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ABSTRACT 

This article describes the results of one of the ten pilot pro-
grammes under the Integrated Manufacturing and Service 
Systems (IMSS) initiative pursued by the Agency for Sci-
ence, Technology and Research (A*STAR) in Singapore. 
The objective of this particular programme is to investigate 
how design, analysis, enhancement and implementation of 
critical business processes in a manufacturing and service 
network can be realised using one single simula-
tion/application framework. The overall architecture of the 
framework outlines how commercial simulation packages 
20
and web-service based business process application com-
ponents would have to be connected through a commercial 
application framework to achieve maximum leverage and 
re-usability of the applications involved. In the pilot phase 
of this programme, research issues were also addressed 
with regard to mechanisms for interoperation between 
commercial simulation packages, symbiotic interaction be-
tween simulation-based decision support components and 
physical systems, and simulation speed-up through multi-
objective optimal computing budget allocation techniques 
on a grid infrastructure. 
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1 MOTIVATION 

Today, a corporation’s operations and business processes 
are subject to permanent changes. To stay competitive, ad-
aptations and enhancements of manufacturing and service 
operations and the associated business processes need to 
take place continuously (Fine 1999). This requires ad-
vanced virtual experimentation and techniques, especially 
in highly capitalised industries where experimentation with 
the real system would be too disruptive and costly and of-
ten is not possible at all. Such techniques also have to take 
into account the specific characteristics of today’s pull-
environments in which operational execution plans are the 
result of a complex translation from frequently-changing 
customer demand into material quantities to be released 
into and moved within the manufacturing and logistics sys-
tems at pre-specified times (Lendermann et al. 2001). 
Moreover, in such fast changing business environments it 
becomes equally difficult to develop, validate and maintain 
the various models representing the manufacturing and lo-
gistics systems. 

Where operation of these manufacturing and logistics 
systems is concerned, advanced methodologies and tech-
nologies for planning, scheduling and performance predic-
tion in environments that are subject to high variability and 
non-linear dynamics with little steady state do exist but 
mainly for individual sites. However, contemporary high-
tech companies operate in global networks that often in-
volve contract manufacturers and third party logistics pro-
viders, driving the underlying systems towards mega-
networks with large risk and reward, rapid responses and 
high-speed switching where relationships are formed and 
dissolved in the context of particular jobs. Complex inter-
factory processes, possibly across enterprise boundaries, 
have become more critical and raised new operational chal-
lenges such as how to allocate lots in a wafer fab to cus-
tomer demand that is placed to a semiconductor assembly 
and test facility (which typically is geographically sepa-
rated from the wafer fab), or how to optimise the collabo-
ration between a line maintenance service company for 
commercial aircraft and a third party logistics provider to 
minimise the inventory cost for critical spare components. 
Operation of these complex manufacturing and service 
networks is still mostly accomplished through myopic, 
task-centred approaches such as local dispatching, since 
most of the planning and scheduling problems associated 
with these networks are very difficult to solve. In addition, 
when it comes to experimentation with planning and 
scheduling systems, it turns out that the associated algo-
rithms and procedures are generally modelled in a rather 
crude manner.  

Lastly, adaptations and enhancements of supply net-
work structures and business processes are often discarded 
at the design table as their implementation involves too 
much effort and the advantage would be lost by the time 
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the changes are made. One reason is that today most busi-
ness applications still follow the conventional integrative 
approach: Different subsystems (such as an ERP system 
and a scheduling application) are connected through point-
to-point interfaces; business processes are encapsulated in 
each application and are constrained by templates; changes 
can be made only by changing settings and parameters; and 
each application typically has its proprietary, closed data 
model with redundancies to other systems. Because of 
these constraints it is often not possible to actually imple-
ment changes derived from virtual experimentation and 
analysis. 

