed through each of the screening 
strategies using the Visual Studio.NET “debug” feature to 
watch the processing of the simulation from within the 
code. One intention was to insure that the correct distribu-
tions were being retrieved from the database and sampled 
properly. The next step was to look at the program flow 
and make sure that people were moving through the 
screening process correctly and following the expected de-
cisions at each event.  

The most comprehensive verification occurred when 
the Visual Studio debugger was used to check the key vari-
ables, which were discounted cost and QALYs. The reason 
was that, validation of these two values is critical to the 
cost-effectiveness analysis. Therefore exact verification 
was done to check whether cost and utility are collected 
and discounted properly.  All discounting calculations were 
also performed by hand to check their computational cor-
rectness.  

3.2 Trace Output Analysis 

Trace statements have been added to the code. They were 
placed at every event so that they reveal the event time and 
the action the code is taking relative to that event. The 
trace statements are written to an external text file whose 
content is then examined for discrepancies.  Since the gen-
eral flow of the model has usually been verified, the trace 
provides a summary of experience that is more easily seen 
as a whole, such as time between screening events and re-
sponse to cancer or adenoma diagnosis. Looking over trace 
output was a tremendous help in verifying correct imple-
mentation of screening and surveillance scheduling.  

4 MODEL VALIDATION 

To validate the ability of the V/NCS model to simulate 
screening strategies over a specific period of time, a com-
parison of the Minnesota Colon Cancer Control Study was 
made to a simulation of that population. The Minnesota 
study was performed to compare the effectiveness of an-
nual and biennial FOBT screening strategies in reducing 
CRC mortality to no screening program (Mandel et al. 
1993). This trial was chosen because it is a well-known 
study within the medical literature and other models have 
used it for validation purposes since it provides compre-
hensive output not found in other randomized trials.  

The Minnesota study was initiated by recruiting 
46,551 men and women volunteers 50 to 80 years of age 
from 1975 through 1977 and randomly assigning them to 
three groups: annual screening, biennial screening and con-
238



Tafazzoli, Roberts, Ness, and Dittus 

 
trol (no Screening). The participants in these three groups 
were studied until 1991 when that study ended. During this 
interval the CRC incidence and mortality were accumu-
lated for all three groups. The final report of this random-
ized trial revealed a 33% decrease in CRC mortality within 
the annual FOBT screening group in comparison with the 
control group. 

The enhanced V/NCS model was designed to have the 
capability to replicate the Minnesota study. The most diffi-
cult part of this process was to generate a population with 
the same characteristics based on age, gender and family his-
tory in simulation model as was observed in Minnesota trial.  

The results generated from the V/NCS model are 
shown in Table 1. The CRC mortality in the control and 
annual groups of the simulation model were observed to be 
very close to what happened in actual study as it is shown 
in Table 1. All simulation outcomes (CRC incidence and 
mortality) were somewhat lower than the actual trial. This 
may reflect a lower risk for CRC in the modeled popula-
tion compared to the actual population in the trial. How-
ever, the percent decrease in CRC mortality, comparing the 
actual and simulated outcomes, was identical (~33%). This 
result adds substantial validation to the V/NCS model. 

 
Table 1: Modeled versus Actual CRC Outcomes for the 
Minnesota Study 

 CRC Incidence CRC Mortality 

Strategy Actual Simulation Actual Simulation 

Control 356 331 121 116 

Annual Screening 323 294 82 81 

 
Figure 1 compares the cumulative CRC mortality dur-

ing the study years between the actual trial and simulated 
model. It is easily seen from these curves that both the an-
nual and control group’s mortality curves in the simulated 
model are similar to the actual trial. 
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Figure 1: Comparison of Actual and Simulated CRC  
Mortality for the Minnesota Study 
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5 DETERMINISTIC COST-EFFECTIVENESS 
ANALYSIS 

Cost-effectiveness analysis (CEA) is considered the most 
appropriate method of comparing preventive health ser-
vices from an economic point of view (Gold et al. 1996). 
The basic purpose of CEA is to assess the cost of health-
care resources dedicated to a health-care intervention rela-
tive to the health-care benefits that are produced by that 
same intervention.  

