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ABSTRACT 

We have implemented a simulation tool for the study of 
computationally challenging biological self-assembly sys-
tems, particularly viral protein shells. The simulator im-
plements a generic model of self-assembly based on simple 
local binding interactions to specify the behavior of com-
plex self-assembly reactions. Recently developed discrete 
event methods allow for fast quantitative simulation of 
these systems. The new simulator uses the Java language to 
implement the model in a portable, interactive graphical 
tool. The Java libraries can also be used directly to build 
customized simulations. This paper discusses the simulator 
model, the theoretical basis for its efficient operation, and 
implementation issues in its design. It also discusses em-
pirical validation of the simulator package and presents 
sample applications. 

1 INTRODUCTION 

Biological self-assembly is a process by which molecules, 
typically repeated proteins subunits, spontaneously form 
into larger, complex structures with limited help from cel-
lular machinery. Typical biological self-assembly systems 
include actin and tubulin filaments, which form a network 
of protein filaments called the cytoskeleton that is critical 
to numerous processes in eukaryotic cells, and virus cap-
sids, which form the protective outer coat around the nu-
cleic acid of a virus. Investigations of these self-assembly 
systems are important for basic biology and medical re-
search. In addition, they hold important lessons for humans 
attempting to design novel self-assembly systems (White-
sides 1995, Whitesides 2002). However, limitations in our 
ability to observe and manipulate rapid, nanometer scale 
assembly reactions make it difficult to gain an understand-
ing of these systems by traditional experimental ap-
proaches alone. These problems are particularly acute for 
viral capsids, which are typically extremely complex and 
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robust systems of hundreds of proteins assembled into ico-
sahedrally symmetric structures. Simulation methods pro-
vide a means to address some of these difficulties and as-
sist in the planning and interpretation of experimental 
work. 

Virus capsid assembly has recently attracted particular 
attention in the modeling community because of its com-
plexity, its efficiency, and the difficulties involved in ex-
perimentally observing its progress. Current understanding 
of virus capsid assembly is based on the Caspar and Klug 
theory of “quasi-equivalence” (Caspar and Klug 1962, 
Caspar 1980), which offered a possible explanation for ob-
served shell symmetries. Quasiequivalence theory also 
provided a taxonomy for observed shell structures in terms 
of “T numbers” describing the relative positions of sub-
units in the shell. Other approaches and models have been 
developed to investigate different aspects of virus capsid 
self-assembly, such as the equilibrium behavior of assem-
bly systems (Bruinsma et al. 2004, Zlotnick 1994), the fa-
vored assembly pathways (Reddy et al. 1998), mechanisms 
behind some unusual “non-quasiequivalent” structures 
(Schwartz, Garcea, and Berger 2000; Twarock 2004), and 
the overall reaction kinetics of the assembly process (Zlot-
nick 1994, Endres and Zlotnick 2002).  

Several simulation models have been developed based 
on a theory of virus assembly called local rules (Berger, et 
al. 1994). Local rules theory proposed that virus capsid 
formation can be directed by local interaction of virus coat 
protein subunits, with complex capsid geometries arising 
from subunits selecting their local geometries and binding 
partners based only on their immediate environments in the 
shell. The simplest local rules set, used to describe a T=1 
virus capsid geometry, is illustrated in Figure 1. This 
model was used to explain the normal geometrical struc-
tures of virus and the possible reasons for some malformed 
assemblies. It later formed the basis for a more complex 
simulation model called local rules dynamics that com-
bined local rules with a sophisticated molecular dynamics-
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like model of particle movement and structure and reaction 
rates (Schwartz et al. 1998, Schwartz 2000). However, the 
computational cost of this model made it difficult to simu-
late large-scale assembly and systems with events acting 
on widely different time-scales.  

 

 
Figure 1: Local Rules for T=1 Virus Capsid Geometry 

 
A novel discrete event method for accelerated quanti-

tative simulation of self-assembly reaction progress was 
proposed by Jamalyaria, Rohlfs and Schwartz (2005). This 
fast, memory-efficient simulation method was designed to 
handle complex self-assembly systems on the scales of 
single cells. Virus capsids are challenging in general be-
cause the enormous number of distinct intermediates pos-
sible makes it computationally intractable to use differen-
tial equation approaches commonly used to approximate 
chemical reactions on large scales without large simula-
tions. The cellular scale is particularly challenging because 
it encompasses system sizes that are near the boundary of 
what is computational achievable by stochastic discrete 
event methods but are sufficiently small that deterministic 
continuous methods cannot necessarily be considered reli-
able approximations.  

