
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

COMMON SCENE DEFINITION FRAMEWORK FOR CONSTRUCTING VIRTUAL WORLDS

 Lee A. Belfore II
Prabhu. V. Krishnan

Emre Baydogan

.

 Department of Electrical and Computer Engineering
 Old Dominion University
 Norfolk, VA 23529, U.S.A.

ABSTRACT

Developing VR applications is a challenging and reward-
ing endeavor, complicated by the variety and complexity
of the available VR platforms. Furthermore, efficiencies
realized in a specific platform may be lost if the application
is migrated to a different platform. In this paper, we intro-
duce and investigate the Common Scene Definition
Framework (CSDF), a modeling representation consisting
of a superset of capabilities taken from a collection of ex-
isting VR platforms. The purpose of CSDF is to serve a
quick prototype framework for synthesizing an interactive
virtual environment for a particular platform while at-
tempting to optimize the translation to leverage strengths
of the target platform. In an implementation independent
fashion, the CSDF is envisioned to extensibly represent all
geometry, appearance, interaction, and behavior for a VR
application. Finally, an example is provided demonstration
these basic ideas among the VRML 1.0, VRML97 and
Java3D platforms.

1 INTRODUCTION

Virtual reality (VR) applications are used in a wide range
of disciplines to provide new and different perspectives
and also improve upon existing processes of the respective
domains (Vince 1995). Advances in computer systems and
processing power (Belfore 2001), improved network
bandwidth, advances in the gaming industry have enabled
easier and more widespread deployment of virtual worlds.
Development of VR applications has always been chal-
lenging often requiring application developers to have ex-
pertise in the different VR technologies. Indeed, new VR
technologies impose significant learning curves for even
the most experienced VR developer. VR applications bring
together a diverse range of hardware platforms, software
tools and algorithms. Making these disparate components
work together in one system is a required aspect of VR and
making VR applications challenging to develop (Bierbaum
2001). Furthermore, one may need to choose a target VR

1

platform based on limited knowledge of that platform.
Automating some aspects of the creation of prototype ap-
plications can enhance the ability to develop high quality
VR applications.

In this paper, we introduce the Common Scene Defini-
tion Framework (CSDF) that represents in an implementa-
tion independent fashion the capabilities (solid modeling,
appearance, interaction, and behaviors) of a number of VR
platforms and provides the ability to synthesize to a desired
target platforms. The goal of the CSDF is to make possible
the evaluation of function and performance of an applica-
tion developed on a familiar platform on an unfamiliar
platform while minimizing the time necessary to perform
that evaluation and optimizing to limit the performance
impact.

Several other approaches can provide a similar capa-
bility. First, powerful commercial applications such as 3D
Studio Max, support a wide range of capabilities and are
intended as both an authoring and rendering platforms hav-
ing all of the expected supporting functionality. In the
event design requirements force the selection of a different
rendering platform, models developed from 3D Studio
Max may need to be converted or reauthored to support the
new platform. Second, VR Juggler (Bierbaum 2001) de-
fines a virtual platform upon which the VR application is
built. The virtual platform hides the complexities of low
level details allowing the developer to construct an applica-
tion from a collection of objects. In addition, the virtual
platform enables the description of the application in a
fashion that is independent of the implementation platform,
enabling a VR Juggler application to run on a variety of
platforms. Third, DIVERSE (Device Independent Virtual
Environments-Reconfigurable, Scalable, Extensible) is an
API that provides the ability to operate on a span of plat-
forms from laptops through high end CAVE platforms
without modification (Arsenault 2001). Furthermore,
DIVERSE includes the ability to abstract the integration of
several devices and provides the ability for an application
to is an open source framework developed to facilitate the
creation of distributed interactive simulations.

985

Belfore, Krishnan, and Baydogan

The proposed CSDF offers several benefits over these
approaches. First, the CSDF offers application language
and format independence. Second, a path exists whereby
an existing world on a different platform can be imported
into CSDF preserving the institutional investment incurred
in its development. Third, in the synthesis step, the devel-
oper can receive early feedback on whether the capabilities
of the target platform matches the source platform. Fourth,
and finally, the synthesis step offers an optimization step
whereby the module interfaces can be optimized.