The central measure in CEA of health-care interven-
tions is the cost-effectiveness ratio. It is the difference in 
costs of two alternatives divided by the difference in their 
effectiveness. In other words, the CE ratio is essentially the 
incremental price of obtaining a unit health effect from a 
given health intervention when compared with an alterna-
tive. In case the intervention under study is both less costly 
and more effective than the alternative, it is said to domi-
nate the alternative and there is no need to calculate a CE 
ratio. Therefore, CE analysis is performed only in circum-
stances where the intervention is both more costly and 
more effective than the alternative. Interventions that have 
a relatively low ratio would typically have high priority for 
resources.  

CEA can also show tradeoffs involved in choosing 
among various interventions. In this situation the CE ratios 
should compare each intervention to the next most effec-
tive option, after eliminating options that are dominated to 
obtain incremental cost-effectiveness ratios. Similarly, op-
tions can be ruled out by extended dominance, i.e., when a 
linear combination of other options can produce greater 
benefits at lower costs.  

We performed a deterministic cost-effectiveness analy-
sis to quantitatively compare the expected outcomes of com-
peting screening alternatives when the best estimates of 
model parameters were applied (base-case analysis). 

5.1 Model Assumptions 

The analysis was done separately on eight populations that 
can be defined according to various gender, race and fam-
ily history combinations (see Table 2). 

 
Table 2: Defined Populations 

White Male 
NF* 

White Male 
F** 

White Female 
NF 

White Female 
F 

Black Male 
NF 

Black Male 
F 

Black Female 
NF 

Black Female 
F 

*NF: No Family History 
**F: Family History 

 
Each of these eight groups has its own response to dif-

ferent screening strategies, since all of the factors used in 
population definition (gender, race and family history) 
meaningfully influence the CRC development risk.  
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The screening strategies studied on average risk (no 
family history) populations were the ones recommended in 
the AGA’s clinical guidelines. The capabilities of two 
newly proposed screening strategies, virtual colonoscopy 
and fecal DNA tests, were also examined to compare them 
with current strategies. Specifically, the strategies are 
summarized as: 

 
• FOBT every year 
• DCBE every five years 
• Sigmoidoscopy every five years 
• FOBT every year and sigmoidoscopy every 5 

years (Sig & FOBT strategy) 
• Colonoscopy every 10 years (Colon 10) 
• Virtual Colonoscopy every 10 years (VColon) 
• Fecal DNA every 3 years.  
 
For the high risk population (with family history), 

along with the above mentioned strategies a colonoscopy 
test every 5 years (Colon 5) was also studied as it was rec-
ommended in the guidelines.  

Cost effectiveness ratios for each screening strategy 
indicates the average cost a person incurs for following 
that intervention to gain a quality adjusted year of life. 
Therefore to compute this ratio, cost and QALYs results of 
a screening strategy should be compared to the cost and 
QALYs of the situation where no screening is present. For 
this reason all the populations were also simulated under a 
no-screening strategy.  

5.2 Population Size 

After observing several simulation outputs, it was deter-
mined that the mean estimates of QALYs had a much 
smaller range among the different screening strategies then 
the cost values. The magnitude of the difference in QALYs 
was in the thousandths.  

Therefore to obtain a valid result, the variance of QA-
LYs should be lowered to an extent that their confidence 
intervals do not overlap when comparing any two strate-
gies. By achieving the desired amount of precision on QA-
LYs, the necessary precision for cost would certainly be 
provided (Al, Van Hout, and Michel 1998). 