In the present work, we describe a simulator devel-
oped by combining local rules theory and our fast discrete-
event simulation method to model these hard systems. The 
objective of this implementation is to build a reliable re-
search and educational tool to investigate the pathways and 
possible kinetic traps in self-assembly systems; develop 
and evaluate hypothesis about actual systems with the aid 
of available experimental data; facilitate a thorough analy-
sis of the trade-offs among run time, memory usage and 
accuracy; and analyze the convergence of the discrete and 
continuous methods for systems scales near the boundary 
of what is accurately approximable by large-scale methods. 
It is specifically designed to:  
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• Employ a very general model adaptable to many 
different biological geometries and assembly 
processes. 

• Explicitly represent the stochastic nature of bio-
chemistry on small (cellular) scales. 

• Achieve accuracy and robustness for a broad 
range of system parameters and model details. 

• Be sufficiently portable and easy to use that it can 
be productively applied by users with no familiar-
ity with the theory of the simulation methods. 

 
In the remainder of this paper, we describe the simula-

tor model and implementation and present empirical results 
demonstrating the simulator capabilities and validating its 
correctness. 

2 IMPLEMENTATION 

2.1 Overview 

This simulator has been developed using a Model-View-
Controller (MVC) design pattern. The model represents the 
local rules that govern behaviors of the assemblies, which 
are the basic unit of the simulation, the event queue and a 
set of global properties of the simulation (e.g. solution vol-
ume or temperature). The view provides an interactive dis-
play of simulation progress and renders the detailed three-
dimensional graphical representation of the structures pre-
sent in the simulation at any given time. The controller, 
which handles interactions between the user and the model 
and view, includes two separate components: that instruct-
ing the simulator to advance the time or change the angle 
of the view and that implementing the laws of physics that 
determine the time course of the simulation. This separa-
tion reflects the centrality of the physics model to the simu-
lator and the conceptual distinction between predictable 
user-directed actions and unpredictable actions the simula-
tor itself directs. Users can customize the important pa-
rameters of the physical model and control the simulation 
through either the Graphical User Interface (GUI) or 
through direct access to the Java code.  

2.2 Discrete Event Model 

Chemical reactions are conventionally described by formu-
lae such as the following:  

 

 
 

The above states that two molecules, A and B, react to 
form a molecule C with a characteristic rate kf.  C can also 
convert back into A and B with a rate kr.  Systems of such 
reactions are often deterministically modeled using ordi-
nary differential equations (ODEs) to track the concentra-
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tions of reactants such as A, B and C as functions of time 
and of the rate constant parameters (Turner, Schnell, and 
Burrage, 2004). By contrast, a discrete event (DE) model 
uses a stochastic approach to model the reaction progress 
in terms of individual reaction events separated by waiting 
times. Waiting times are exponentially distributed with av-
erage times Tf and Tr for each type of reaction. If we set our 
units so that the total volume of the simulation is 1, then 
we can easily relate ODE and DE models of the same sys-
tem. If we specify the time unit such that Tf =1/kf and 
Tr=1/kr, then the discrete count of reactants in the DE 
model will converge on the continuous concentration of 
reactants in the ODE model for sufficiently large systems. 

2.3 Protein Model 

The model used by the present simulator is derived from 
local rules theory (Berger et al. 1994), a model defining 
self-assembly systems in terms of simple pair-wise binding 
interactions. Local rules theory is a hypothesis about the 
mechanism of actual virus shell assembly, but is also a 
very useful computational abstraction in that it establishes 
a general model allowing for the concise specification of a 
broad range of self-assembly systems. The physical model 
of the simulator is similar to the local rules dynamics 
model (Schwartz et al. 1998, Schwartz 2000), a prior ex-
tension of local rules to handle reaction rate information. 
The new model, however, uses a discrete-event simulation 
method (Jamalyaria, Rohlfs and Schwartz 2005), in con-
trast to the computationally demanding molecular dynam-
ics-like method of the local rules dynamics model. 

