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ABSTRACT 

Cycle Time – Throughput curves (CT-TH), which plot the 
average cycle time versus start rate for a given product 
mix, are often used to support decisions made in manufac-
turing settings, such as the impact of proposed changes in 
start rate on mean cycle time. Discrete event simulation is 
often used to generate estimations of cycle time at a sig-
nificant number of traffic intensities (start rates). However, 
simulation often requires long run lengths and extensive 
output analysis. In most manufacturing environments, the 
time and/or budget available for such simulations is lim-
ited. As demands for faster and more accurate results are 
required, alternative approaches to improving simulation 
efficiency must be investigated. This research seeks to de-
velop a procedure for simplifying a detailed model into a 
fast (abstract) simulation model that achieves a statistically 
indistinguishable level of accuracy and precision. This 
technique has particular application in the simulation of 
semiconductor manufacturing facilities. 

1 INTRODUCTION 

Discrete event simulation models of semiconductor-
manufacturing facilities have proven to be an effective and 
efficient aid for factory management. Simulation models 
provide valuable statistical estimates of manufacturing per-
formance measures that support factory decisions regard-
ing many issues such as capacity planning, scheduling, etc. 
While the power of modern computer packages has greatly 
risen in recent years, the execution time required to obtain 
accurate and precise estimates of the statistical outputs 
from the simulation often requires a large amount of com-
puter execution time.  
 An example of the number of runs required to obtain a 
desired confidence interval half-width around an estimated 
mean cycle-time from a simulation is demonstrated in Fig-
ure 1 below. 
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Figure 1: Replications Needed to Obtain a Desired Confi-
dence Interval Half-width of a Mean Cycle-time Estimate 

 
The values in Figure 1 were calculated using equation (1) 
found in (Law and Kelton 1991). The n value in equation 
(1) 
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represents the amount of replications needed to obtain a 
given confidence interval half-width, ε. So is standard de-
viation of the mean response estimates calculated from a 
pilot run of the simulation and t1-α/2,n-1 is the Student’s t dis-
tribution quantile. The estimates of standard deviation in 
Figure 1 were chosen to be a value of 1.0 and 2.0 for dem-
onstration purposes. One can see that as the desired confi-
dence interval half width decreases – signifying the analyst 
need for a more precise estimator – the number of runs re-
quired to achieve that level of precision increases dramati-
cally. This number of runs can be directly related to the 
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amount of computer effort needed. Often simulations of a 
manufacturing facility are quite large and the amount of 
computer time needed to generate an estimator from a sin-
gle replication is excessive. If that time can be dramatically 
reduced, the simulation can yield results in a more timely 
fashion and more replications can be performed.   
 As a result of the issue concerning model execution 
time for complex semiconductor manufacturing facility 
models, several modeling simplification techniques have 
been proposed. Rose (1998) demonstrates how simple 
simulation models can be successfully used to explain the 
behavior of wafer fabs and Rose (1999) demonstrates sim-
ple models ability to predict performance measures such as 
product cycle time. Brooks and Tobias (2000) lay out an 
eight stage procedure for doing modeling reductions, 
which result in a simple version of a manufacturing model 
that is analytically feasible for averages of performance 
measures. Hung and Leachman (1999) also show that ac-
curate estimates of total cycle time and equipment utiliza-
tion may be obtained using reduced fabrication simulation 
models that replace operations at low-utilization worksta-
tions with fixed time lags. Peikert et al. (1998) discusses a 
methodology for quickly investigating problem areas in 
semiconductor wafer fabrication factories by creating a 
model for the production area of interest only (as opposed 
to a model of the complete factory). Thomas and Charpen-
tier (2005) build a simplified simulation model from the 
bottom up based on a reduced manufacturing routing. 
 All of the simulation reduction techniques presented 
vary slightly in approach, but all share the common goal of 
minimizing the simulation execution time to obtain accu-
rate and precise results (minimizing bias and variance) that 
are not statistically different from results that would be ob-
tained by a completely detailed model. The most common 
simplification technique among the papers listed is to re-
tain only the most highly utilized workstations, the bottle-
necks, while replacing other workstations with constant de-
lays. Rose (2000) and Hung and Leachman (1999) 
demonstrate that simple models which use a delay time de-
scribed by a distribution can fail to describe the detailed 
model in an accurate way due to lot overtaking (passing).  
Therefore, it is best to replace removed machine worksta-
tions in the simulation model with a constant delay.  
 While these techniques have proven the ability to pro-
vide matching results to a detailed model, and hence (hope-
fully) the system, as long as proper verification and valida-
tion techniques have been applied, none of the 
aforementioned techniques allows an analytical compari-
son between the abstract model being created and the de-
tailed model at given points during the model abstraction 
process. This paper presents a method of sequentially iden-
tifying and removing pieces of the model that are “unim-
portant” to the estimation of the selected performance pa-
rameters. This technique illustrates the creation of an 
abstract model through sequential experiments and demon-
217
strates the models validity by comparing the correlation be-
tween the results found in the detailed model and the ab-
stract model. Section 2 presents a high level methodology 
used to create the abstract model. Section 3 presents an ap-
plication of the methodology. Section 4 summarizes the 
findings and presents plans for future investigation.  

