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ABSTRACT 

Robust parameter design experiments lead to products and 
processes that are insensitive to the effects of noise.  These 
experiments reveal the interaction of the noise sources with 
design or control factors usually allowing creation of prod-
ucts that are relatively immune to noise.  Finding truly op-
timal settings for design factors depends on the noise in the 
lab being representative of the actual operating environ-
ment and assumes potential product users all see the same 
noise conditions.  This paper shows how basic design solu-
tions can be shaped when multiple populations see differ-
ent noise conditions and when typical assumptions on 
noise sources are violated. 

1 INTRODUCTION 

Taguchi is generally credited with making robust design a 
standard product or process design practice in many indus-
tries.  See Box (1988) and Phadke (1989) for a critique and 
explanation of Taguchi’s contributions.  The general idea 
is to use an experiment to find design factor settings that 
make a product insensitive to the effects of noise.  The re-
sponse or objective measure is some physical characteristic 
that is closely related to the primary function of the product 
or process.  For example, brake torque or stopping distance 
might be the response that is measured to judge the quality 
of a brake system design. 

Noise can be internal, external, or caused by unit-to-
unit variation in product components.  Wear and tear over 
the life of the product (e.g. worn vs. new brake pads) is an 
example of internal noise.  External noises are typically 
customer usage patterns (heavy application of brakes) and 
environmental conditions (wet road and brake pads). 

A robust parameter design experiment controls noise 
levels in a laboratory setting to explore and measure their 
relation to settings of the design factors.  In actual operation 
by customers or users, noise levels must be viewed as ran-
dom variables.  When design factor levels can be found that 
give consistent performance (i.e., low response variance 
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over all noise conditions), the parameter design experiment 
has been successful.  When the product gets into the hands 
of users the noise sources will not be controlled.  In princi-
ple, the intelligent choice of design parameters has made the 
product immune to the effect of noise.  The obvious benefit 
is that no extra cost (beyond the experiment) is needed to 
control or compensate for noise. 

Since its introduction and popularization by Taguchi, 
parameter design has evolved and been incorporated with 
some modification as a mainstream statistical tool.  Nair 
(1992) is a panel discussion of parameter design that in-
cludes several points of view and approaches to parameter 
design.  One principal modification is a move away from 
Taguchi’s use of signal to noise ratio and a move toward a 
response function model (RFM) approach.  The RFM is a 
direct model of the quality characteristic (response) of in-
terest in terms of the design and noise factors.  The primary 
objective remains minimizing the variance of the response 
with respect to the noise factors.  See Miller (2002) or 
Miller and Wu (1996) for good discussions of the RFM 
approach and comparisons to Taguchi’s original S/N ratio 
approach to parameter design. 

The RFM is based on a designed experiment – often a 
two-level fractional factorial of some kind.  That is the 
context for this paper.  The issue we focus on is the prob-
lem of setting noise levels for the experiment.  There are 
two points to be made here.  First, relative levels of various 
noise factors may be different across the population of in-
tended users.  Typical experiments view users as a single 
population and select noise levels accordingly.  Second, 
good analysis ought to keep in mind uncertainty in esti-
mates of the noise distribution parameters.  In effect, we 
ought to employ a sensitivity analysis.  Simulation in con-
junction with response surface modeling is one way to do 
this sensitivity analysis. 

2 DESCRIPTION OF THE PROBLEM 

Response function methods create a predictive model for 
the response (quality characteristic to be measured) as a 
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function of control and noise factors.  Noise factors are ex-
plored in the same experimental design array (usually 
called a combined array) as the control factors.  If we set 
up an experiment of the proper resolution, we can get a di-
rect estimate of the main effect of the noise factors and 
also estimate noise factor interactions with the control fac-
tors.  See Borkowski (1997) for a discussion of possible 
experimental designs.  The response model to be estimated 
is shown in equation (1), where the xi represent design fac-
tors and the zj represent noise factors.   
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The function f() represents the main effect of control 

factors on the response.  The parameters δj and γij are to be 
estimated from the experiment and will determine control 
factor settings that minimize the effects of the noise vari-
ables – the zj. 