The basic building block of a simulation is a subunit, 
which is generalized to represent a single protein or cap-
somer in a biological self-assembly system. Each subunit 
has a user-specified set of binding sites defined by a posi-
tion in space relative to the center of the subunit and a set 
of other binding sites with which it can bind. The affinities 
of each type of binding site with its own sets of compatible 
types of binding sites are encoded by the mean waiting 
times to form and break a binding interaction, Ta and Td. 
Because waiting times are exponentially distributed, the 
means completely specify the waiting time distributions. 

Some assembly models require that subunits can dy-
namically change their binding configurations. One exam-
ple is the autostery model (Caspar 1980), which provides 
an explanation for the experimental observation that the 
overall rate of growth is limited by the time to form a small 
“growth nucleus” (Prevelige, Thomas, and King 1993). In 
order to model changing or partially changing binding site 
configurations, subunits in this simulator are defined as 
combinations of domains, each of which has some possible 
conformations. A Domain object encodes a partial current 
pattern of binding sites in the subunit. Using this represen-
tation, the conformations of individual domains can change 
without affecting other domains. Thus, some binding sites 
22
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may become available or unavailable due to some stimulus 
while other binding sites remain unperturbed.  In the sim-
plest case, there is only one domain in a subunit, which 
might contain two conformations, one with some binding 
sites, the other without any binding site.  Two such con-
formations are graphically illustrated in Figure 2 (a) and 
(b). Figure 3 illustrates the process by which one domain 
can switch between two conformations, a and b, with dif-
ferent affinities represented by average switching times Tf 
and Tb, while a second domain remains fixed. The sphere-
cone complex shown in Figure 2(b), (c) and (d) are graphi-
cal representations of structures of some subunits. The 
physical properties (mass, size etc.) and the hierarchical 
structure of one subunit – domain, conformation and bind-
ing site – define its specific binding behaviors.  

 

 
 

Figure 2: Subunits from Different Assembly Models 
 

 
 
Figure 3: Conformational Switching in Domain 1 

 
 The next level in the conceptual hierarchy is an as-

sembly. An assembly consists of either one subunit (also 
called a monomer) or multiple subunits connected by 
bonds from the binding of pairs of compatible binding 
sites. Some examples of possible assembly structures that 
can be represented by the model are shown in Figure 4. 
Figure 5 illustrates the hierarchical architecture used to im-
plement an assembly in this simulator. The binding site 
configuration and binding patterns predefined by the local 
rules for a specific system determine the structure of the 
possible intermediates and final assembly products. 
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Figure 4: Examples of Assembly Structures: (a) Dimer 
Filament (b) Tetrahedron (c) Pentamer of Virus Capsid 
Model (T=1) (d) Helical Tubular Filament 

 

 
 

Figure 5: Hierarchical Architecture of Assembly Imple-
mentation in the Simulator 

2.4 Event Implementation 

A set of discrete events, representing individual chemical 
reactions, are used to advance time in the simulation. The 
simulator can explicitly represent, sample and process the 
following events: 

 
1. FormBondEvent. This type of event represents a 

future assembly binding reaction involving two 
compatible binding sites on different subunits 
from same or different assemblies.  

2. BreakBondEvent. This type of event represents a 
future breaking reaction of a binding interaction 
between two compatible binding sites. Fulfillment 
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of this reaction will separate two previously 
bound binding sites. 

3. ConfChangeEvent. This type of event represents a 
change in conformation of a subunit domain. 

 
Those types of events are implemented as a set of Java 
classes, and contain such essential information as the time 
when the event is sampled and will be processed and the 
binding sites or domains it involves. 

All the possible events for each Assembly object are 
sampled from exponential distributions based on a user-
defined average waiting time for each reaction, which is 
equivalent to the inverse of the reaction rate constant in 
more standard chemical kinetics notation. For example, 
each bond in an assembly is sampled for possible Break-
BondEvents and each free binding site in the assembly is 
sampled for possible FormBondEvents with each free 
compatible binding site in the simulation.  The event with 
minimum waiting time found for each assembly is stored 
into an event queue. This model of exponentially-
distributed waiting times is mathematically equivalent to 
the N-fold way model for reaction kinetics (Gillespie 
1976), which is itself a continuous-time Markov model 
representation of the system. We use a slightly modified 
version of a more efficient algorithm than that used in the 
N-fold way method that is better suited to systems with 
large numbers of possible reaction intermediates (Ja-
malyaria, Rohlfs and Schwartz 2005).  

