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ABSTRACT 

Simulation and optimization techniques can provide De-
sign for Six Sigma (DFSS) practitioners with reduced reli-
ance on physical prototypes, rapid time-to-market, minimal 
defects and post-design rework.  These advantages lead to 
quantifiable benefits within the product development life-
cycle, in terms of time and cost.  Through one case study, 
this paper will provide Six Sigma, Process Excellence and 
Lean practitioners with the rationale for spreadsheet simu-
lation and optimization in DFSS initiatives.  Discussion 
topics include the role of simulation and optimization in 
the DMADV methodology, disadvantages of not quantify-
ing uncertainty in DFSS projects, differences between de-
terministic and stochastic optimization, and tradeoff con-
siderations when running optimizations.  Practical 
techniques for efficiently identifying robust, high quality 
solutions are demonstrated through the use of Monte Carlo 
simulation and optimization. 

1 INTRODUCTION 

What is quality? From the customer perspective, product at-
tributes that successfully fulfill their wants (e.g., function, 
features, colors and designs) would define quality.  This is 
termed Customer Quality. From a manufacturer perspective, 
quality is the elimination of problems customers do not want 
(e.g., defects, failures, noise, vibration, unwanted phenom-
ena, etc).  This is termed Engineered Quality.  Failure to 
consider both kinds of quality often leads to an unsuccessful 
product.  Current research shows that about 45% of devel-
opment resources result in killed or financially failed prod-
ucts (Brue and Launsby 2003), for reasons ranging from in-
adequate market analysis, to higher than anticipated costs, 
poor timing of introduction or quality production problems. 

Failure can occur because of problems at any point in 
the product development life cycle (research, design, pro-
duction, customer delivery). Yet most current Six Sigma 
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efforts concentrate on the quality aspects of the production 
and customer delivery phases, where defects are easy to 
see, but costly to fix.  Applying Six Sigma methods in the 
earlier phases of design and prototyping, where defects are 
harder to predict, but easier to fix, is the intent of the De-
sign for Six Sigma (DFSS) methodology.  This methodol-
ogy has defined phases (Define, Measure, Analyze, De-
sign, Validate) that many abbreviate as DMADV.  DFSS in 
the planning stages of product development can save an 
estimated 15% on costs in later operations (Brue and 
Launsby 2003). 

In this paper, we will explore how simulation and op-
timization can be integrated into the DFSS methodology to 
increase product development opportunities.  Better prod-
uct development yields many benefits, from faster time-to-
market, higher quality, lower costs and more efficient pro-
duction. 

This paper is divided into two parts.  The first section 
covers Monte Carlo simulation, using a practical case 
study to demonstrate the effectiveness of simulation as a 
DFSS tool.  The second section addresses optimization.  
We reprise the case study from the simulation overview to 
outline optimization’s role and effectiveness as a DFSS 
tool. 

2 MODELS AND SIMULATION 

Let’s start with two definitions. 
Definition 1    Models are an attempt to capture be-

havior and performance of business processes and prod-
ucts. 

Definition 2    Simulation is the application of models 
to predict future outcomes with both known and uncertain 
inputs. 

Models come in many different forms: 
 
• Mathematical relationships based on established 

physical principles; 
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• Regression equations derived from historical data; 
• Design of Experiments (DOE) response equations 

from measured observations; 
• General knowledge of business system or product. 
 
When one experiments with a model to measure the 

possible future behavior of a system (e.g., simulation), one 
gains insight into the nature of a process, identifies prob-
lems with system design and manage risk by making deci-
sions with a better understanding of the costs and benefits. 

One particular type of simulation, called Monte Carlo 
simulation, uses statistical sampling to approximate a solu-
tion to a problem. Stanislaw Ulam, a mathematician who 
worked on the Manhattan Project during World War II, is 
often credited with inventing this method. 

Monte Carlo simulation can be described as a com-
puter simulation of N trials where, for each trial, the algo-
rithm: 

 
• Samples input values from defined probability 

distribution functions (PDFs); 
• Applies those sampled input values to the models 

and records the output; and 
• Uses sampling statistics on the recorded output 

values to characterize the output variation (e.g., 
mean, standard deviation, fitted probability distri-
butions). 

