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ABSTRACT

We study a complex Configured to Order (CTO) business
operating under variable product configuration recipes and
high component commonality within product Bills of Ma-
terials. In particular, we conduct a series of simulation
experiments to compare certain supply chain designs and
investigate how their performance changes with changing
variability of product configurations. The results indicate
that under higher variability and component commonality
conditions, a supply chain design that lays more empha-
sis on tracking the evolution of component demands and
inventory positions performs better.

1 INTRODUCTION

Manufacturers of specialized products faced with tighter
competition and falling margins have been placing an in-
creasing emphasis in recent times on creating a wider port-
folio of products as a means of providing better value to
customers and boosting profit margins. A broader spectrum
of specialized products often lead to higher market shares
(Bagozzi 1986), but it may increase the operational cost
and complexity of the manufacturer’s business. A traditional
response to these higher costs is to increase the number of
common-use components in the product Bills of Materi-
als (exploiting component commonality; Swaminathan and
Tayur 1998, Jayaraman et al. 1998) and consolidating by
having fewer product families, to realize economies of scale
advantages. The product families typically allow customers
more product configuration options in order to achieve a
wider product portfolio.

The effect of such a consolidation with more common
components on business performance may not be transpar-
ent in the presence of changing variability in the product
configurations. Product demand uncertainty and configura-
tion variability may interact in a manner as to render the
demand for common components highly variable and hence
suspect to inventory stock-outs and customer dissatisfaction.
20
These interactions typically tend to be complex and hard
to model analytically.

We experiment with various designs of complex Con-
figured to Order (CTO) businesses in such an environment
by estimating their performance via stochastic simulations.
Our work is motivated by a study of server products man-
ufactured by IBM where server families tend to be highly
configurable and are assembled from hundreds of compo-
nents. A product Bill of Materials from this line is typically
multi-tiered, but we shall consider a simplified product
structure with only two tiers: the finished goods and the
components that they are assembled from.

The entire supply chain for this business consists of
various stages including demand forecasting, procurement,
order processing and fulfilment processes; see Section 2.
Business policies followed at each stage determine how the
process executes and responds to changing environmental
conditions. For instance, the policy followed at the demand
forecasting stage determines how future projected demands
for finished goods and their components are obtained from
available order history information. Each process is also
associated with an environment within which it functions.
For instance, environmental assumptions for the supply
planning phase specifies the stochastic behaviour of the
suppliers, their constraints and capacities, etc.

We will be interested in evaluating the effect of control
policies put in place at three stages of this supply chain
(Section 2). We call a combination of policies chosen at
each of these stages a policy regime. The management
seeks primarily to determine a good supply chain design
(a policy regime for the supply chain) that can respond
favorably to changes in the variability of product recipes
while maintaining a diverse product portfolio. A good
control regime lets the marketing department offer customers
a wider range of products via more latitude in configuring
products with a good serviceability assurance.

Our goal in this work is to take a holistic approach
of developing insights into how the complete supply chain
performs under various control regimes and reacts to chang-
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ing product profiles variabilities. Analytical methods are
unfortunately limited to tackling only an aspect of the entire
design problem. The approaches presented by Swaminathan
and Tayur (1998) and Jayaraman et al. (1998) address how
inventory costs and customer dissatisfaction can be mini-
mized by an appropriate choice of common components.
They determine the optimal choices of pre-configured sets
of common components (they call these sets vanilla boxes)
and their associated inventory parameters that minimize
operational costs while providing better overall service to
customers than a standard mad-to-order system. Song and
Zipkin (2003) provide a good discussion on the progress
being made in developing tools to analyze models that
incorporate configuration variability as a consequence of
correlated product demands. Lu and Song (2005) provide
a recent perspective on this issue; they seek to find good
approximations to optimal component inventory stocking
policies for a system with common components and mod-
erately variable product designs.

The key novelty of our simulation-based method is that it
can quantify the dependence of the supply chain performance
on the individual policies of each stage and the integrated
process through which they work. This thus overcomes the
difficulty of estimating the system performance by separately
analyzing each sub-process in isolation.