In this setting, our ultimate vision is the creation of an 
adaptive decision support framework that allows to repre-
sent with high fidelity all value-creation processes along a 
supply chain (not only operational processes such as shop-
floor or warehouse operations but also business processes 
such as planning, order management and scheduling) in a 
unified business model, improve their performance in a 
virtual experimentation testbed, and then generate and im-
plement with minimal effort and time the corresponding 
business application software for critical processes from 
the same unified model, thereby leveraging existing soft-
ware application components as much as possible. All 
critical tactical decisions for supply network management 
will be enabled through a single IT framework. An im-
mense reduction of the cycle time for business process de-
sign-analysis-enhancement-implementation can potentially 
be achieved. 

On the path towards realisation of this vision, we have 
embarked on a new, dedicated research programme to ad-
dress some of the major research issues associated with the 
above-mentioned challenges. 

Special attention is given to the specific requirements 
of two sectors, namely high-tech manufacturing (in our 
case semiconductor) and service parts supply chain sys-
tems (in our case aerospace spare components logistics) 
since they are strategically important to Singapore’s econ-
omy and our research team also has ongoing industry pro-
jects with prominent companies in these sectors. In their 
context, the term service refers to differentiated services to 
meet customers’ individual needs, superb delivery per-
formance, and rapid reaction and response to requirement 
changes.  

For the resolution of most of the operations manage-
ment issues arising from these industry projects, a primary 
focus on simulation techniques with optimisation-based 
methods playing a supporting role for specific subtasks - 
rather than the other way around - appears to be the more 
appropriate paradigm for our effort. Simulation-based 
techniques are not constrained by analytical simplifications 
and give reasonable solutions (i.e. potentially better than 
best practice observed in the respective companies) within 
reasonable time, especially after successful resolution of 
the research issues discussed in this article. 
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Note that in this research we assume that the work of 
the simulation modeller is supported by the use of Com-
mercial-off-the-shelf Simulation Packages (CSPs). These 
include packages such as Arena, AnyLogic, Simul8, etc. 
(Swain 2003). Our research focuses specifically on the 
suite of CSPs based on AutoSched AP (Brooks 2005a) and 
AutoMod (Brooks 2005b) as well as WITNESS (Lanner 
2005). 

The remainder of this article is outlined as follows: In 
Section 2 we briefly review previous work and describe the 
major technology components that will be required for the 
realisation of our vision. This is followed by an overview 
of the results that were obtained during the 6-month pilot 
phase of this research programme in Section 3. An outlook 
to the major research issues to be addressed in the full-
fledged phase of the research programme is given in Sec-
tion 4. This also includes a discussion of potential collabo-
ration opportunities. 

2 TECHNOLOGY COMPONENTS 

Distributed, interoperable and reusable decision support 
system components, comprising a combination of ad-
vanced business process application components, discrete 
event simulation technology and synchronisa-
tion/distribution middleware that enables their interopera-
tion for virtual experimentation are required for the realisa-
tion of the above-mentioned vision. 

Development of enabling distributed simulation tech-
nology for supply chain management has been pioneered 
for example by the D-SIMLAB (Decision Support for In-
tegrated Manufacturing and Logistics in Asset-Intensive 
Businesses) Research Programme at Singapore Institute of 
Manufacturing Technology (SIMTech) in collaboration 
with the Parallel and Distributed Computing Centre at 
Nanyang Technological University (Gan et al. 2000; 
Turner et al. 2001) and the Keck Virtual Factory Labora-
tory at Georgia Institute of Technology (Lendermann et al. 
2003), and also by the Manufacturing Engineering Labora-
tory at the National Institute of Standards and Technology 
(McLean and Riddick 2000) and the Simulation and Mod-
elling Group at the University of Magdeburg (Strassburger 
et al. 1999).  

We are using the High Level Architecture (HLA) as 
the mechanism for integrating federates representing sup-
ply network operations and decision-making (Kuhl et al. 
1999). Currently, the HLA (IEEE standard 1516) is emerg-
ing as a standard for Plug & Play of simulation-based deci-
sion support components for manufacturing and logistics 
systems. An international effort led by the Centre for Ap-
plied Simulation Modelling at Brunel University, UK, that 
is driving the development of standards for the interopera-
tion of simulation model components has recently been en-
dorsed by the Simulation Interoperability Standards Or-
ganization (SISO) as a standards development group, 
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namely the Commercial-off-the-shelf Simulation Package 
Interoperability Product Development Group (CSPI-PDG), 
for details refer to (Taylor et al. 2005a, Taylor et al. 
2005c). 