 
The output of a Monte Carlo simulation has two im-

portant components.  First, it predicts the output variation.  
A histogram, or forecast chart, shows the full range of pos-
sible outcomes and the probability of their occurrence.  
Second, it identifies the primary variation drivers. A sensi-
tivity analysis pinpoints which few critical factors cause 
the predominance of variation in the response variable of 
interest. 

By showing the output variation and identifying the 
primary drivers, Monte Carlo simulation aids the DFSS 
process in three key areas: product development cycle 
costs, product development cycle time and quality levels.  
The use of simulation can demonstrably reduce the cost of 
iterating and building sequential physical prototypes and 
the associated test costs, not to mention the time and re-
sources expended going through design cycle iterations.  
Quality can be predicted and improved upon before mak-
ing any single prototype or implementing transactional 
process changes.  The following case study illustrates this 
conclusion. 

For our case studies, we created our models with Mi-
crosoft® Excel, and used Crystal Ball® software (an Ex-
cel-based application) from Decisioneering®, Inc. to per-
form the simulation, optimization, analysis and reporting. 
One can download the Crystal Ball models from 
<www.crystalball.com/wintersim/models.html>. 
While Excel is sufficient to view the deterministic models, 
19
one needs the Crystal Ball software version 7 or higher to 
run the simulations and optimizations. 

2.1 Case Study: Liquid Packaging Pump 

This case study demonstrates the role that simulation pro-
vides while designing a Liquid Packaging Pump.  The 
pump will draw processed fluids from a reservoir into jars 
at a consistent rate, in order to keep up with consumer de-
mand.  The approach consists of identifying the optimum 
Flow Rate and allowable variation (upper and lower speci-
fication limits, or USL and LSL, respectively).  Then, we 
will use known flow equations with Monte Carlo simula-
tion on the first-cut design to determine the Flow Rate 
Mean Response, the Flow Rate Variation (Standard Devia-
tion), the Flow Rate Defect Rate and the Design Parame-
ters that most influence variation. There is a choice of nine 
available pump models and nine backflow valve models, 
each with its own cost and mechanical parameters. If one 
picks motor option number 3 and valve option number 9, 
what would be the estimated quality defect rate and part 
cost? 

With the known data, we could build a physical proto-
type, measure and analyze the flow rates over a number of 
experiments and, through several iterations, finalize the 
pump design.  This approach takes both time and money.  
Instead, we will create a virtual prototype (the model in 
Excel) and approximate the experiments in a fraction of the 
time with Monte Carlo simulation. Note that while Figure 
1 shows a partial screen shot of the Excel model, it is 
highly recommended to download the model to view all 
the equations. 

Marketing and Production considerations developed in 
the Design phase determine the acceptable range of flow 
rates: 

 
1. How many units need to be produced daily to 

meet the market demand? 
2. What is the useful production time per day, based 

on plant setup and productivity estimates? 
3. What is the number of pumps per plant? 
 
From these considerations, we derive the engineering 

specification limits for Flow Rate: 
 
• LSL = 47.62 ml/sec; 
• USL = 53.57 ml/sec; 
• Target = 50.595 ml/sec. 
 
The Flow Rate equation is known: 

 

SBLRKF  ) - 2  ( π=       where 
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Figure 1: Partial Screenshot of the Fluid Pump Excel Model 
 
• F is Flow Rate (ml / sec); 
• K is a Constant; 
• R is Piston Radius (mm); 
• L is Piston Stroke Length (mm); 
• B is Backflow Valve (ml); 
• S is Motor Speed (rpm). 
 
The initial nominal values and standard deviations for 

the motor and backflow valve options were obtained from 
the potential suppliers, as well as their associated costs.  
The initial nominal values for the piston radius and stroke 
length were proposed by the designing engineers.  Known 
machining capabilities for the piston radius and stroke 
length were determined during the Measure phase.  Cost 
functions were also developed that link the raw material 
usage based on radius and length plus a term that increases 
the machining cost when requesting a smaller tolerance 
with similar capabilities (Creveling 1997). 

We then created the Excel (or deterministic) model, 
representing the above system.  If one has downloaded the 
models, use the spreadsheet titled DFSS Fluid Pump.xls.  
Figure 1 shows a partial screenshot of that same model.  
The deterministic model shows that the forecasted flow 
rate is 50.6467 ml/sec with a cost of $26.73. 