Section 3 describes the simulation experiments per-
formed to evaluate these policies. Performance of the sup-
ply chain designs were evaluated using measures deemed
most important by the management. Highly specialized and
differentiated markets like the server business typically see
fewer customers than a more commoditized one and hence
maintaining good customer relationships is paramount. Cus-
tomers request when they would like to receive the product
that they order and are promised an order delivery date
based on the requested date and manufacturer’s projected
availability of finished goods and components. Central to
good performance is the ability to keep these promises and
deliver the orders on time. Section 3 discusses this and
other measures in detail.

Results of this study are presented and discussed in
Section 4. We compare four policy regimes and find that
the more the policy pays attention to tracking the demand
and inventory availability information of components as
it evolved over time, the better it performs when prod-
uct recipes are highly varying. Section 5 summarizes the
insights we obtain from this study and suggests certain
important future enhancements to this model that should
provide more value to this study.

2 THE SUPPLY CHAIN MODEL

The IBM server Configured to Order (CTO) supply chain
can be abstracted to a supply chain model represented in
Figure 1. The model consists of four main stages: demand
20
planning, supply planning, configuration planning and order
scheduling. Each of these stages are governed by various
policies that can be reconfigured as per the current supply
chain design being studied, and work within in a known or
preset business environment. Our aim is to determine the
effectiveness of the combination of policies being employed.

Demand Planning: This stage produces projected fu-
ture sales quantities for the products. The demand forecast
is based on the trend observed in the past business transac-
tion data and is typically modeled in weekly buckets over
a planning horizon. Our study assumes throughout that
this horizon is a quarter year (three months or 13 weeks)
in length. This forecast demand information can be at the
finished goods level or the components level. The pol-
icy within this module sets a flag that indicates forecast
requirement at the finished products level or components
level.

Negotiations with suppliers in supply planning has to
be carried out at the components level, which would thus
require planning component forecasts. The first sub-process
of the supply planning stage, the MRP process in Figure 1,
creates projected demands for components from either of
two methods. The first derives these from the forecasts of
the products by via an explosion on their Bill of Materials
(BoM). This step would indeed preserve the accuracy of the
product forecasts in the components forecasts in a situation
where the Bill of Materials is deterministic (each product
needs exactly a known number of components). However,
in a CTO world where end customers are allowed to vary
the composition of the finished good, product-component
relationships are stochastic in nature.

Historic customer ordering data can be used in the de-
mand planning phase to gather information on anticipated
usage of specific components in terms of product-component
composition distributions. This information can, for in-
stance, provide (fractional) usage rates called attach rates
of components to products. These are essentially the mean
number of components needed per product order, but can
be conditioned by other business considerations like risk,
etc. Component forecasts can be obtained in a straightfor-
ward manner by combining attach rate information with the
generated product forecasts.

This procedure may not necessarily construct compo-
nent forecasts that are as accurate as the product forecasts
they are derived from since the attach rates used are them-
selves forecast parameters. The accuracy of any component
that is common to many different products might be par-
ticularly suspect to this effect. For such components, an
alternate procedure generates their projected demand from
the historic data available on their usage in filling product
orders. Ideally one would like to use this procedure for
every component in the system, but this may not be viable
since CTO systems tend to have a large total number of
components. A practical alternative is to generate indepen-
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Figure 1: The Supply Chain Model
dent forecasts for an appropriately chosen set of components
and derive the forecasts of the other components from the
product forecasts in the MRP process.

The possible policy alternatives to be compared then
are

D1 forecasting product demands and attach rates for
each relevant component-product pairing, and

D2 forecasting product demands and demands for a
set of components independent from the product
forecasts, and attached rates for the rest.

Supply Planning: This stage encompasses three sub-
processes that are common to most CTO manufacturing envi-
ronments: Material Requirements Planning (MRP) process,
Supplier Collaboration process, and Available to Promise
(ATP) Generation process. The supply planning process is
executed by invoking these sub-processes in sequence.