Applying the concept of “common random numbers” 
to V/NCS model, it was possible to simulate different 
screening strategies on a uniform population with the same 
characteristics. Therefore differences in mean perform-
ances, such as cost and QALYs, between various screening 
strategies are estimated more precisely than absolute mean 
performances of an individual strategy (Kelton, Sadowski, 
and Sturrock 2004).  

To estimate the proper model size, first a sample popu-
lation of size 20,000 was simulated under Colon 10 and 
Sig & FOBT strategies and the 3% discounted QALYs for 
each person were computed. The 95% confidence interval 
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on the average difference in QALYs were computed as fol-
lowing: 
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The half-width of the difference in QALYs for a popu-

lation of size 20,000 was about H0 = 0.0135 years. A mar-
gin of error of ±0.005 years (less than 2 days) with 95% 
confidence interval was selected to satisfy our required 
precision. The total population necessary to be simulated to 
achieve the assigned precision was therefore computed as 
follows:  
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Based on this output, a population size of 150,000 was 

assigned for each replication of the screening strategies. 

5.3 Cost-Effectiveness Results 

Considering all the assumptions mentioned above, dis-
counted cost and QALYs were computed for different 
populations and variations of the interventions.  

Although all of the CRC screening strategies exam-
ined here provide higher QALYs (extended life expec-
tancy) than “no screening”, some of these strategies are 
more cost-effective as indicated by a lower cost per life-
year saved than for the alternatives. In order to identify 
these strategies, a cost-effectiveness analysis was imple-
mented. 

First, all of the different populations were examined to 
determine whether any strategies were simply dominated 
by other strategies having lower costs and greater effec-
tiveness (QALYs). Second, the principle of extended 
dominance (i.e., whether linear combinations of other 
strategies can produce greater benefit at lower cost) was 
applied to all strategies. Third, among the non-dominated 
screening strategies, the incremental cost-effectiveness ra-
tios (ICER) were calculated by comparing each strategy to 
the next more costly and more effective intervention. This 
process produces an “efficiency frontier” of increasingly 
more costly and more effective strategies. Finally, the re-
sults of analysis for each population are presented on a 
cost-effectiveness plane, together with the efficiency fron-
tier line for non-dominated strategies within a population 
(Gold et al. 1996). 

The CE plane is a two-dimensional space with the x-
axis being the average difference (treatment  – control) in 
effectiveness ( EΔ ) and the y-axis being the average dif-
ference in cost ( CΔ ). The axes are unbounded from posi-
tive to negative infinity, and the origin represents the con-
trol group because scales are in difference form.  
40
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 The cost-effectiveness calculations are only illustrated 
for “White Male NF” population in this paper. The neces-
sary tables and graphs for the rest of populations are pre-
sented in the thesis by Tafazzoli (2004). The following ta-
ble shows the cost-effectiveness analysis for the “White 
Male NF” population. 

 
Table 3: ICER of Different Screening Strategies 

Rank Strategy 
Lifetime 
Cost 3% 

Discounted 

QALYs 3% 
Discounted 

ICER ($ per 
QALY 
Gained) 

 No 
Screening 1003 15.8125 … 

1 FOBT 1274 15.8421 9,165 

 DCBE 1548 15.8443 Dominated 

2 SIG 1591 15.8536 27,436 

 SIG & 
FOBT 1728 15.8569 Dominated 

 VColon 1936 15.8388 Dominated 

3 Colon 10 1989 15.8643 37,062 

 Fecal 
DNA 2333 15.8312 Dominated 

 
Closer examination of this table reveals that DCBE, 

Sig & FOBT, VColon and Fecal DNA strategies can be 
eliminated by either simple or extended dominance. For 
example, since the Fecal DNA strategy has both higher 
cost and less effectiveness in comparison with other strate-
gies, it can be rejected by the simple dominance principle. 