A transmitted variance model (i.e., propagation of er-
ror) is used to derive control factor settings that minimize 
response variance based on the estimates of the coefficients 
in the model.  This optimization might include constraints 
on factor settings and minimization of variance subject to a 
constraint on acceptable mean response, for instance.  This 
could be expressed as in Problem P(s) below. 
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In P(s) the constraints on the xi (design factor settings) 

might represent a minimum acceptable value for the re-
sponse, limits on the ranges of the xi, or mandatory rela-
tions between the xi.  The objective function represents 
varz(y) – variance of the response with respect to the noise 
sources.  Although the levels of noise factors used in the 
experiment are not crucial to the estimates of the δ and γ 
coefficients, the minimization is not meaningful unless 
these levels are representative of the noise one encounters 
in the real world, e.g., do all users see the same distribution 
of noise, and is the effect of individual noise factors on the 
response linear.  Solution to the quadratic problem in P(s) is 
straightforward from an optimization viewpoint.. 
20
To illustrate the procedure consider a case with three 
noise and three design parameters.  Suppose the matrix in 
Table 1 represents the δ and γ coefficients estimated from a 
factorial experiment.  The values shown directly below the 
xi represent the optimal solution for the given matrix.  Note 
two points.  First, if there were no off-diagonal elements, 
then each control factor setting for [x1, x2, x3], could be 
used to neutralize a particular noise source, i.e. if 
Gamma(Z2,X1) were zero, the optimal solution by inspec-
tion is x1 = 1, x2 = -1, x3 = -1.  Here ‘neutralize’ means to 
minimize the variance which is the objective function of 
problem P(s). 

 
Table 1:  Example of Main (Z) and Interaction (Z by X) 

Coefficients 
   X1 X2 X3 
  γ(i,j) .735 -1.00 -1.00 

δ1 3.0 Z1 -3.0 0.0 0.0 
δ2 3.0 Z2 3.0 3.0 0.0 
δ3 6.0 Z3 0.0 0.0 6.0 

 
Second, estimates of Delta1 and Gamma(1,1) can be 

accurate relative to each other regardless of whether the Z1 
noise levels used in the experiment are totally representa-
tive of the real world.  But when no set of design values 
exists that can totally neutralize noise, the best solution 
does depend on the relative magnitude of the noise sources.  
Essentially, when compromises must be made, it is critical 
to know the real variability users will see from each noise 
source – how else to minimize their effects.   

It is also very important that the response varies line-
arly with respect to the noise factor as this is an assumption 
of the response function model approach.  Further, if dis-
tinct segments of the population see different noise distri-
butions (e.g. hot vs. cold weather or low altitude vs. high 
altitude customers) not everyone receives the same benefit.  
Though you can minimize aggregate variability, it may be 
interesting to know the effect on the various customer 
populations to see if good compromises exist.. 

These considerations highlight the problem of uncer-
tainty in the estimate of the range (variance) of each of the 
noise factors.  Such estimates are often done without bene-
fit of rigorous study or dedicated experiment.  In spite of 
uncertainty in variance estimates or multiple population 
segments, some benefit in variance reduction is to be ex-
pected from robust design.  But perhaps the improvement 
can be increased by studying the sensitivities involved.  
This prompts the construction of a Monte-Carlo experi-
ment as a framework for a variety of purposes all related to 
making the robust design process itself more robust. 

3 TWO CONSTRUCTED EXAMPLES 

Implementing correlations in the Monte-Carlo experiment is 
not difficult, but we focus on a simple scenario.  As a simpli-
21
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fying assumption then, let the noise factors be uncorrelated.  
Let the vector of δ and matrix of γ coefficients be as in Table 
2.  In practice these coefficients would have been estimated 
from an experiment as described in the previous section.  
For specificity, assume it was a fractional factorial experi-
ment in the X (design) and Z (noise) factors. 

In example one, we assume that noise factor two has a 
nonlinear response beyond the range (+/- σ) used in the 
original experiment.  In the second example we use the same 
set of coefficients in Table 2 and consider a population com-
posed of two distinct sets of users, each of which sees a dif-
ferent set of variances for the first two noise factors. 

 
Table 2:  Coefficients for Examples One and Two 

  γ(i,j) X1 X2 X3 
δ1 2.0 Z1 -0.5 0.6 0.0 
δ2 2.0 Z2 0.5 0.4 0.0 
δ3 2.0 Z3 0.0 0.0 2.0 

 
In examples one and two we use Arena to simulate the 

true state of affairs – some nonlinear behavior of the noise 
factors beyond the range used in the factorial experiment, 
and two distinct populations of users. Response surface 
explorations use a two variable central composite design 
represented in Arena’s Project Analyzer.  Optimal settings 
for x1 and x2 are confirmed using OptQuest.  The optimal 
settings for x3 is obviously x3 = -1 and that variable is 
omitted from the response surface.   