The MRP process translates the product forecast infor-
mation to component-level projected demands of the entire
horizon of thirteen weeks. The required quantities of com-
ponents are either obtained from component forecasts when
these are generated independently, or otherwise computed
by performing an explosion on the Bill of Materials of
the products. The MRP Process calls an Explosion Engine
where the attach rates are set as in the demand planning
stage. Various policies can be applied to the MRP sub-
process depending on the business conditions.

The Supplier Collaboration process transmits the com-
ponent demand quantities to the suppliers and receives a
supply commitment from them to the demand request. It is
typical that for at least one of the components, the supplier
will not be able to commit the full amount requested. This
condition leads to a component shortfall which subsequently
means the supply chain is constrained and will not be able
to meet the demand forecast as planned.

Historic data suggests that supplier constraints are typ-
ically tight in the early part of the horizon, but suppliers
20
can be flexible farther out in the horizon, in that they can
plan for and meet larger component requirements if needed
by the manufacturer to fulfill delayed orders. The supplier
collaboration business environment describes the flexibil-
ity, responsiveness, and capacities of the suppliers, and the
terms, conditions, and timing of the communication process
between manufacturer and suppliers. An appropriate envi-
ronmental assumption can be to use a randomized supplier
commitment where every component supply commit has
a uniform variability around the current request with no
memory of previous commitments.

The supply commitment for the current week corre-
sponds to the actual component replenishment supplied.
The ATP Generation process seeks to determine, from the
supply commitment for the future weeks in the horizon,
the best possible availability of end-products towards sat-
isfying the demand forecast. This information plays an
important role in ensuring that customer orders are sched-
uled and handled in a timely fashion. ATP Generation is
a complex optimization problem and typically requires an
Implosion Engine. The ATP Generation sub-process can
take into consideration many attributes that include whether
exact optimal or approximate heuristic solutions should be
generated, factors like costs, revenue, penalties for delayed
availability and partial shipments, risk factors, demand pri-
orities, supplier sourcing preferences and costs, penalties
for using substitute parts, and assumptions about flexibility
in the attach rates. Each possible (reasonable) configura-
tion of attributes leads to a different implosion procedure.
We use a procedure that generates approximate solutions
from heuristics while ignoring all costs and revenues, set-
ting equal priorities for all end-product demands, sourcing
from single suppliers, applying no penalty for substitute
parts and delayed availability, and allowing no flexibility in
attach rates. This is implemented in an implosion/explosion
tool named the Supply Capability Engine.
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Many components that go into a product can be consid-
ered optional for the purpose of the implosion for a variety
of reasons. For instance, the supply of these components
are known to be non-constraining in the sense that they may
either be externally sourced in a crunch, or other similar
components may be substituted at a moderate cost. Thus,
the finished goods ATP the Implosion Engine calculates can
be optimistic. However, the availability of some compo-
nents might need be tracked along with those of the finished
goods. This might for instance be because of the critical
nature of the component to the final product (a server blade
to the final server), or because it is a commonly used by
many products (hard drives). Our system’s ATP genera-
tion process considers the following policies where ATP
information is tracked for

A1 only finished goods, conditioned on the supply of
all components,

A2 only components, and
A3 a chosen set of components and finished goods,

conditioned only on the supply of components that
are not chosen.

Components ATPs are the same as the supply commitments
elicited for the components. We shall choose the set of
independently tracked components to be the same as the
set of components forecast independently in the Demand
Planning stage.

Order Scheduling: Customers request an order de-
livery date that is typically days to weeks in the future of
the order placement date. This might be because these ex-
pensive purchases require advance planning and budgeting
on their behalf, and some products might have significant
production lead times. Each customer order is processed
and an order ship date is scheduled based on requested
delivery date and the expected availability of products or
components. Orders can be checked against various combi-
nations of components and finished goods availability. We
shall compare the following scheduling policies where order
requirements are matched against:

O1 finished goods ATP only,
O2 components ATP only, and
O3 finished goods ATP and the ATP quantities of a

chosen set of components.
This stage’s policy determines factors that influence the
promised order ship date, for instance the relative priorities
given to the product. When an order is scheduled against the
ATP, the required quantity of the product and/or components
are reserved for the particular order so that other future
customer order cannot use this availability.