2 METHODOLOGY 

In order to exploit the ability of a simulation to produce 
performance measure estimates in an economical and effi-
cient way, we propose a technique that allows the identifi-
cation of model parts that can be replaced by a delay, so as 
to reduce the model execution time to acquire results with-
out altering the performance of the simulation. To identify 
these model parts, we show how workstations can be se-
quentially removed from a simulation model by studying 
the sample correlation coefficient between the two models 
(abstract and detailed).  

Several assumptions are needed before the model sim-
plification can take place. The first assumption is that the 
analyst has access to an already built detailed model of the 
system. The second assumption is that the model has been 
validated and verified to adequately match the performance 
of the existing system under study. Finally, the product 
mix within the model is assumed to be fixed. The steps of 
the model simplification technique are as follows:  

 
1. Run the detailed model of the system and obtain 

information regarding the average cycle time a 
product spends at each workstation in its route 
and the utilization of the workstations within the 
model 

2. Create a list of machines ordered from the most 
highly utilized machine to the machine with the 
lowest utilization 

3. Create an abstract model by replacing the bottom 
X (to be determined by analyst) machines on the 
list (those with the lowest utilization) with a con-
stant delay that is the sum of the average process-
ing time on the machine and the average time a 
product spends in the queue at that station 

4. Using the same common random numbers em-
ployed in the detailed model, run the abstract 
model with the replaced machines and obtain sta-
tistics on average cycle time for the products 

5. Measure the sample correlation coefficient found 
in equation 2 

 
 ( , )

x y

Cov X Y
σ σ

 (2) 

 
through comparison of the average cycle time of a 
product within a replication of the abstract model 
(Y) to the average cycle time of a product within a 
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replication of the detailed model (X). (The 
amount of replications used for comparison 
should be determined by the analyst, but is rec-
ommended to not be lower than 10 replications)  

6. If the sample correlation coefficient is above 0.6, 
which is regarded as highly correlated, continue 
and return to step number 3. Otherwise, add the 
last set of removed machines back into the model 
and stop. 