An ICER is also computed in Table 3 for each non-
dominated strategy. For instance, the ICER of the sigmoi-
doscopy strategy in comparison with FOBT strategy is as 
follows:  

 

 

.QALY
$ 27,436  

15.8421- 15.8536
1274-1591  

 
QALYs-QALYs 
Cost-Cost

    ICER
(FOBT)(Sig)

(FOBT)(Sig)
Sig)-(FOBT

==

=
 

 
Comparing each screening strategy to the no-screening 

strategy, the following CE plane was developed (Figure 2). 
In this figure the x-axis shows the average difference in 
cost between each screening strategy and the no-screening 
strategy while the y-axis displays the average difference in 
QALYs.  Note that the origin represents the no-screening 
strategy. 

The efficiency frontier in this figure is given by the 
lines joining the no-screening, FOBT, Sigmoidoscopy and 
Colon 10 strategies. DCBE and Sig & FOBT strategies are 
internal to this frontier, indicating that they also can be 
ruled out through the principle of extended dominance 
(i.e., a linear combination of FOBT and sigmoidoscopy 
strategies would strongly dominate the DCBE strategy). 
The slope of the frontier at any point reflects incremental 
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cost-effectiveness, i.e., the additional cost at which addi-
tional QALYs can be purchased.  
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Figure 2: CE Plane and Frontier Line 

 
Overall, this analysis showed that three strategies 

(FOBT, Sigmoidoscopy, Colonoscopy) may be preferred 
depending on the maximum acceptable marginal cost-
effectiveness. The Incremental CE ratios for these strate-
gies ranged from $9,165 per QALY gained to $37,062. 

Reviewing the results of this analysis a few questions 
may arise, such as “How robust are these conclusions and 
how much does the uncertainty in parameters influenced 
these results?” or “Is it consistent for medical decision 
makers to simply rule out the dominated strategies?”. 

Taking a careful look at the cost-effectiveness planes 
and the efficiency frontiers, it was perceived that in several 
situations the dominated strategies might have formed a 
part of the frontier line if their cost was decreased or their 
effectiveness increased. For instance, the Sig & FOBT 
strategy in Figure 2, was very close to the frontier line and 
it wouldn’t be wise to reject this strategy knowing that un-
certainty exists in the perceived values of many cost and 
effectiveness parameters of this model.  

6 PROBABILISTIC ANALYSIS 

Confidence intervals for cost effectiveness ratios are a 
valid approach to addressing uncertainty in cost-
effectiveness analysis. However, as a ratio statistic, the so-
lution to confidence interval estimation is not straightfor-
ward (Briggs, O'Brien, and Blackhouse 2002). Two main 
approaches have been proposed for the purpose of estimat-
ing the confidence interval for incremental CE ratios: the 
parametric method introduced by Fieller (Fieller 1954) and 
the nonparametric approach of bootstrapping (Fenn, 
McGuire, and Backhouse 1996).  

In this paper the bootstrapping method was applied in 
the context of the probabilistic sensitivity analysis (PSA) 
approach to generate the confidence intervals. The main 
1
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objective of doing a probabilistic sensitivity analysis using 
the V/NCS model was to examine the impact of uncer-
tainty in a set of input parameters on the cost-effectiveness 
ratios of various screening strategies. 

6.1 Candidate Parameters 

In the V/NCS model there are three types of model pa-
rameters that can be subjected to sensitivity analysis: 

 
1. Structural parameters used in the creation of the 

natural history model (e.g. the distribution of the 
lifetime CRC risk within a population). 

2. Cancer control strategy parameters (e.g. colono-
scopy test characteristics). 

3. Economic parameters used in the analysis (e.g. 
cancer care costs). 

 
All the structural parameters are intimately linked to 

the calibration of the natural history model. Although eas-
ily accomplished, alternation of these parameters would 
result in a new CRC natural history model that would need 
to be calibrated again. Therefore structural parameters 
were not included in the PSA.  