System Dynamics: In the IBM server business we
study, the demand and supply planning steps are repeated
every two weeks. Thus forecasts and supplier commit-
ments are re-calibrated, and ATP information is placed in
sync with supplier commitments subject to requirements
of orders that have been scheduled and await fulfillment.
The system maintains actual inventories at the components
20
level and orders are fulfilled from these when they are
due. Component inventory replenishment orders might be
placed at the beginning of each week and are fulfilled in-
stantaneously, presumably because suppliers have produced
a batch of components in accordance with demand forecast
information available to them in the past. The orders may
be only partially filled because of the constraints faced by
supplier for that week. In these settings, replenishment or-
der sizes are typically set such that they cover the expected
demand for the component in the week ahead while taking
into account factors like backorders and risk associated with
stock-outs.

Order assembly and fulfillment processes are assumed
to be instantaneous once all the required components can be
reserved from inventory, though in practice a small (nearly
deterministic) lead time may be involved. The fulfillment
lead time can be factored into the customer’s requested
order ship date to present a more accurate model.

A constrained supply of components implies that the
component inventory may not correspond exactly to the
calculated ATP information. Other factors like the stochastic
nature of demand and order configurations contribute to this
mismatch. As a consequence, some orders cannot be fulfilled
by the promised date and have to be rescheduled to use the
fresh supply of components in the next week for its unfilled
portion. Our chief interest is in determining the incidence
of such cases.

3 SIMULATION STUDY OF MODEL

A good policy regime for the supply chain should allow
the manufacturer to offer a broad range of product choices
while simultaneously aiming to minimize the number of
disruptions of on-time order fulfillments and the cost in-
curred by the manufacturer. We propose to use stochastic
simulation to obtain estimates of performance of designs
for the supply chain model described in Section 2. In per-
forming these experiments, we seek specifically to compare
the performance of four different policy regimes listed in
Table 1.

Table 1: Policy Regimes Compared
Policy Demand ATP Order

Regime Planning Generation Scheduling
I D1 A1 O3
II D1 A1 O1
III D1 A2 O2
IV D2 A3 O3

Regime II corresponds to a situation where each stage of
the supply chain is executed at the finished goods level, while
Regime III represents a system where orders are scheduled
and processed entirely at a components level. Regimes I
and IV take an intermediary approach of scheduling by
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checking ATPs of finished goods and re-checking ATPs of
certain important components. Regime I however maintains
demand planning and ATP generation at the finished goods
level exclusively, while Regime IV goes through every step
in the supply chain with a set of components that chosen to
be independent of the finished goods information and the
rest depend on finished goods.

The simulation experiment was originally conceived and
conducted with an aim towards gaining insight into IBM
server product lines when governed by the policy regimes
listed in Table 1 under varying business conditions. These
insights are perhaps better described here in the context
of artificially generated data that allow clear understanding
and control over the business conditions. We consider a
manufacturing system that offers a product portfolio with
5 products that are constituted from 30 components. A
component is considered independent if it is present in
three or more products’ Bill of Materials; we are thus
setting highly common components aside to be forecast
and/or tracked separately.

A business may be interested in evaluating the impact
of various alternatives of product structures on their present
supply chain with an aim towards increasing the breadth
of their offerings while maintaining a high supply chain
performance. We shall study four alternate scenarios that
we create by changing two factors in the product struc-
ture. The first factor deals with component commonality
(refer Jayaraman et al. 1998 and the reference therein) by
moving from isolated product Bills of Materials towards
incorporating more common parts in them. We consider
two different sets of Bills of Materials, one with a lower
component overlap than the other. Table 2 lists the two
product compositions, specifying the index of commonal-
ity of components (the number of components that appear
in one, and higher, product Bills of Materials) for each.
The product Bills of Materials are distinct from each other
within each scenario, for instance the number 3−common
components in the Bill of Materials might vary with the
products.