This paper is organized into five sections including an
introduction, an introduction to the CSDF, the prototyping
in the CSDF, an example implementation, and a section
with the summary and future work.

2 THE COMMON SCENE DEFINITION
FRAMEWORK

In addition to the capabilities previously described, two
key CSDF capabilities are described in more detail. CSDF
is ultimately envisioned to support the following:

1. Platform dependent optimizations across module

interfaces,
2. Synthesis integration of modules from heterogene-

ous platforms.

Supporting Item 1 results in a synthesized application

that achieves higher performances than what might be ex-
pected from a direct functional transformation. More im-
portantly, target platform specific optimizations are trans-
parently handled by the synthesis. Supporting Item 2
provides the ability to pull content from disparate plat-
forms by representing the content in CSDF as an interme-
diate form. Furthermore, by employing synthesis in the
integration process, some inefficiencies lost by purely inte-
gration methods may be mitigated.

The CSDF further enables the support of short design
cycles by making development possible on a familiar plat-
form and then synthesizing a compatible version on a de-
sired target platform. Since technology and standards are
constantly evolving, developers are constantly challenged
to keep up.

Technologies have different and potentially incom-
patible functionality. The virtual world developer may
wish to evaluate among these different technologies to
choose a virtual world technology to best satisfy require-
ments. These requirements serve as the thrust for applying
CSDF for creating prototypes virtual worlds. Such an ap-
proach can enable a virtual world developer to develop the
virtual world application in the VR technology of his ex-
pertise and have the framework to automate the migration
of the application to the new virtual world plat-
form/technology and thus significantly reduce the time to
develop a working prototype.
19
 Employing the CSDF as described enhances the de-
velopment process in several ways. First, such a method-
ology would alleviate situations where a developer may
need to use a VR technology that he or she is not familiar
for various reasons such as project constraints specific ap-
plication specific needs, and etc. As employed in several
domains such as the manufacturing sector, the developer
may need a prototype to serve as a proof of concept dem-
onstration using an unfamiliar technology. By using syn-
thesis tools to automate the process of creating an applica-
tion on the unfamiliar platform, a prototype may be quickly
developed on that VR platform. The synthesized prototype
is likely less efficient than an hand crafted version, but
may assist the developer in making high level design deci-
sions that may reduce the overall design time for the final
product. This insight gained from the prototyping phase
can enable the creation of a more robust and efficient final
virtual world and also enable verification of requirements
and specification of the virtual world implementation.

3 THE CSDF PROTOTYPING FRAMEWORK

The ultimate goal of this research is to develop a frame-
work that provides the capability to quickly generate an ef-
ficient virtual world prototype either from an existing vir-
tual world or from a collection of components imported
from several platforms.. To build such a virtual world pro-
totyping system, a component-based approach is proposed.
The following section provides a conceptual discussion of
this proposed virtual world prototyping system. A repre-
sentation of the proposed solution is shown in Figure 1.
The prototyping framework requires the development of
several capabilities that are described in the following sub-
sections.

3.1 Prototyping Methodology

The prototyping methodology applied to the design of vir-
tual worlds is elaborated. Figure 2 shows the top level view
of any virtual world.

Creating virtual worlds requires composition and im-
plementing interactions. Scene composition functions
might include integrating geometric primitives, sensors,
textures, and etc. specific to the world being modeled. In-
teraction might involve specifying behavior for entities
composed in the virtual world scene. The scene composi-
tion and interactions will dictate the capabilities of the vir-
tual world.