 The simulation stores sampled events in an event 
queue, which is sorted according to the time that an event 
is supposed to be processed. The event queue is currently 
implemented as a binary heap priority queue. Adapting 
other queue structure for some particular types of assembly 
simulation could improve the average performance, al-
though more experiments are needed to find such applica-
tion domains.  

2.5 Simulation Process Implementation 

2.5.1 Initialization 

At the start-up of simulation (simulation system time t =0), 
the system is provided with a population of m assemblies 
and an empty event queue. For each assembly, we sample 
all possible events involving that assembly and place the 
one with minimum waiting time into the event queue. The 
sampling of FormBondEvent involves pair-wise interac-
tions among all assemblies. To avoid duplicate Formbon-
dEvent sampling and enqueueing, m(m-1)/2 comparisons 
are made and the produced list of events is screened to re-
move extra identical events. Currently, this method of ini-
tialization, which requires a one-time O(m2) computation, 
is the practical bottleneck for our simulation computations. 
We expect this situation to be improved by using a tech-
nique of the classical N-way method to equate small iden-
6
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tical assemblies during sampling; although this technique 
cannot be applied to arbitrary assemblies because of the 
intractability of testing for identity between assemblies, it 
should offer a substantial reduction in startup costs if ap-
plied to monomers. 

2.5.2 Simulation Run 

After a minimum-time event is extracted from the queue, 
the current simulation time is updated. If the most recent 
time when all assemblies involved in this event change 
state is no later than that when this event is sampled, this 
event is a valid event, otherwise it is considered invalid. 
Different types of events are handled as follows: 

 
• Valid BreakingBondEvent: When the breaking 

can split the involved assembly into two uncon-
nected sub-assemblies, we sample new events for 
them and change their states (events to be in-
volved, sampling time, component information 
etc.). Extra rules can be applied for some special 
cases.  For example, in some linear filament simu-
lations, it is desirable to allow binding interactions 
to break only at the ends of the filaments. Bonds 
breaking within closed loops are also sometimes 
treated as a special case (e.g. a bond breaking in 
the pentamer shown in Figure 4(c) ). In this case, 
we can use a FormBondEvent with a shorter wait-
ing time to rebind the broken bond quickly. This 
fast rebinding indirectly represents the difficulty 
of breaking a stable loop structure, due to the en-
tropy benefit of binding subunits already held in 
the proper binding positions by other binding in-
teractions.  

• Valid FormBondEvent: Normally, for a Form-
BondEvent involving two assemblies, they are 
merged into a single assembly and new minimum-
time event is sampled for that assembly. Binding 
can also occur between compatible binding sites 
within a single assembly, triggering resampling of 
events for that assembly. Such binding is allowed 
only if the binding sites are of compatible types 
and are within user-specified bond angle, dis-
tance, and rotation tolerances of one another. A 
queued binding event might actually be impossi-
ble to implement, either because the two assem-
blies have subunits that would overlap if they 
were bound (a problem called steric hindrance) or 
because the number of subunits is larger than a 
user-specified maximum assembly size. In such 
cases, the binding event will not be implemented 
and new events will be sampled for the two as-
semblies.  

• Valid ConfChangeEvent: The current conforma-
tion of a monomer will be switched to another 
22
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conformation specified in this event. This also 
triggers the sampling of new possible events for 
the assembly involved. 

• Invalid event: An invalid event does not trigger 
any change in the simulation state. However, if 
one actor in the invalid event has not had new 
events sampled for it since the invalid event, then 
a new minimum time event will be sampled for 
that assembly. This ensures that at all times there 
is some sampled event for each assembly in the 
queue. 

 
During the simulation run, the resampling of new 

events still involves obtaining one type of event with the 
minimum time. However, since at most two assemblies 
need to be assigned new events, no more than two events 
are sent to the queue at each step, unlike in initialization. 
Furthermore, the amount of work per step is linear in the 
system size after the initial quadratic startup cost. 
 Figure 6 outlines the event processing loop. After a 
predefined number of simulation steps are finished or the 
event queue becomes empty (because no more events are 
possible), the simulation process will stop to wait for new 
controls from the user.  