Terzi and Cavalieri (2004) provide a detailed review 
of the application of the High Level Architecture (HLA) 
for manufacturing and supply chain simulation. Specific 
examples of how HLA-based distributed simulation tech-
nology can be applied for decision making in Supply Chain 
Management are given in (Chong et al. 2004) and (Len-
dermann et al. 2004). 

High-fidelity virtual experimentation testbeds in which 
planning and scheduling approaches can be investigated 
and tested will allow experimentation and improvements 
that otherwise would not be possible, reduce the risk of 
transition, and ultimately enable faster technology adop-
tion. The most straightforward way to achieve an optimal 
representation of planning and scheduling processes in a 
simulation testbed is to integrate the corresponding busi-
ness process application components with the simulation. 
However, business process application components by na-
ture are designed to run in real time only but not in simula-
tion time. This can be overcome by making the business 
process application component itself compliant with dis-
crete event simulation (Lendermann et al. 2002): A repli-
cated copy of the application is incorporated into the simu-
lation model. The same piece of software can be used to 
run the business in the real world and also to represent the 
underlying procedures in the simulation world for re-
engineering and optimisation of the overall business per-
formance. Synchronisation of real time and simulation time 
can also be achieved by using the Runtime Infrastructure 
(RTI) of the High Level Architecture. A manufacturing 
application of this has been showcased by Julka et al. 
(2004). 

The degree of flexibility as required for the realisation 
of our ultimate vision can be achieved only through the use 
of web-service based business process application compo-
nents. The Service Oriented Architecture (SOA) has been 
proposed to address this need (Endrei et al. 2004), and 
web-services are one of the approaches to implement SOA 
(Gottschalk et al. 2002). Web services allow easy configu-
ration of components to create dynamic applications with 
flexible data models that can also leverage existing soft-
ware systems as much as possible (which allows gradual 
implementation and helps to avoid big-bang approaches 
for going live). This is intended to facilitate a significant 
reduction of the overall time and effort for the creation of a 
software application from a business model as well as for 
reconfiguration and implementation of the application 
every time the model changes. 

A simulation testbed for virtual experimentation that is 
totally integrated with a business application can be further 
developed into a symbiotic system that interacts with the 
business application in a mutually beneficial way 
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(Dagstuhl 2002). It is highly adaptive in a sense that the 
simulation system not only performs what-if experiments 
that are used to enhance the physical system, but also ac-
cepts and responds to data from the physical system. The 
physical system benefits from the optimised performance 
that is obtained from the analysis of simulation experi-
ments. In turn, the simulation system benefits from the 
continuous supply of the latest input data and the automatic 
validation of its outputs. To achieve this, software agent 
technology can play a key role in monitoring, coordination 
and control of symbiotic simulation systems. 

3 RESEARCH ACHIEVEMENTS 

The achievements resulting from the 6-month pilot phase 
of this programme are summarised in the following sec-
tions. 

3.1 Description and Methodologies 

Arising from the above-described vision, the following 
specific research challenges were addressed during the pi-
lot phase of this programme. 

3.1.1 Standardised Representation of Entities across 
CSP-Based Simulation Models for Reference 
Model Definition 

This involves (i) the development of a generic interface be-
tween CSPs and the HLA RTI, making use of modelling 
standards currently being developed within the CSPI-PDG, 
(ii) a specific implementation for AutoSched AP, a com-
monly used CSP for wafer fabs, and (iii) experimentation 
with different interoperation mechanisms based on inter 
fab material flow scenarios. 

3.1.2 Use of a Computer Grid Infrastructure for 
Complex Simulation Analysis Tasks 

This involves the prototyping of a distributed grid-based 
virtual infrastructure for concurrent execution of simula-
tion scenarios. 