Virtual world creation and deployment on an unfamil-
iar platform may require an extended learning period for
the developer. For a specific deployment, the developer
may have to choose among several virtual world technolo-
gies and find the platform that best meets the application
requirements. To reduce the development cycle time, the
86

Belfore, Krishnan, and Baydogan

Figure 1: Virtual World Creation Methodology

Figure 2: Virtual World Top Level View

developer can implement a subset of the virtual world ca-
pability in a familiar technology and follow an iterative,
incremental prototyping methodology to implement the
virtual world. This approach cannot be considered as mi-
gration to a target platform as it is incremental in nature.
After all the required capabilities are realized in the syn-
thesized prototype, it may result in the evolving prototype
being accepted as the final end product. Even so, the ap-
proach to developing the virtual world system is incre-
mental, iterative and requires an evolving prototype at each
stage. This development process is shown in Figure 1.
198
3.2 CSDF Synthesis and Class Structure

The overall flow of the prototyping process as shown in
Figure 3 is summarized as follows. The virtual world de-
veloped in a VR technology by the virtual world developer
is imported into the framework as described in the next
section. The framework synthesizes a working prototype
based on the user requirement for the specific output syn-
thesis platform. One of the important design objectives in
the framework is maintain modularity by developing a
consistent set of interfaces and functional modules to im-
plement these interfaces. These interfaces also provide an
easy mechanism to extend the framework.

To synthesize a virtual world meeting the design and
implementation requirements of the end user, the model
must be isolated from its implementation specification.
Since the model of the virtual world is independent of the
target synthesis platform, the framework may collectively
have capabilities represented that do not exist in any of the
individual output synthesis formats. As an example of the
prototyping process, an end user may design a complex 3D
model using a commercial product such as 3D Studio Max
and export the model as a VRML file. This model may be
part of a virtual world scene that may be synthesized in dif-
ferent output formats such as OPENGL, X3D, Java3D, and
etc. In order to achieve this goal, the model needs to be
imported into the CSDF.

In order to synthesize the scene in the target platform,
the synthesis module is required to handle the capabilities
7

Belfore, Krishnan, and Baydogan

Figure 3: Conceptual Representation of the Target Virtual World Synthesis

and features of the target platform. The synthesis process is
a mapping from the requirement specification represented
by CSDF to the target hardware/software virtual world ar-
chitecture. Some of these mappings may be infeasible for
various reasons. Since the prototyping system has complete
knowledge of the capabilities of the synthesis architecture,
the prototyping system can give immediate feedback on
whether the requirement specification can be satisfied for
the selected output platform. Consider, for example, the
requirement for keyboard input from the user. If VRML is
the synthesis target, the prototyping system can report that
standard VRML does not support keyboard data entry.

In contrast to the approach of programming the pro-
vided API in both the VR Juggler (Bierbaum 2001) and
Diverse (Arsenault 2001) systems, the proposed prototyp-
ing system can leverage the expertise in one patform to an-
other platform through CSDF and synthesis. Thus, the de-
veloper is able to reuse virtual world models in a platform
independent fashion, saving the developer from the steep
learning curve in the new environment/platform. The au-
thoring process may occur on the platform from which
models are imported or may continue on the target plat-
form as expertise is gained. An important feature that can
be implemented within CSDF is the ability to alert the de-
veloper of limitations in the target synthesis platform. This
can help the developer to make correct choices in selecting
target synthesis platforms to meet the requirement specifi-
cation for the VR application. This approach fits with the
current approach followed by most virtual world develop-
ers to design the geometry models and animations in com-
1

mercial off the shelf (COTS) design tools such as 3D Stu-
dio Max and Maya and later import these models into their
virtual worlds. A possible future component of the proto-
typing system may be a graphical authoring tool that helps
a virtual world developer to link multiple models within
the common scene framework. This component can poten-
tially reduce several iterations from the development proc-
ess.

Some VR platforms may provide the developer with
primitives with complex capabilities. This may correspond
to an assembly of simpler capabilities in the target plat-
form. The gist is that the prototyping system must bridge
the differences in inherent capabilities of the synthesis plat-
form and that needed to represent the virtual world. The
prototyping system has complete knowledge of the capa-
bilities and limitations of the synthesis platform, the syn-
thesis modules may have opportunities to approximate
some capabilities in the synthesized world. For example,
the system may approximate movie textures by a simple
image to keep the virtual world lighter on a less powerful
device such as a PDA. In addition, a higher resolution im-
age requiring a higher network download time may be ap-
proximated by a lower resolution image. Furthermore, in
the synthesis step, optimization opportunities may be
available, i.e. to remove software layers and optimize inter-
faces, that an integration tool cannot provide.