During the Analyze phase, predictions of flow rate 
variation are provided using Monte Carlo simulations. The 
input values (piston radius, stroke length, motor speed and 
backflow) are assigned probability distributions (the Nor-
mal distribution in this example), based on the initial 
nominal and standard deviations (these are termed As-
sumptions within Crystal Ball). The user then specifies the 
number of Monte Carlo trials to run at; in this case, 10,000 
trials.  For each trial, the computer algorithms select differ-
ent input values for each Assumption defined and the flow 
rate and total cost forecasts are calculated and saved.  (This 
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is equivalent to the virtual building of 10,000 prototypes.)  
(The outputs measured are termed Forecasts within Crystal 
Ball.)  The resulting plot of all 10,000 possible outcomes is 
shown in Figure 2. 

 

 
Figure 2: Flow Rate Forecast after 10,000 Trials 

 
The nominal response rate of 49.24 ml/sec is close to 

the target (50.595 ml/sec), but 9.59% will fall out of the 
spec limits.  This represents a Sigma Level of approxi-
mately 1.3. 

Next, we ran a sensitivity analysis to determine the 
major drivers of the variation. Figure 3 shows the results. 

The Piston Radius is the main driver. Can we reduce 
the standard deviation of the Radius?  The designing engi-
neers had already consulted with the machine shop and de-
termined that tighter tolerances for the radius could be 
maintained but would require additional labor (more time 
per machining operation).  The additional cost was re-
flected in the cost models.   
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Figure 3: Results of the Sensitivity Analysis 

 
Thus, reducing the standard deviation of the Piston 

Radius from 0.3333 to 0.1667 adds an extra $6.74 per part 
(total cost now of $33.47). 

Running the Monte Carlo simulation with the reduced 
radius standard deviation results in a Sigma Level increase 
to 2.0, with 2.32% out of specification. 

2.2 Case Study Conclusions 

By modeling the system in a spreadsheet and applying 
Monte Carlo simulation, we were able to keep develop-
ment time and costs low by eliminating the need to build 
physical prototypes at this stage of the project.  We were 
also able to find a solution that increased the expected 
Quality Level (although perhaps not the optimal solution, 
see section 3.1). Plus, we were able to identify which of the 
variables had the most impact on the variability of the out-
put. 

3 OPTIMIZATION 

What is optimization and when should we use it?  We can 
use optimization in our work to achieve multiple goals (ex-
ample: How can one minimize costs of production and also 
provide 6 Sigma quality levels?).  We also, quite often 
without realizing it, use optimization in our everyday lives 
(example: What’s the best time to leave the house if I want 
to miss the worst of rush hour and still be at my desk by 
8:30am?). 

Optimization, then, is an activity that aims at finding 
the best, or optimal, solution to a problem. We should use 
it when we have to weigh a decision amongst multiple ob-
jectives.  The ideal time to utilize optimization is within 
the Design phase. 

The goal of the optimization,i.e., finding the best solu-
tion, can be either single objective or multiple objective.  
To meet a single objective optimization goal, you deter-
mine a set of input values that either maximize or minimize 
a single objective function.  For example: minimize prod-
uct development cycle time, based on staffing levels. Intui-
tively, one realizes that there are many other goals that 
may conflict with the single objective approach.  There-
fore,  multiple objective optimizations become more realis-
19
tic.  For multiple objective optimizations, the goal is to de-
termine a set of input values that influence multiple 
objective functions to their target values.  An example of 
this would be to increase structural rigidity while reducing 
material usage (or reducing cost). 

In addition to goals, one will need to consider con-
straints and requirements. Constraints apply to the inputs 
over which the designer has a degree of control (these are 
termed Decision Variables within Crystal Ball). The con-
straints are feasibility concerns expressed mathematically 
as boundaries that cannot be trespassed.  Packaging dimen-
sion limits are good examples of constraints. Requirements 
are statistical goals to be achieved on the outputs (Fore-
casts) of interest.  They are limits that are expressed 
mathematically as boundaries and represent the quality 
goals needed to achieve certain Sigma levels.  For exam-
ple, the time to complete the transaction should be less 
than five minutes. 

Figure 4 provides a graphical representation of an op-
timization finding the “best” input (Xoptimum) that maxi-
mizes the output (Ymax), subject to constraints on the input 
(input must be greater than XC1 and less than XC2) and a 
minimum requirement (YR1) on the output. 