3.1.3 Synergetic Interaction of a Simulation Model 
with the Underlying Physical System 

This involves (i) exploration of the use of a symbiotic 
simulation system to improve the maintenance and adapta-
tion of manufacturing network simulation models and pro-
vide decision support to manage changes in the system, 
and the investigation of how software agent technology can 
play a key role in monitoring, coordination and control, 
and (ii) demonstration of feasibility through a case study of 
a semiconductor backend manufacturing system. 
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3.1.4 Enhancement of Simulation Analysis Tasks 
through Optimisation Techniques 

This involves (i) investigation of Optimal Computing 
Budget Allocation techniques to speed up simulation opti-
misation through a simulation case study based on an on-
going project in the aerospace spare component logistics 
domain, and (ii) subsequent analysis of two specific prob-
lems: determining optimal inventory levels and finding in-
ventory policies for differentiated service levels. Given a 
set of design alternatives with multiple performance meas-
ures, the problem is to find the non-dominated set of de-
signs by running simulation experiments. 

3.1.5 Re-Use of Business Applications in a Simulation 
Environment through a commercially 
established Application Framework 

This comprises development of a framework architecture 
that integrates simulation model components and web-
service based business process application components 
through the IBM Websphere Business Integration (WBI) 
suite and definition of a sample process based on an aero-
space spare component allocation process. 

3.2 Results 

The detailed results are summarised in the following sec-
tions. More details can be found in the respective refer-
ences given in each section. 

3.2.1 Synchronised Interoperation of Simulation 
Model Components 

Using a defined set of interfaces, CSPI-PDG reference 
model type I (asynchronous entity transfer) has been im-
plemented on a COTS Simulation Package Emulator 
(CSPE). The CSPE is designed to investigate the interfaces 
between CSPs and the HLA RTI and to benchmark alterna-
tive interoperability solutions. By adding new features, the 
CSPE is not only able to support the creation of standalone 
models (as provided by current CSPs) but also distributed 
models. Further details, including an evaluation of the 
CSPE, can be found in (Wang et al. 2005b; Taylor et al. 
2005b). 

For wafer fab models that previously had been investi-
gated by SIMTech and Chartered Semiconductor Manufac-
turing using a simple C++ simulator (Lendermann et al. 
2004), interoperation has now been achieved for the corre-
sponding AutoSched AP models. The interoperation was 
implemented using a middleware approach that does not 
require the modellers to be involved in the technical details 
of time synchronisation and information exchange among 
simulation federates (interoperability). Modellers can still 
build their model in the same way as they have been doing. 
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The only additional task that they need to do now is to de-
fine the situation at which lots are moved from one factory 
to another. The rest (how information is sent and received, 
how time is synchronised) is transparent from the model-
lers. Further details are described in (Gan et al. 2005). 
Through this experience, we have identified features that 
are required to realise Plug & Play simulation for other 
simulation packages such as ProModel (ProModel 2005), 
WITNESS, and Arena. 

Optimistic synchronisation compliant with CSPI-PDG 
emerging standards has been enabled through a middle-
ware approach. While it is easier to apply conservative 
synchronisation for the integration of the CSP and the 
HLA, the conservative approach is heavily dependent on 
the lookahead value and leads to poor performance with 
small or zero lookahead. Conversely, the optimistic ap-
proach is less constrained and can exploit parallelism in 
situations where causality errors may occur but in fact sel-
dom occur. To release the modeller from handling the 
complex rollback procedure, a rollback controller is intro-
duced to perform these tasks on behalf of the simulation 
model. It provides the possibility to extend the interface for 
the interoperation of CSPs to include optimistic synchroni-
sation. Further details including the results of performance 
studies that were conducted are described in (Wang et al. 
2005a). 

3.2.2 Concurrent execution of virtual experimentation 
scenarios on a Grid 

A generic infrastructure that exploits the use of Grid Com-
puting techniques for both symbiotic simulations and simu-
lation optimisation has been designed. A software proto-
type that integrates with simulation optimisation uses the 
Globus Toolkit (Globus 2005) as the core middleware. A 
thin, generic and configurable client allows users to carry 
out parameter-sweep type simulations. A server component 
handles resource discovery and scheduling of jobs on the 
grid infrastructure. The client can be plugged with an op-
timisation engine on the user side and can post scenarios 
based on previous data. The framework is generic enough 
to support other discrete event simulation applications. De-
tails are described in (Julka et al. 2005). 