Strategic and economic parameters are good candi-
dates for PSA since most often their values are not known 
with certainty. A single point estimate of these parameters 
is usually given along with their range of variation (95% 
intervals) which can be used to do a one-way or multi-way 
sensitivity analysis.  

In PSA, instead of assigning an estimated value to a 
strategic or economic parameter, it is assumed that each 
uncertain parameter can best be described by a probability 
distribution. This description entails assigning a prior prob-
ability distribution to each of these input parameters. These 
prior distributions reflect all available information and 
prior beliefs about the parameters’ true values. So, for ex-
ample, if cost data are available for the colonoscopy test, 
the mean and standard deviation of this sample could be 
used to define a proper distribution. Essentially this is a 
Bayesian approach, with the model parameters being 
treated as random variables (Briggs, O'Brien, and Black-
house 2002).  

Using data from literature along with recommenda-
tions given by the V/NCS model’s expert panel, the prior 
distributions were developed. If more data become avail-
able on these parameters, the likelihood function of these 
parameters can be used to derive a better posterior distribu-
tion applying the Bayesian method. 

6.1.1 Cost Parameters 

In probabilistic sensitivity analysis (PSA), different cost 
variables were sampled from different Beta distributions. A 
Beta distribution was appropriate for cost variables be-
224
cause there existed information about a minimum value, a 
maximum value, and most likely value for these variables. 
The standard deviation of the distribution was estimated 
from the assumption that it was one-sixth of the range. The 
main issue was that according to the expert panel opinion 
different costs for a typical person are positively corre-
lated. The expert panel decided to use 0.5 as the value of 
correlation coefficients between all pairs of cost variables. 
This choice was made because 0.5 shows the minimum 
amount of bias towards existence or absence of correlation 
and the expert panel did not have any reason to be biased 
towards any of them.  

To apply the concept of correlation, the capability of 
generating random variates from multivariate distributions 
with a given correlation matrix was added to the code.  

6.1.2 Screening Characteristics Parameters 

Sensitivity and specificity parameters of all screening mo-
dalities along with complication parameters associated 
with them were also considered in the probabilistic analy-
sis. Using literature available on characteristics of screen-
ing tests, the expert panel suggested a range of variation 
for each of these parameters, as well as a most likely value.  

All these parameters provide the model a true or false 
response. As in the case of complication parameters, they 
either show a complication such as hemorrhage, after a 
screening test or not. Therefore they can be considered as 
independent Bernoulli trials leading to a binomial form of 
the data likelihood. With such data, it is natural to use the 
proportion of the true responses as the estimate of the cor-
responding probability in the model.  

Fortunately, Bayesian methods provide a straightfor-
ward method for assigning prior knowledge to the parame-
ter of the binomial likelihood. The Beta distribution is a 
continuous distribution on the interval 0-1 and is a conju-
gate family for the binomial likelihood. Hence, the ease of 
updating the Beta prior to a Beta posterior when supplied 
with additional data, is one of the main advantages of using 
a Beta prior for the parameter of the binomial distribution 
(Gelman et al. 2004). 

For this reason prior Beta distributions were fitted to 
these parameters based on existing statistics. The advan-
tage of this distribution is that by varying its two shape pa-
rameters, a wide variety of possible shapes to the distribu-
tion over the interval can be obtained.  

Based on recommendations of the expert panel, a cor-
relation coefficient of +1 was used between all the pairs of 
sensitivity variables of a screening test, since they are fully 
correlated. Also between the specificity and each of the 
sensitivity parameters of the screening tests, a correlation 
coefficient of -1 was specified. The reason for this specifi-
cation is that specificity and sensitivity of a test inversely 
affect each other and as one decreases the other will cer-
tainly increase.  
2
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6.1.3 Utility Parameters 

Unfortunately, except for a point estimate, very little is 
known regarding the exact behavior of CRC utility pa-
rameters. Based on what information was available, the 
expert panel recommended a skewed Beta distribution for 
these parameters. The maximum utility was set to the age-
utility the person would have in the absence of cancer 
(when the person is healthy). The minimum was obtained 
by multiplying the estimated utility value for the health 
state by the maximum utility value. The mode is then the 
estimated utility value for the health state. The standard 
deviation of the Beta distribution was assumed to be one 
sixth of the utility range 6/)( MinMaxSTDEV −= . Thus, 
the Beta distribution is highly skewed toward the maxi-
mum value, since the minimum value usually was very 
close to the mode.  