 
Figure 4: Constraints and Requirements 

 
Different software applications can be used for opti-

mization.  Some, such as Microsoft® Excel Goal Seek and 
Solver, utilize local search algorithms. In a local search, 
the optimization search in the solution space (the allowed 
input values) is initiated at one location until the optimal 
output is achieved and cannot be improved upon using the 
algorithm.  In a global search, as with OptQuest®, the op-
timization software packaged with Crystal Ball, the opti-
mization search looks over the entire solution space, re-
gardless of the initial search location. 

As an analogy, imagine mountain climbing in the 
Rocky Mountains. In a local search, if one started some-
where on Pikes Peak, one would reach the summit (the 
maximum) at 14,110 feet and then stop.  If all of the Rock-
ies were clouded in, one would surmise this is the highest 
point within the Rockies.  However, should the clouds lift 
as in a global search, the entire solution space (the Rocky 
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Mountains) would be visible and then the obvious high-
point would be Mount Elbert at 14,433 feet. 

Once one has determined whether to use local or 
global search methods, consideration is also needed for de-
terministic vs. stochastic optimization methods. A determi-
nistic optimization identifies a single set of input values 
that place the output at its optimum.  It results in an opti-
mal single-point estimate design. 

Stochastic optimization adds statistical requirements 
on the outputs. Much as simulation allows for real-world 
variation to be accounted for in calculating the initial fore-
cast (going from a single point estimate to a range of fore-
cast values), stochastic optimization allows for variation to 
be accounted for while optimizing the design. The result is 
an optimal design where the output is no longer a single-
point estimate, but rather falls within acceptable variation 
limits.  This enables the DFSS practitioner to implement 
Sigma quality level goals on any of the outputs. 

Figure 5a provides a graphical representation of a 
value for the input (Xgood), along with its natural variation 
(σx), that provides an output response that is both on target 
between the lower (YR1) and upper (YR2) requirement 
bounds, as well as results in an acceptable level of output 
variation outside those same bounds.  Contrast this with a 
value for the input value (Xbad, Figure 5b) that provides an 
output response that is near its target but does not result in 
an acceptable level of output variation.  A stochastic opti-
mization program would identify Xgood as the “best” solu-
tion. 

Typical optimization applications range from utiliza-
tion of employees for workforce planning, configuration of 
machines for production scheduling, location of facilities 
for distribution, tolerances in manufacturing design, portfo-
lio management, and many more. 

The benefits of optimization in DFSS can be grouped 
into three main areas. First, optimization lets one consider 
multiple aspects of the problem. Multiple design con-
straints are specified up front while enabling multiple goals 
and requirements. Second, one improve the product devel-
opment cycle time and cost.  One can rapidly search and 
evaluate many design possibilities with the use of auto-
mated search algorithms.  Knowledgeable decisions are 
made without having to build costly prototypes and replac-
ing expensive testing iterations with optimization itera-
tions. Third, stochastic optimization lets one include real-
world effect  of input variation and allows simultaneous 
consideration of cost, performance and reliability in de-
signing the best process or product. 
19
 
Figure 5a: Stochastic Requirement with Acceptable Output 
Variation 

 
Figure 5b: Stochastic Requirement with Unacceptable 
Output Variation 

3.1 Case Study Revisited: Liquid Packaging Pump 

To demonstrate the role of optimization within the 
DMADV phases, we revisit the Liquid Packaging Pump 
case study.  In our earlier example, we wanted to design a 
pump to provide a flow rate between specification limits, 
accounting for variation around the inputs (or Assump-
tions). We found that the initial designs and Monte Carlo 
simulation increased predicted quality levels from 1.3 to 
2.0 Sigma, but also with increased costs. 

How can the pump design be configured so that mini-
mal defects are produced for the least cost per part?  This is 
question that would need to be answered during the Design 
phase. 

First we consider relationships between design pa-
rameters and cost. Choosing a certain radius has an effect 
on costs, as does selecting a certain stroke length, motor 
speed and backflow.  The cost relationships are represented 
in the model (see section 1 for instructions on downloading 
the models). 
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The cost response is a function of: 
 

• Radius Mean (μR); 
• Radius Standard Deviation (σR); 
• Stroke Length Mean (μL); 
• Stroke Length Standard Deviation (σL); 
• Different Motor Options; 
• Different Valve Options; 
• Different cost coefficients (K) for the radius 

and length options. 
 