Note that in this example there are no settings for x1 
and x2 in the experimental region that can completely neu-
tralize the effects of noise.  Good settings can reduce noise, 
however.  You can see this by plugging in the values for δ 
and γ into problem P(s) and experimenting with different 
choices for the design variables – the xi. 

The Arena model itself is very simple.  In example 
two, entities from each population are created and a re-
sponse for each entity is estimated.  That response includes 
draws of random variables for each of the noise distribu-
tions being used.  No restriction is imposed on the form of 
these distributions.  A separate response surface is esti-
mated for each population in terms of mean response and 
different measures of variability captured across the enti-
ties.  We can then look at tradeoffs in design factor settings 
which lead to acceptable solutions for both populations.   

In example one, the diminishing effect of noise on re-
sponse is simulated by a conditional choice of the δ coeffi-
cient values – conditioned on the random variable repre-
senting that noise source.  This serves to capture the effect 
of the nonlinear relation of noise on response that went un-
recognized in the original factorial experiment. 

3.1 Example One – Nonlinear Behavior of Response 
over Noise Source Two (Z2) 

In the Arena model the noise variables are drawn from a 
standard normal distribution.  The physical robust design 
20
experiment would use fixed noise values of +/- σ.  The 
numerical value of σ would be an estimate, perhaps based 
on some preliminary or previous experiment.  This would 
be a standard robust design approach.  In the Monte-Carlo 
experiment nonlinearity is introduced by changing the co-
efficient (δ2 = 2) of the noise variable Z2.  Under linear be-
havior this coefficient would be constant regardless of the 
value of Z2.  Here we impose possible breakpoints at +/- 
σ.   Mimicking a sort of diminishing response, δ2 = 3 for 
Z2 < –σ and δ2 = 1 for Z2 > +σ.  So in any Monte-Carlo 
trial for the response, a test is made to check the value of 
the second noise variable and the δ coefficient is adjusted. 

Four cases are considered:  no breakpoints (linear be-
havior), breakpoints both above and below, breakpoint 
above, and breakpoint below.  Comparison of the cases is 
shown here in terms of overlapping contour plots -- mini-
mum overlapping maximum response (Figures 1 and 2) 
and average response overlapping standard deviation of re-
sponse (Figures 3 and 4).  The idea is that acceptable per-
formance may require a combination of conditions to be 
met.  Jointly acceptable values are in distinctly different 
regions depending on whether breakpoints exist. 
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Figure 1:  Acceptable Response Ranges with No Break-
points 
 

The non-shaded region on each plot represents accept-
able minimum and maximum response for the system be-
ing designed.  Acceptable ranges are defined identically for 
figure 1 vs. figure 2 and for figure 3 vs. figure 4.  The non-
shaded regions are substantially different, however. 

Figures 3 and 4 illustrate a similar point regarding ac-
ceptable ranges for the mean and the standard deviation of 
response.   Although the definition of acceptable ranges 
remains the same in both figures, the region that satisfies 
these definitions depends critically on the behavior beyond 
the +/- σ points. 
22
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Figure 2:  Acceptable Response Ranges with Upper Break-
point Defined. 
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Figure 3:  Acceptable Ranges for Mean and Standard De-
viation of Response with No Breakpoints 
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Figure 4:  Acceptable Ranges for Mean and Standard De-
viation of Response with Lower Breakpoint 
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These figures illustrate the point that what happens be-
yond the +/- σ points affects how the product would operate 
in the customer environment.  A simulation to test the so-
lution against various possibilities augments the benefits and 
knowledge gained from the original experiment. 

3.2 Example Two – Multiple Populations 

Here we assume that two separate subpopulations exist.  
We refer to these as population one and two.  Each popula-
tion is characterized by the noise factor variance it will ac-
tually encounter in operation, i.e., outside the lab.  We look 
at the behavior of each population and compare it to aggre-
gate behavior using response surface models. 