3.2.3 Symbiotic interaction of a decision support 
application and a physical system 

An interface between the Java JADE agent system (JADE 
2005) and a WITNESS simulation model has been devel-
oped and concurrent creation and execution of multiple 
WITNESS models has been enabled. A prototype of a 
symbiotic simulation system (where the real system is rep-
resented by a second simulation model) has been devel-
oped. A simple semiconductor backend ontology has been 
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defined and is used for the communication between a 
monitoring agent and a simulation optimisation agent.  

The feasibility of symbiotic simulation optimisation 
has been demonstrated through a mechanism that optimises 
outsourcing decisions in a highly loaded semiconductor 
backend manufacturing system. Experimental results from 
the prototype show that the symbiotic integration of simu-
lation-based optimisation with the real system can reduce 
the operational cost of the real system by controlling the 
degree of outsourcing. A software agent that monitors the 
real system constantly can trigger simulation-based optimi-
sation and use the optimisation result as control parameters 
onto the real system automatically. However, the effec-
tiveness of the control depends on how fast the optimisa-
tion result is obtained as well as the level of detail used in 
each simulation experiment. This is described in more de-
tail in (Low et al. 2005). 

3.2.4 Enhancement of simulation analysis through 
optimisation techniques 

A multi-objective optimal computing budget allocation 
(MOCBA) algorithm has been developed to allocate simu-
lation replications to the designs so that the non-dominated 
set of designs can be found with high confidence at the 
least expense in terms of simulation replications. This in-
cludes a performance index to measure how non-
dominated a design is; two types of errors to measure the 
quality of the selected Pareto set; asymptotic simulation 
replications allocation rules derived based on the La-
grangean relaxation method; and a sequential procedure to 
allocate the simulation replications. The MOCBA algo-
rithm has also been applied to two case study problems: 
Planning aircraft spare parts inventory among airports, and 
the differentiated service inventory problem. In both the 
case studies, interfaces between the MOCBA algorithm 
and the simulation models have been developed, which are 
generic enough to be applied to any other simulation mod-
els. The numerical results show that the MOCBA is able to 
provide a speedup of close of 5 times for running simula-
tions. Further details can be found in (Lee et al. 2005). 

3.2.5 Overall framework architecture 

The framework shown in Figure 1 makes use of the IBM 
Websphere Business Integration (WBI) suite as a back-
bone. It comprises of a discrete-event simulation compo-
nent and a middleware to bridge the business/operation 
logic to the simulation. It capitalises on WBI’s capability 
to integrate and monitor disparate systems easily. Through 
the use of the WBI Message Broker as the middleware, the 
framework can be extended to incorporate other software 
systems and/or components (e.g. Web service components, 
backend applications, etc.) and eliminates hard-wiring at 
each point-to-point interface. The target business applica-
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tion should preferably consist of decoupled atomic busi-
ness processes (e.g. Web service-components with self-
contained business logic) with configurable business proc-
ess flows such that simulation studies can be performed 
with ease by reconfiguring, adding or removing processes. 

The framework not only serves as an integrated deci-
sion support tool for businesses, it can also be combined 
with the WBI Monitor to transform the existing business 
application into a comprehensive, continuous process im-
provement framework. In this way, the business applica-
tion becomes a living system and evolves and grows with 
the business needs. The existing business/operational logic 
can be re-used for simulation, and new processes explored 
through simulation can be deployed directly back onto the 
live system. 
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COTS2HLA 
Adapter
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Controller

WBI Message Broker

WS Business 
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Figure 1: Framework Architecture 
 