 

 
 

Figure 6: Flow Chart of a Simulation Step 

2.6 View and Control 

Users can use the mouse to rotate, translate or zoom part of 
the simulation scene to observe the details of the assembly 
structures from different viewpoints. Users can control the 
simulation process through the initialization of some pa-
rameter values listed in Table 1 and through GUI buttons 
which provide options to run the simulation continuously 
or step-by-step. More sophisticated control of the simula-
tion can be obtained by editing additional parameters or 
subunit type definitions directly in the Java code defining a 
specific simulation run. 
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Table 1: Parameters of Simulation and Kinetics Equations 
Parameter Description 
A0 Monomers (assembly with one subunit) without 

binding capacity 
A1 Monomers with binding capacity 
Aj Assembly consisting of j subunits 
[Aj] The concentration of assemblies with j subunits
N The initial number of monomers 
l The maximum number of subunits allowed in 

any filament 
Ta The average waiting time for two binding sites 

to associate to form a bond. It is equal to 1/ka in 
kinetics equations. 

Td The average waiting time for two binding sites 
to break a bond. It is equal to 1/kd in kinetics 
equations. 

T+ The average waiting time for a monomer to 
switch from a non-binding to a binding confor-
mation. It is equal to 1/k+ in kinetics equations.

T- The average waiting time for a monomer to 
switch from a binding to a non-binding confor-
mation. It is equal to 1/k- in kinetics equations. 

 

3 EXAMPLE APPLICATIONS AND RESULTS 

We validated our prototype simulator primarily by com-
parisons of discrete event and ODE models of simple 
structures. Given sufficiently large numbers of subunits, 
the two models would be expected to converge on identical 
time courses. The simulator was also used to build a sim-
plified virus capsid model with T=1 icosahedral symmetry 
efficiently, a system for which we cannot construct a trac-
table ODE model. 
 Simplified virus capsid model: This simulator has 
been used to build a simplified virus capsid model with T=1 
icosahedral symmetry. The complete assembly, shown in 
Figure 7, includes 60 subunits with the structure shown in 
Figure 2(d). The local rules set used is shown in Figure 1. 
 

 
 
Figure 7: T=1 Icosahedral Virus Capsid Screenshot 
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Linear filament assembly model: The structure of 
the subunit of actin-like assembly is shown in Figures 2(a) 
and 2(b). In this type of simulation, the following rules are 
set:  

 
• The maximum allowable length of a filament as-

sembly is set to l=4. 
• Each monomer is able to switch between binding 

and non-binding conformations. 
• The simulation is initialized with N monomers in 

the non-binding conformation. 
• The FormBondEvent has to involve at least one 

monomer. 
• The BreakingBondEvent has to involve one sub-

unit located at either end of a filament assembly. 
 

After the simulation reaches equilibrium (shown in Figure 
8), the average numbers of assemblies of each size over 
some time are calculated to analyze the distribution of as-
semblies.  

 

 
 

Figure 8: Screenshot of Filaments Distribution at Equilib-
rium after 40,000 Steps with Parameters N=500, L=4, 
Ta=1, Td=0.25, T+=0.2, T-=1 

 
The corresponding kinetic reaction equations are listed 

below: 
 

 
 

 A system of ordinary differential equations (listed in equa-
tions (1)) based on the kinetic reactions are set up and nu-
28
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merically integrated using MATLAB. Thus, to verify the 
correct implementation of the queue-based discrete event 
simulator, it is relatively straightforward to compare the 
results from the two models, as shown in Figure 9. The re-
sults show the similar distributions both in values and pat-
terns.  

 
0

0 1

1
1

1 1 0

1 2
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Figure 9: Comparison of Filament Length Distributions at 
Equilibrium 

 
Platonic solid assembly model: Simulating virus cap-

sid self-assembly is more challenging and complex than 
simulating filament assembly. Because of the large number 
of possible intermediates for even the simplest icosahedral 
structures, we cannot construct an ODE model for com-
parison without substantial simplification of possible as-
sembly pathways. To verify the accuracy of the methods 
required for icosahedral capsid assembly simulation but 
not for filament simulation (e.g. loop and steric hindrance 
detection, fast binding following a loop breaking), we used 
the much simpler tetrahedron system. Although tetrahe-
drons are not to our knowledge biologically significant, 
they depend on the same loop-handling code as icosahedra, 
but are simple enough to allow us to construct ODE mod-
els. The following rules are set for the simulator:  
2

• The simulation is initialized with N monomers 
with binding capacity. 