3 SIMULATION MODELS 

This section demonstrates an application of the methodol-
ogy presented in the previous section. The models of inter-
est are a tandem-10 M/M/1 model and a tandem-10 
M/M/10 model. Both of these models allow for closed 
form theoretical calculations of performance measures 
which can be used to validate the detailed and abstract 
models abilities to predict the true measures of interest, 
such as average cycle time. Standard techniques were used 
for determining a proper warm-up period so data could be 
truncated for the removal of initial condition bias (Law and 
Kelton 1991).  Additionally, common random numbers 
were applied so that replications of the abstract and de-
tailed models could be directly compared against each 
other. 
 The first model of interest, the tandem-10 M/M/1 
model, consists of ten M/M/1 queues in series. The model 
includes one product that visits each machine once, starting 
at machine station one and ending at machine station 10 
(forward flow only). Machine 4 is the bottleneck machine 
and has an exponentially distributed processing time with a 
mean value of 1 time unit. All other machines have expo-
nential service times with a mean processing time of 0.6 
time units. This was done so that throughput rate (or traffic 
intensity) could be equal to the arrival rate. For this study, 
the model abstraction was done by sequentially removing 
one machine at a time from the model. This equates to 
choosing X to equal one in step 3 of the methodology sec-
tion. It should be noted that removing one machine work-
station at a time is generally not recommended because of 
the large amount of time that would be required to sequen-
tially remove workstations when the model includes hun-
dreds of workstations, such as in a semiconductor manu-
facturing model. Figure 2, illustrates a comparison of the 
sample correlation of the abstract model to the detailed 
model for all nine levels of abstraction in the tandem-10 
M/M/1 case. The model number on the X-axis corresponds 
to the number of machine workstations removed from the 
model. Four different throughput levels are shown. Ten 
replications were run for the detailed model and each ab-
stract model. 
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Figure 2: Average Correlation between the Abstract and 
Detailed Model at 9 Levels of Abstraction 

 
 As seen in Figure 2, the correlation coefficient de-
grades slowly as machines are replaced. Model nine on the 
chart corresponds to the model that has nine machine 
workstations replaced by delays and only the bottleneck 
machine is retained in the model. This model is still highly 
correlated with the detailed model and was proven to pro-
vide accurate and precise estimates of mean cycle time, by 
comparison to theoretical values. Table 1 below demon-
strates that the theoretical values and the mean estimated 
cycle time of the abstract model both fall in the confidence 
interval produced by the detailed model.  
 
Table 1: 99% Lower and Upper Bound Confidence Limits 
for the Tandem 10 - M/M/1 Detailed Simulation Model 
(Based on 10 Replications) for Each of Four Different 
Throughput Levels 

  
Throughput 

De-
tailed  
mean 
CT 

  
LB CI  

  
UB 
CI  

Theoreti-
cal 
Value 

Abstract  
mean 
CT  

60% 10.90 10.86 10.95 10.94 10.91 

70% 12.59 12.52 12.66 12.64 12.59 

80% 15.34 15.20 15.48 15.38 15.34 

90% 21.64 21.16 22.12 21.74 21.64 
 

 Similar results to these were found from the tandem-
10 M/M/10 model. This model was identical to the Tan-
dem-10 M/M/1 model on each machine station, but each 
machine workstation contains ten servers instead of one. 
Arrival rates were adjusted to reflect this change. Table 1 
shows numerically what Figure 2 demonstrated (for the 
tandem-10 M/M/1 case). but additionally demonstrates 
what happens when the model abstraction leaves out an 
important piece of the model. 
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Table 2: The Correlations between the Detailed and Ab-
stract Models in the Tandem-10 M/M/10 Case. The W*1 
and W*9 Models Correspond to Models that Have Re-
tained 1 and 9 Machine Workstations, Respectively, but 
the Bottleneck Machine is Not Among the Retained Sta-
tions. 