Both populations share the same set of design factor 
values and model coefficients.  These would have been es-
timated in the original robust design experiment.  These 
values are shown in Table 3.  Somewhere in the design re-
gion are the values that minimize aggregate variance, i.e. if 
we treat this as one homogeneous population.  Here we as-
sume that population one and two each represent equal 
slices of the overall population.  Equal numbers of popula-
tion one and two entities are created in the Monte-Carlo 
experiment.  Both populations see identical variance on 
noise factor three (Z3), but a different variance on the first 
two noise factors (Z1 and Z2). 

 
Table 3:  Variance Experienced by Population Group 

  Z1 Z2 Z3 
P1 3.0 1.0 2.0 
P2 1.0 3.0 2.0 

 
In this case the point being made is best illustrated by 

a trio of contour plots that represent the standard deviation 
of response for the individual populations and for the ag-
gregate population.  Contours for average response are un-
remarkable and reflect a gradient in the X1 direction for 
both populations – large main effect of the X1 design fac-
tor on mean response.  These are not shown here. 

In a typical robust design application one would try to 
minimize variance over the feasible design region while 
maintaining an acceptable mean response.  Just how that is 
accomplished and how effective it will be depends on 
which set of contours you examine for the standard devia-
tion.  Certainly the perspective is different for each popula-
tion and an alternative to using the contours for the joint or 
overall population is to consider these contours for the in-
dividual populations. 

In this example there are no settings for X1C and X2C 
that will entirely zero out the variance of the response.  Gen-
erally speaking, population one favors decreasing X2C and 
increasing X1C to reduce response variability.  This choice 
follows from the relative size of the variances seen by that 
population (variance of Z1 vs. variance of Z2) and from the 
3



Kuhl and Steiger 

 
particular δ and γ coefficients used in this example.  The 
same δ and γ coefficients apply to population two, but the 
experienced variances are not the same – see Table 3.  Thus, 
population two favors increasing X2C and decreasing X1C. 

 

 
 
Figure 5:  Contours for Subpopulation One Standard De-
viation of Response 
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Figure 6:  Contours for Subpopulation Two Standard De-
viation of Response 
 

Figure 7 shows the response surface that would be es-
timated if both populations are combined and treated as 
one undifferentiated population.  This solution favors 
smaller values of X1C and X2C.  The compromise hides 
some useful information on the particulars for the two 
populations.  The search for a good operating point could 
consider the average response, as well as the separate mod-
els of standard deviation for both populations. 

4 DISCUSSION AND CONCLUSIONS 

Robust design searches for parameter settings that make 
products and processes immune to noise sources.  It is an 
opportunity to guarantee consistent performance, possibly 
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Figure 7:  Combined Population Contours for Experienced 
Variation 
 
at little or no extra cost.  Robust design looks for interac-
tions between noise sources and design factors.  Advanta-
geous settings of design factors neutralize the effect of 
noise. 

The wild card in this methodology is that noise 
sources will not be under controlled laboratory conditions 
in the user environment.  If extensive experiments to model 
noise are not to be done and if noise sources are not thor-
oughly understood, then sensitivity analysis ought to look 
at alternate models. 

Simulation can remove some of the assumptions 
needed in an analytic approach to optimizing design over 
noise.  Two examples are shown here.  The first looks at 
what happens beyond the noise values used in the original 
design experiment, the second looks at what happens when 
the overall population has some distinct subpopulations. 

This is not the end of the possibilities.  Other interest-
ing cases that could be examined are interactions among 
the noise variables and different distributions for the noise 
sources.  Even a simple sensitivity analysis on misspecifi-
cation of the +/- σ points for each noise source is useful.  
All of these excursions can be built into a single Monte-
Carlo simulation model which centers on the parameters 
estimated in the original robust design physical experi-
ment. 

In the cases reviewed here, a look at multiple popula-
tions reveals behavior very different than the aggregate.  
Subpopulations might be expected to exist when noise fac-
tors represent environmental conditions, for instance.  The 
more detailed model can reveal whether different versions 
of the product or operating instructions are necessary, or 
whether a single version can accommodate all users.  The 
first example looks at how the solutions are affected by 
more complicated behavior, e.g., nonlinearity, outside the 
limits of the laboratory experiment. 

A simulation model represents an inexpensive way to 
do this sensitivity analysis.  It can answer the question of 
24
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how robust a design is with respect to the specification of 
the factors in the robust design experiment.  Considering 
the expense of a physical experiment the simulation repre-
sents a flexible, straightforward way to do sensitivity 
analysis.  Future work will lead to development of a more 
general test bed for the Monte-Carlo experiment. 
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