• The bond binding and breaking can involve as-
semblies of any size. 

• The three types of binding sites on each subunit 
are set to have identical waiting time distributions. 

• When a bond breaking produces an open loop in-
stead of two assemblies, the broken bond would 
be “sealed” instantly, effectively assuming infinite 
rate for binding sites held in place by other inter-
actions.  

 
The kinetic reaction equations for this system are 

shown below: 
 

 
 
In the above reaction equations, A1 represents a 

monomer with three different binding sites and A2 repre-
sents a dimer with four free binding sites. A3 has a triangu-
lar shape with three free binding sites. A4 is the complete 
tetrahedron without any free binding site. The reaction rate 
constants are determined for each reaction by the number 
of possible pairs of binding sites that could implement that 
reaction and by the reaction rate constants of the individual 
binding site interactions.  We model the time course of this 
tetrahedron assembly process in terms of the concentration 
of assemblies of different sizes by a system of differential 
equations (shown in equations (2)) based on the above re-
action equations:  

 
[ ] 21 3 [ ] 2 [ ] 4 [ ][ ] 3 [ ][ ]1 2 1 2 1 3

[ ] 3 82 22 [ ] [ ] 4 [ ][ ] [ ]2 1 1 2 22 3
[ ]3 4 [ ][ ] 3 [ ][ ]1 2 1 3

[ ] 4 24 3 [ ][ ] [ ]1 3 23
.

d A
k A k A k A A k A Aa d a adt

d A
k A k A k A A k Ad a a adt

d A
k A A k A Aa adt

d A
k A A k Aa adt

= − + − −

= − + − −

= −

= +

 (2) 

 
The comparison of time courses of concentrations of 4 

different sizes of assemblies from 1000 simulation runs 
and the ODE model is shown in Figure 10-13. The parame-
ters used in the simulation runs are N=1000, Ta=1, Td=0.1. 
In each figure, the red (smooth) curve is the result of nu-
merically integrating the deterministic ODEs and the black 
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(dotted) curve is the mean for 1000 simulation runs. The 
purple error bars correspond to mean plus/minus one stan-
dard deviation. Although the discrete event method shows 
a certain degree of stochastic behavior from one run to an-
other, a close match between ODE and average simulator 
behavior is observed from the comparisons.  
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Figure 10: Time Course of Monomer Concentration 
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Figure 11: Time Course of Dimer Concentration 
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Figure 12: Time Course of Trimer Concentration 
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Figure 13: Time Course of Tetrahedron Concentration 

4 DISCUSSION, CONCLUSIONS AND FUTURE 
WORK 

We have implemented and tested a prototype of self-
assembly simulator system with a graphical interface based 
on local rules abstractions and a recent time- and space- 
efficient discrete event simulation method. Comparisons of 
assembly processes of filaments and tetrahedrons between 
our simulation runs and corresponding ODE models con-
firm the simulator correctness and give us experience with 
the practical application of our simulator. The theoretical 
innovation of the simulation method combines with the 
flexibility and extensibility of the simulator framework to 
create a more complex and realistic physical model than 
was possible with prior work.  This simulator should there-
fore be a valuable practical research tool for investigating 
the kinetics of biological self-assembly on the time and 
space scales typical of self-assembly reactions within liv-
ing cells. The simulator is particularly well suited for large 
and complicated cellular self-assembly systems, such as 
virus capsids and the cytoskeleton.  

An ongoing goal of this project is further optimization 
of this simulator, particular with regard to reducing initiali-
zation time and reducing memory overhead associated with 
graphic displays for large simulations. We are also devel-
oping a prototype XML parser to allow users to fully de-
sign and customize simulations without the need to access 
Java code. A principle long-term objective is to validate 
quantitative rates of the model using direct experimental 
observations, a milestone so far achieved only with simpli-
fied ODE models of capsid assembly (Zlotnick et al. 
1999). While our simulator may be sufficient for this task, 
detailed models of specific real-world virus systems must 
still be constructed within the simulator.  

The simulator (Version 1.2) in the form used in the 
present work is available at the web site http://www-
2.cs.cmu.edu/~russells/software/discret
e/simulation.html. Further updates will be released 
from the same site. 
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