This distribution of the utilities is apparently similar to 
what happens in reality, based on the opinion of the expert 
panel. As an example, the procedure for computing these 
statistics for utility of a 54-64 years old person, diagnosed 
with regional low cancer is demonstrated. The age-utility 
for this person without cancer is 0.92, and the estimated 
utility after this cancer is 0.59. Therefore the Maximum 
should be equal to 0.92. Minimum is 0.59*0.92 = 0.54 and 
STDEV is equal to 063.06/)54.092.0( =− . 

6.1.4 Compliance Parameters 

For a screening modality there are different levels of com-
pliance such as never-compliant, one-time compliant, etc. 
For a particular modality, a typical person may have one of 
these compliance levels with a specific probability. There-
fore, in general, if there are k levels of compliance, a mul-
tinomial distribution with parameters p1, p2, …, pk is a rea-
sonable distribution to model the compliance level of a 
person, where pi is the probability that the person has com-
pliance level i.  

In probabilistic sensitivity analysis, it was decided to 
assign probability distributions to parameters of this multi-
nomial distribution, i.e. p1, p2, …, pk. It should be noted 
that since the sum of these probabilities must be equal to 1, 
they are not independent and as a result, it is not possible 
to assign independent distributions to each of them. In 
Bayesian theory there is a straightforward conjugate family 
for the multinomial distribution, namely the Dirichlet dis-
tribution.  

Drawing samples from a Dirichlet distribution is a 
simple procedure. Each sample is produced using k inde-
pendent samples from Gamma distributions with parame-
ters which depend upon the parameters of the Dirichlet 
(Devroye 1986). This generator was added to the code.  

It should be mentioned that the parameters for each 
Beta distribution were derived using the VIM program 
(Roberts 2004).This program allows users to fit a desired 
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distribution to certain statistical characteristics such as 
mode and standard deviation. For instance Figure 3 shows 
the output reported by the VIM program, after being pro-
vided the following information for the statistical charac-
teristics of the “Diagnostic Colonoscopy cost”: Mode = 
$661, STDEV = $59, Min = $ 529, Max = $1,058. 

 

 
 

Figure 3: Screenshot of VIM Program Output 
 

Figure 3 shows a Beta (4.316, 10.972) distribution for 
the studied parameter. 

6.2 Probabilistic Sensitivity Analysis 

Having specified distributions for all the relevant parame-
ters of the model, the probabilistic analysis was done by 
randomly sampling from each of the parameter distribu-
tions and calculating the discounted expected cost and dis-
counted expected QALYs for that combination of parame-
ter values. This process formed a single replication of the 
model results for a specific screening strategy within a 
population. A total of 100 replications were performed to 
examine the distributions of the resulting costs and out-
comes for each screening strategy.  

Figure 4 shows the results of these 100 replications 
plus the base-case (i.e., the deterministic cost-effectiveness 
analysis) on the CE plane for the “White Male NF” popula-
tion, together with the efficiency frontier of the base-case 
(Briggs, Blackhouse, and O'Brien 2002). For the other 
seven populations this CE plane is provided in the thesis 
done by Tafazzoli (2004). 