The role of monitoring software such as the WBI 
Monitor in continuous process improvement warrants in-
creased attention at several levels. First, simulation models 
are based on statistical estimates of live system parameters, 
such as cycle time and quality. Monitoring software can 
continuously measure live system parameters and update 
relevant simulation models accordingly. Second, a business 
application is typically designed to achieve a specified set 
of performance targets. Monitoring software can detect 
shortcomings in live system performance metrics and trig-
ger adaptive improvement activities such as an optimisa-
tion algorithm or a symbiotic simulation optimisation as 
described earlier in this article. Third, optimisation algo-
rithms are typically based on simplifying assumptions 
about the live system, for reasons of efficiency. Monitoring 
software can check whether such assumptions continue to 
hold. Fourth, using business intelligence techniques, moni-
toring systems can detect new trends such as a change in 
customer preferences (Kapoor et al. 2005). Trend detection 
can trigger proactive business application redesign. 
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3.3 Novelty 

The following elements of the achievements during the pi-
lot phase of this programme can be considered novel: 

 
• Plug & Play of simulation model components de-

veloped with a COTS simulation package and 
their efficient interoperation in a standardised 
manner. 

• Application of the Grid Computing technology to 
execute simulation models based on programming 
languages such as C++ and Java and seamless in-
tegration with optimisation algorithms, in effect 
making the entire process of simulation experi-
mentation automated, and making the solution 
scalable to support more complex and time-
consuming simulations. 

• Use of an agent-based approach for updating, 
validating and tuning of a simulation system with 
regard to a real world system based on simulation-
based optimisation. 

• Enhancement of established Optimal Computing 
Budget Allocation methods to solve multi-
objective optimisation problems. 

• A framework architecture enabling maximum re-
usability of decision making application compo-
nents in a virtual experimentation environment. 

4 FUTURE CHALLENGES 

Many important research issues have not yet been ad-
dressed during the pilot phase of this programme; however, 
it is our intention to investigate them in more detail in our 
future work. 

4.1 CSP Interoperation 

Where interoperation of COTS simulation packages is 
concerned, major challenges arise from the fact that differ-
ent CSPs incorporate different ways to advance time. At 
the same time, most CSPs do not provide extensions or 
APIs to access internal states of the simulation needed to 
support interoperability.  

To facilitate this, the modelling process has to be re-
fined to the extent that intervention on the interoperation 
layer is not required any more, and high level tools need to 
be developed. To enable execution of realistic, large-scale 
material and information flow scenarios, more efficient 
synchronisation mechanisms (e.g., through more advanced 
optimistic protocols) for the interoperation of CSPs will 
also be investigated.  

As part of the CSPI PDG effort, standards will also be 
established for interactions involving type II-VI reference 
models (Synchronous Entity Passing with Bounded Buff-
ers, Shared Resources, Shared Events, Shared Data Struc-
7
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tures, Shared Conveyors) as well as for the required data 
exchange specifications and the corresponding interopera-
bility frameworks. 

4.2 Grid Simulation 

The present implementation of the grid infrastructure for 
virtual experimentation can be used only by the optimiser 
because the optimiser and associated optimisation pro-
grams are written in C++ and can be ported to the Linux 
platform. Cross-platform execution of programs which is 
essentially required in the case of the symbiotic simulation 
system (the symbiotic system is developed on Windows 
and uses CSPs available for Windows only) is still un-
available. Also, gridifying CSPs which are executed 
through interactive graphical user interfaces will be revis-
ited since human interaction needs to be appropriately rep-
resented in the simulation. In future, certain standards need 
to be developed for vendors to include in the packages for 
easy integration with a grid infrastructure. Also, appropri-
ate methods for collaborative sharing of distributed data, 
data/functional decomposition, dynamic resource discov-
ery, decentralised scheduling and task management will be 
investigated in more detail. 

4.3 Symbiotic Simulation 

In the area of symbiotic simulation the most important re-
search issues to be addressed can be classified into two ar-
eas. 