Table 2: Components Common to Products
Commonality Number of components

Scenario common to products
1 2 3 4 5

Low 15 15 5
High 10 10 5 5

The second business factor compares configuration op-
tions given to customers. A product requires at most one of
each component listed in its Bill of Materials. We model the
distribution of the component requirements with indepen-
dent Bernoullis with the same probability pc that a quantity
of one is needed. In practice, significant dependencies can
be expected between the component distributions of each
2

product (and over all products), but we feel the assumption
of independence is reasonable for our purposes here. We
let pc = 0.95 and pc = 0.5 represent the low and high
product configuration variance scenarios respectively. This
implies an increase in configuration variability by a factor
of about 5.

We shall test the performance of the four chosen policy
regimes under a total of four scenarios. The IBM supply
chain managers considered following performance metrics
important:
PM1 Order Scheduling Rate: This is defined as percent-

age of customer orders that are assigned and com-
municated scheduled ship dates. Component sup-
ply constraints might very adversely affect schedul-
ing of certain orders by inducing very long delays
from the customer requested delivery date. In such
cases, managers often find that scheduling and ful-
filling such orders in an expedited manner outside
the regular supply chain may be the best in terms
of maintaining good customer relations.

PM2 On-Time Fulfillment Rate: This is the percentage
of scheduled customer orders that are fulfilled on
the date they were promised on. An inability in
fulfilling an order on its promised ship date reflects
very poorly on the supply chain and its managers,
and hence maintaining a high fulfillment rate is
considered crucial.

PM3 Order Fulfillment Delay: This depicts the percent-
age of fulfilled orders that suffered a fulfillment
delay (in weeks) from its scheduled ship date of
more than one week, which in practice is consid-
ered quite intolerable. The full delay statistics is
characterized by a distribution on integral weekly
delay values.

PM4 Total Component Inventory: This metric provides
an idea of the cost incurred by the supply chain.
We count the inventory held for all components
including those that are set aside for partially filled
delayed orders.

We use an IBM software offering, the WBI Modeler
and Simulator, to run the simulation experiments, namely
coordinating the generations of events and movements of
information entity such as customer orders through various
stages of the model. The simulator runs the model through
a duration of simulated time, which was set to 20 quarters
in this study.

The simulation model requires certain other assump-
tions to completely define the stochastic behaviour of the
supply chain. Supplier responses are modelled as a normal
random variable, with the current request as the mean and
with a uniform variability around it for each week of the
horizon, bounded above by the requested quantity. Supplier
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flexibility farther out in the horizon can be modelled with
an appropriately higher mean and variance.

Customer orders are assumed to arrive according to a
Poisson Process with a mean interarrival time λ consistent
with the forecasts generated in the demand planning stage.
Each arriving order can require one of the five possible
products with equal probability. In the test case results
presented in this paper, the product-component recipes for
each of these five products are fixed by the “High” or “Low”
business scenario from Table 2. Other interesting scenarios
with a mixture of recipes from both these scenarios can
also be studied under this framework.

Orders that are placed at time t have to be fulfilled on
or after a customer specified time in the future t + Y . The
random delay Y is modeled by the discrete distribution G

given in Table 3. All random variables in the simulation
are generated independent of each other.

Table 3: Requested Ship Date Delay Distribution
Delay (in days) 5 10 15 20

Probability 0.55 0.10 0.15 0.20

Product forecasts have to be generated every two weeks
in the demand planning phase to match the product require-
ments of this compound Poisson process. Component fore-
casts and related inventory replenishment decisions have to
be made at the MRP sub-process of the supply planning
phase, and the presence of the non-zero Y requires careful
consideration especially in setting an initial inventory in
system for a simulation of the system. In steady state,
conditions under the assumptions the expected demand for
components in each week can be derived from the Poisson
process mean and the product-component distributions. But
a simulation cannot be started off with this same inventory
requirements in each week since many of the jobs that arrive
by the first week will not need fulfillment by that week.
This would lead to inventory accumulation in the system in
the first few weeks, the effects of which might take longer
to wash off.