Correlations 
  
Model  

# of    
Machine 
Stations  

60 % 
TI 70 % TI  

80 % 
TI  

90 % 
TI  

1 10 
--------
----- 

----------
--- 

--------
----- 

--------
----- 

2 9 0.95 0.95 0.97 1.00 
3 8 0.95 0.92 0.95 0.99 
4 7 0.81 0.74 0.85 0.99 
5 6 0.74 0.67 0.83 0.99 
6 5 0.69 0.68 0.84 0.99 
7 4 0.54 0.64 0.84 0.99 
8 3 0.58 0.63 0.81 0.99 
9 2 0.63 0.70 0.86 0.99 

10 1 0.54 0.67 0.85 0.99 
W*1 1 0.30 -0.14 -0.39 -0.47 
W*9 9 0.54 0.24 -0.03 -0.25 

 
 One point of interest is to observe what happens to the 
correlation levels when the bottleneck machine is removed 
and a machine workstation with a lower utilization is re-
tained. Two models were created for analyzing this sce-
nario. The two models correspond to W*1 and W*9 in the 
last two rows of table 2. W*1 is a model containing only 
one machine work station (comparable to model 10), but 
the one retained machine is not the bottleneck machine. 
W* 9 is a model containing 9 machine work stations (com-
parable to model 2), but again omitting the bottleneck ma-
chine from the model. From the last two rows in Table 2, 
one can see that when a significant piece of the model is 
removed, the correlation values degrade significantly. The 
average correlation across the four throughput rates for 
Model 10 is approximately .76 where as the average corre-
lation across the four throughput rates for W*1 is approxi-
mately -.18. This signifies a considerable deterioration. 
Similar results are seen when comparing Model 2 to W*9.  
 While the correlation coefficients were seen to signifi-
cantly drop, it is noteworthy to mention that the W* 1 and 
W* 9 models still produced estimates of mean cycle time 
that fell within the confidence limits produced by the de-
tailed model. However, if the analyst was to look at the 
autocorrelation between the detailed model and incorrect ab-
stract models, considerable differences would  be found. 
Figures 3, 4, and 5 show the autocorrelation graphs of the 
detailed model, abstract model number 10, and abstract 
model W*1. The detailed and abstract model number 10 
models show similar autocorrelation graphs, where as the 
W*1 model significantly deviates in structure from the other 
217
two. This is important because the autocorrelation of the 
output from the models is related to the distribution of the 
output data. Different distributions would lead to signifi-
cantly different results when comparing percentiles and 
quantiles, which are often used in the manufacturing setting. 
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Figure 3: Autocorrelation Graph of the Detailed Model, at 
a 70% Traffic Intensity, with Results Based on a  
Single Replication of Output Data 
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Figure 4: Autocorrelation Graph of the Abstract Model 
Number 10, at 70% Traffic Intensity, with Results Based 
on a Single Replication of Output Data 
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Figure 5: Autocorrelation Graph of the W*1 Model, at 
70% Traffic Intensity, with Results Based on a Single Rep-
lication of Output Data 
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 The autocorrelation graphs were all created by using a 
single replication of output data. The autocorrelations 
measure the correlation between observations and a lag of 
1 to 24 was used for the graph. The correlation is labeled 
on the Y axis, while the lag is labeled on the X axis. The 
graphs were created by using a freeware package found at: 
<www.web-reg.de>, created by Kurt Annen.  

4 CONCLUSIONS AND FUTURE WORK 

A method for creating an abstract simulation model from a 
highly detailed one by sequentially replacing pieces of the 
model with delays and checking to make sure the two 
models were correlated during each step of the abstraction 
was presented. Initial model testing done on two tandem-
10 M/M/c queues was presented and demonstrated promis-
ing results.  
 It was shown that the abstract model demonstrated a 
high correlation value to the detailed model in all cases 
where the bottleneck machine remained in the model. Also, 
the abstract models were able to match mean cycle times of 
the detailed model and the output observation were shown 
to have similar autocorrelation functions when the most 
highly utilized machines workstations were retained in the 
abstract model.  
 Future work will include testing the algorithm on a 
real world semiconductor manufacturing simulation model. 
Several test beds for this type of testing exist on the web-
site provided by the Modeling and Analysis of Semicon-
ductor Manufacturing (MASM) lab at Arizona State Uni-
versity <http://www.eas.asu.edu/~masmlab/ 
ftp.htm>.  
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