The resulting cost equations are: 
 

2
2

2
R1 /K  *$ RPISTONHEAD K σμ +=  

 
2

5
2
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2

R3 //K  **$ RRHOUSING KK σσμμ ++= . 
 
In setting up an optimization, one must first decide 

which variables the designer has ability to change or influ-
ence in the Design phase (termed Decision Variables).  In 
Figure 1, or in any Crystal Ball model, these variables are 
in cells colored yellow. One also identifies the range at 
which the Decision Variables can vary between (the Con-
straints).  In this example, the designing engineer deter-
mined raw stock availability with a supplier to define a 
range of piston radii and stroke lengths as possible nominal 
values, identified in Figure 6. 

 

 
Figure 6: Range of Decision Variables for Radii and 
Lengths 

 
Much as simulation picks different input values for 

each trial and saves the corresponding set of output values 
to create the forecast, optimization picks different decision 
values for each optimization run, and then runs a complete 
simulation, checks whether the results are optimal and fea-
sible (meets the statistical requirements) and, if not, 
chooses a different set of values and runs the optimization 
again. 

In our case study, we want to minimize the cost (the 
primary objective) subject to the requirement that we re-
duce the variation of the flow rate to 3 Sigma levels (i.e., 
99.73% of outcomes fall between LSL of 47.62 and USL 
of 53.57 ml/sec). 

Instead of manually (and randomly) choosing different 
combinations and noting if the next is better than the last, 
1

we let the optimization methods perform the iterations.  
Figure 7 (Performance Graph) displays the cost objective 
values as the series of optimization iterations are per-
formed.  As more iterations are performed, lower cost al-
ternatives are generated, all meeting the new 3 Sigma qual-
ity requirement. Eventually, the most promising 
configuration is identified and very little reduction in cost 
can be achieved with further iterations, resulting in a typi-
cal asymptotic behavior (“flattening out” of the Perform-
ance Graph curve).  This new optimized design resulted in 
an increase to 3 Sigma quality and a $5.48 piece price re-
duction (total cost = $28.47). 

 

Figure 7: Optimized Design for Reduced Cost and 3 Sigma 
Quality Level 

 
With just one optimization run, we discovered a bal-

ance with the right combination of decision variables that 
lets us pay less and have a higher Sigma Level than when 
we finished the earlier case study on simulation (2 Sigma 
and $33.47 vs. 3 Sigma and $28.48). 

We can also quickly consider other designs. What if 
we wanted to achieve a 4-Sigma performance and mini-
mize costs?  Without having to build a prototype, we sim-
ply change the requirements in the software and run the op-
timization again.  This time, we can achieve a 4-Sigma 
level and still only pay $33.37. 

3.2 Case Study Conclusions 

What has optimization allowed us to do in this case study? 
First, we were able to quickly consider multiple aspects of 
the problem. Further refinement was possible by changing 
the requirements, running the optimization again, and 
evaluating the recommended design configuration. Second, 
we were able to rapidly search and evaluate many design 
possibilities and make knowledgeable decisions without 
having to build costly prototypes. Third, stochastic optimi-
zation allowed us to include real-world variation of inputs 
for much more realistic design. 
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4 CONCLUSIONS 

Design for Six Sigma provides a disciplined approach to 
product development, yielding great opportunities.  Its ad-
vantages include increased competitiveness, increased 
profitability, reduced process and product development cy-
cle time and increased quality. 

In any design process, it is important to recognize that 
all inputs are susceptible to variation.  While designing the 
product or process, one cannot know precisely how the 
system will behave at some future date. The ability to 
model input variation, predict output variation with the 
right tools and gain greater insight into the critical ele-
ments driving the response variation is a key step in a suc-
cessful DFSS implementation. 

Deterministic decision-making cannot predict the 
probability of failure or success; stochastic analysis can. 
Models with simulation and optimization that account for 
event probabilities are highly effective means to predict 
and improve business processes and products. 

One caveat worth mentioning is that adoption of these 
techniques may require a change in organizational think-
ing. Changing from a single-point-estimate view of the 
world, to thinking in ranges and probabilities, can some-
times be challenging. Yet the successful application of 
these techniques throughout different business functions 
from executive to finance, engineering and operations will 
yield a true and lasting competitive advantage. 
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