Fortunately, the stochastic process of order requested
ship dates (RSD) yields itself to straightforward analysis to
determine the correct component inventory requirements.
Note that the RSD process can be thought of as the output
process of an M/G/∞ queue. This is a queue with an
infinite number of servers that sees Poisson arrivals, where
each new arrival is processed by a servers for an amount of
time drawn from the distribution G introduced in Table 3.
Let N(·) represent the output of this M/G/∞ queue. So
N(t) = {Number of departures from this M/G/∞ queue
till time t}. Ross (1996), on pg. 70, shows that the process
N(·) is also a Poisson process with mean λp(t), where

p(t) =
∫ t

0
G(t − s)ds =

∫ t

0
G(y)dy. (1)
209
Here p(t) essentially represents the average fraction of
customer orders that have arrived in the system and reached
their requested ship date within time t .

Equation (1) shows how the evolution of the RSD
process can be followed to choose appropriate inventory
replenishment order values. For instance, the simulation
can be started with orders for components to satisfy λp(t7)

orders in the first week, λ(p(t14) − p(t7)) in the second
week and so on. But this might involve many cumbersome
evaluations of the p(·) function in (1), and in this case an
easier approach can be used.

Equation (1) also shows that p(t) → 1 as t → ∞.
Moreover, the rate of this convergence is exponential in
t , and the convergence is faster with a lighter tail for the
distribution G (Whitt 2002). In other words, M/G/∞
queues tend to approach steady-state behaviour fast if the
G distribution is well-behaved, as our chosen G is. In
steady-state, the rate of output of this M/G/∞ is equal to
the rate of input λ. Thus, one can allow this M/G/∞-
queue based RSD process to run first for a few weeks of
simulation time and then start the simulation of the entire
supply chain system. The MRP process bases the inventory
replenishment orders on the required order fulfillments from
this starting point, which should be close to the steady state
average of λ per our assumptions.

4 RESULTS AND DISCUSSION

Table 4 provides a comprehensive summary of the results
obtained from the simulation experiments. The results of all
the policy regimes are grouped together for each business
scenario. The table does not provide confidence intervals for
these estimates in order to keep the presentation digestible,
but we note that in all cases the variances of these estimates
are within acceptable ranges.

Scenario 1 sees the regimes perform in a manner in-
distinguishable from each other, and this can be expected
since finished goods and component requirements are almost
deterministic factors of each other. Table 4 does clearly
show that variability in the product configurations has a
much larger effect on the performance of the supply chain
system than does component commonality. In other words,
the effect of product heterogeneity and, consequently, com-
ponent commonality is muted, and this could be because
the scenarios generated from Table 2 are not sufficiently
differentiated from each other.

The second performance metric measures the percentage
of orders that were delivered at the promised date, and is
often considered most important in terms of maintaining
good customer relationships. It shows remarkable changes
for Regimes I, II and IV as the configuration variance is
increased. Regime III is not as badly affected, and this can
be attributed to its tracking the inventory positions of each
9
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Table 4: Estimated Performance of Supply Chain Model
under Various Scenarios and Policy Regimes

Policy Regimes
I II III IV

Scenario 1: Low Comp. Comm., Low Config Var.
PM1 (%) 96.00 96.19 95.99 96.13
PM2 (%) 94.20 94.80 97.93 95.25
PM3 (%) .41 .20 .03 .21
PM4 (units) 663.60 669.56 672.90 670.90
Scenario 2: Low Comp. Comm., High Config Var.
PM1 (%) 96.80 98.60 96.01 97.20
PM2 (%) 73.83 62.28 95.34 74.67
PM3 (%) 3.77 3.42 0.08 2.68
PM4 (units) 453.04 482.59 394.18 487.16
Scenario 3: High Comp. Comm., Low Config Var.
PM1 (%) 95.96 96.03 95.92 96.51
PM2 (%) 95.56 94.30 97.58 96.25
PM3 (%) .35 .37 .04 .27
PM4 (units) 830.44 823.60 821.71 831.27
Scenario 4: High Comp. Comm., High Config Var.
PM1 (%) 95.91 98.77 94.94 96.12
PM2 (%) 79.75 57.76 96.35 79.69
PM3 (%) 2.75 5.20 .09 2.92
PM4 (units) 598.19 621.14 570.14 793.26

component individually rather than taking an aggregated
view at the finished goods level as the other regimes do.