 
1. Target metrics will be identified based on specific 

industrial domains, comprising both metrics that 
measure divergence of a live business process 
from the simulation model and metrics that define 
successful improvement of business processes, as 
well as their interactions with each other. How the 
respective metrics can be measured and moni-
tored, how frequently to do this, how to filter and 
analyse the available data, what (additional) data 
and resources are required, what kind of statistical 
analysis might be needed, will be investigated as 
well. The conditions under which improvement in 
metrics achieved in the simulation analysis may 
not be observed in the subsequently implemented 
live process will also be studied. This includes in-
vestigation of methods to determine whether such 
discrepancies are due to insufficient fidelity of the 
simulation model used for the analysis or changes 
in the real system occurring before the results of 
the what-if analysis could be implemented. Solu-
tions to how such discrepancies could be over-
come will be proposed. 

2. Where process improvement methodologies are 
concerned, we will investigate to what extent a 
205
Continuous Process Improvement cycle (monitor-
ing, model adaptation and validation, simulation 
analysis and implementation) needs to be interac-
tive or can be automated. The question how DOE 
(Design of Experiments) methods and simulation 
optimisation techniques can help maximise the ef-
ficiency of the simulation analysis part will also 
be addressed. 

4.4 Simulation Optimisation 

The current MOCBA method has been developed based on 
the assumption that the set of possible alternative designs 
is finite and relatively small. When the set of possible de-
signs is infinite or finite but very large, a more sophisti-
cated search procedure (using techniques such as Genetic 
Algorithms, Simulated Annealing, Nested Partitions, etc.) 
is required to explore the design space to find the promis-
ing design alternatives. This search method needs to be 
combined with the MOCBA technique or other ranking 
and selection procedures to find the non-dominated set of 
designs. In addition, more work needs to be done regarding 
interfaces and communications between the MOCBA pro-
cedure and the simulation packages in a grid computing 
environment in the real implementation phase. 

4.5 Overall Framework Realisation 

For the realisation of the overall framework specific issues 
will be addressed regarding (i) time synchronisation and 
management as well as state sharing/synchronisation be-
tween the simulation and the business process application 
components, (ii) load sharing and mechanisms to reduce 
latency between the simulation and the business process 
application components, (iii) fault handling, notification 
and recovery between the simulation and the business pro-
cess application components, and (iv) feasibility of using 
WBI Monitor for symbiotic simulation systems. 

4.6 Standards 

Finally, the Plug & Play requirements for the design of to-
day’s manufacturing and logistics systems raise the ques-
tion how standards can play their part to facilitate this: 
Many initiatives such as MDA™ (Model-Driven Architec-
ture), RM-ODP (Reference Model for Open Distributed 
Processing), DEVS (Discrete Event Systems Specifica-
tion), OASIS (Organization for the Advancement of Struc-
tured Information Standards) and CSPI-PDG (see Section 
2) have been and are being pursued to develop the required 
information technology standards. But standardisation also 
needs to takes place on the application level that would re-
sult in archived, re-usable simulation model components 
that require much less customisation effort. 
8
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4.7 Collaboration Opportunities 

Where industry collaboration is concerned each of the re-
search issues addressed in this programme - as explained in 
Section 1 - has been directly related to potential application 
scenarios arising from industry projects with prominent 
companies in Singapore: 

Interoperation of AutoSched AP wafer fab models is 
currently under discussion with two semiconductor foun-
dries. A roadmap towards a symbiotic simulation system is 
being developed with another semiconductor foundry. In-
tegration of business process application components with 
a simulation package will be applied for the first time in 
the development of a Virtual Warehouse Management sys-
tem for aerospace spare component management which 
will also require a grid infrastructure for concurrent simu-
lation analysis. The grid infrastructure can also be used for 
simulation-intensive analysis exercises in the semiconduc-
tor domain. The MOCBA techniques are applicable for 
simulation analysis exercises in both the semiconductor 
and the aerospace domain. 

To fully illustrate the potential of this grid computing 
technology, another future collaborator will be the National 
Grid Office (NGO) in Singapore. NGO has facilitated in 
the establishment of a national cyber-infrastructure (NGPP 
2005) linking compute resources from the universities and 
research institutions. The grid-based virtual experimenta-
tion prototype could be deployed on the pilot platform to 
fully appreciate the issues as well as benefits of using an 
operational grid infrastructure. 
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