Figure 4 shows how it may not be possible to rule out 
Sig & FOBT and DCBE strategies, since they potentially 
form part of the frontier in many replications. However, it 
is not possible to gain a clear view from Figure 4 as to how 
often these two strategies form part of the frontier because 
there can be substantial correlation between simulations 
plotted in this figure. 
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Figure 4: CE Plane for 100 Replications of Screening 
Strategies 

 
The above figure also shows the empirical distribution 

of cost-effectiveness for different screening strategies. 
Confidence limits for each strategy were obtained by se-
lecting the 3rd and 97th percentile of the 100 replicates 
(which excludes 2 (or 2.5%) of the observations from ei-
ther end of the empirical distribution). Table 4 shows the 
lower and upper 95% confidence limits for cost-
effectiveness of different strategies relative to “no screen-
ing”. 

 
Table 4: CI for CE Ratios of Different Screening Strategies 

Strategy Lower Limit Upper Limit 

FOBT $7032/QALY $12,919/QALY 

Sigmoidoscopy $13,082/QALY $19,144/QALY 

DCBE $13,514/QALY $23,240/QALY 

SIG & FOBT $17,649/QALY $22,430/QALY 

Colon 10 $18,862/QALY $28,576/QALY 

VColon $24,668/QALY $53,484/QALY 

Fecal DNA $38,727/QALY $92,517/QALY 

 
As a result, 95% of the estimated joint density falls 

within the wedge on the cost-effectiveness plane defined 
by the confidence limits. These wedges are shown for 
FOBT, DCBE and Colonoscopy strategies in Figure 5. 

These confidence limits also support the conjecture 
that DCBE and Sig & FOBT strategies should not be ruled 
out from screening choices, since their confidence intervals 
overlap with confidence intervals of the strategies that 
formed the frontier line in the base-case analysis (i.e., 
Colonoscopy and Sigmoidoscopy strategies). Although 
these results are valuable, they do not recognize the inher-
ent variability in the CE ratio. 

As the next step of the analysis we figured out how of-
ten screening strategies form parts of the frontier line in the 
100 replications. Table 5 shows these proportions for “No 
Family History” populations.  
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Figure 5: CI of FOBT (Blue wedge), DCBE (Brown 
wedge), and Colonoscopy (Yellow Wedge) Strategies 

 
Table 5: Percentage of Time Each Screening Strategy 
Formed Part of the Frontier Line 

Strategy % formed part of frontier line 

FOBT 100% 

DCBE 7% 

Sigmoidoscopy 46% 

SIG & FOBT 74% 

VColon 0% 
Colon 10 75% 

Fecal DNA 0% 

 
It is clear from Table 5 that VColon and fecal DNA 

strategies can be ruled out, since they appeared zero times 
on the frontier. By contrast, it turned out that DCBE 
formed part of the frontier in 7% of simulations and Sig & 
FOBT also formed part of the frontier in 74% of simula-
tions. However, even knowing the proportion of times a 
strategy forms part of the efficient frontier, it is not clear 
how this result could be interpreted by medical decision 
makers.    

If the shadow price for an extra QALY (the maximum 
willingness to pay or “ceiling ratio”) were known, it would 
be possible to choose between all of the screening strate-
gies, not just identify those that form the efficient frontier. 
Therefore, conditional upon knowing the ceiling ratio, in 
each replication there is only one strategy of choice from 
eight screening strategies under evaluation. The proportion 
of times that an intervention is the strategy of choice from 
the 100 replications of each population gives the strength 
of evidence in favor of that strategy.  

7 CONCLUSIONS  

This analysis added insight into the comparison of alterna-
tive screening strategies by explicitly considering the un-
certainty in cost-effectiveness.  Such uncertainty can be 
added into the simulation model as described in this work. 
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Overall, considering the CEA for each of the popula-
tions (average and high risk), FOBT, Sig & FOBT, and 
Colonoscopy were three screening strategies recommended 
by the AGA’s clinical guidelines that demonstrated a 
greater than 50% probability of not being dominated in 
PSA. Depending on the maximum acceptable marginal 
cost-effectiveness value, each of these procedures have a 
high likelihood of being the preferred strategy. 
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