Comparing Scenarios 1 and 3 shows that while an in-
crease in component commonality does not have much effect
on its own when the variability is held low, it does com-
pound the effect of high configuration variability (Scenarios
2 and 3) on system performance.

Overall, it is reasonable to conclude that within a given
scenario, the performance numbers of Regime III are often
more favorable than the others. This is not very noticeable
in the low product configuration variability scenarios, but
the advantage is distinctive under high variability. While
Regime II does manage to schedule more orders within the
system (PM1) and thus requires less external expediting,
its schedules are often overly optimistic (PM2). This can
be attributed to the fact that Implosions in Regime I (and
Regimes II and IV) provide an optimistic view of future
finished goods capacity, while Regime III, which checks
each components availability, schedules conservatively. It
however performs in an exemplary fashion when called on
keeping its promised delivery dates, and this behaviour is
consistent over all scenarios, while Regime II for instance
can see a huge drop in its ability to keep its promises as
the configuration variability increases.

The inventory numbers in Table 4 cannot be compared
across various scenarios since the average quantity of each
component needed per order changes with the scenario.
Within each scenario, Regime II has a better overall average
210
inventory carrying requirements, and this is especially true
under high uncertainty.

Regimes I and IV clock in somewhere between the
Regimes II and III; hence, they can be considered as a good
balance between these. Regime III might be cumbersome
in implementation since it needs the capability to track the
evolution of each component separately, a daunting task in
a real world system with thousands of components. Thus,
Regime I or IV might prove to strike a better balance between
performance and ease of implementation.

5 CONCLUSIONS AND ENHANCEMENTS

Based on the preliminary evidence provided in Section 4,
a policy regime that tracks demand and availability infor-
mation of each component within the product portfolio of
the supply chain system as it evolves over time provides
the most consistent performance when faced with changing
variabilities in product compositions in a CTO supply chain
system as described in Section 2. Practical implementa-
tion considerations might often indicate that it would be
better to implement a regime that tracks only some of the
more important components while simultaneously tracking
forecasts and availability at a finished goods level.

We emphasize here that this study is very preliminary in
nature in that several important factors need to be included
to make the model more realistic. Of primary important is
the fact that the model described in this article leaves out all
cost factors. Inclusion of cost information might change the
behaviour of the model in significant ways. First, an explicit
cost metric will provide a single scalar scale to compare
the performance of each of these regimes on, which helps
better understand the value of the trade-offs each policy
regime engages in.

Second, knowledge of costs of each component and its
marginal value to each product may help better determine
the set of components that need be tracked independently in
Regimes I and IV, thus possibly bringing their performance
closer to Regime III in the high variability cases. This
will also help determine the true cost of carrying inventory
within each system.

Cost and revenue information on the products might
help device better ATP generation, order scheduling and
fulfillment procedures that could conceivably bridge the
performance gap between Regimes II and III. This can be
done for instance by introducing relative priorities between
the products ordered. Thus higher priority orders might be
better satisfied, albeit at a possible loss to the lower priority
customers.

Orders often tend to arrive more frequently towards the
end of a business quarter influenced by many factors, for
instance budgetary cycles of customers, and thus tend to
be more skewed than a homogeneous Poisson process. An
order arrival process that recognizes various time-of-week
0
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and -month effects might be a better suited model of real
world arrival processes.

Lastly, the scenarios chosen from Table 2 may not have
exhibited sufficient product homogeneity, which might ac-
count for the fact that the effect of component commonality
on the results in Table 4 is muted. The conclusions of this
study can be strengthened by considering more heteroge-
neous product recipes.
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