The X3D specification has been the basis for the selec-
tion of the nodes and skeletal structure that constitutes the
CSDF. Significantly, X3D is under active development
and review by the Web3D consortium. Thus, basing the
framework on X3D makes it easier to remain consistent
988

Belfore, Krishnan, and Baydogan

with the latest developments proposed by the Web3D con-
sortium (2003,2005). Furthermore, X3D includes a rich
set of primitives for modeling 3D geometry, behaviors and
interactions and thus, X3D is an ideal starting point with
respect to synthesis to all output VR formats. Supporting
an evolving CSDF, X3D is an extensible open standard
text based XML-encoded scene graph. Finally, in web
services, the programmatic interfaces for application to ap-
plication communication on the internet use XML tech-
nologies to construct messages that can be exchanged us-
ing a variety of underlying protocols. This helps to make
integration with web services easier as specified by the
World Wide Web Consortium (2002).

Figure 4 is the class diagram showing the base class
CSDFNode and several derived CSDF classes. CSDFNode
is the node class that defines the tree structure for the
framework. All classes extend this base class CSDFNode.

Serialization in Java is the process by which the JVM
converts an object instance and all the references the object
contains, into a linear stream of bytes, which can then be
sent through a communication socket, stored to a file or da-
tabase (Greanier 2000). Java also has the capability to read
these bytes and restore the Java object represented by the
bytes. The base class CSDFNode implements the Serializ-
able interface. All the CSDF classes that extend the
CSDFNode class thus automatically become serializable.
This feature is used by the framework to save an input vir-
tual world parsed into the framework for later restoration
and use. The CSDFNode class has a collection class mem-
ber and methods to manipulate the tree structure.

The framework has a number of interfaces to support
the nodes defined in the X3D specification. Figure 5 shows
1

the class diagram of some example CSDF classes imple-
menting the CSDFGeometry interface. During the parse
phase of an input VRML or X3D scene, the CSDFGeome-
try interface is used to verify that only a valid geometry
class is assigned as the geometry field of a Shape object.
Similarly another interface defined in CSDF is the
CSDFTexture interface to handle texture fields. The X3D
specification allows geometries to be textured with differ-
ent types of textures such as an ImageTexture, a
MovieTexture or a PixelTexture. The CSDF nodes for the
ImageTexture, MovieTexture and PixelTexture nodes im-
plement the CSDFTexture interface. Figure 6 shows the
class diagram of a few synthesis modules implementing the
CSDFSynthesis interface. All synthesis modules in rapid
prototyping system must implement the CSDFSynthesis
interface.

4 IMPLEMENTATION

The example CSDF framework was implemented in Java
using JavaCC, a Java compiler-compiler, and JDOM API.
The translation phase is the phase in which the parser
translates the input file into an abstract syntax independent
of the syntax of the output platform. Within the context of
the rapid prototyping system, this abstract syntax refers to
the CSDF. The translation can be done after type checking
or it can be done at the same time. For example, to import
a scene in an alternate scene format that uses Cartesian co-
ordinates, the parser for that format must translate the co-
ordinate data in order to store in the common scene format

CSDFShape

CSDFShape()
addChild()
getAmbientIntensity()
getCsdfAppearance()
getCsdfGeometry()
getUse()
getNumChildren()
setCsdfAppearance()
setCsdfGeometry()
setUse()

C

C

CSDFBox

CSDFBox()
getContainerField()
getSize()
setSize()
setVRMLSize()

C

C

CSDFGroup

CSDFGroup()
getBboxcenter()
getBboxsize()
setBboxcenter()
setBboxsize()
setVRMLBboxcenter()
setVRMLBboxsize()

C

C

CSDFTouchSensor

CSDFTouchSensor()
getContainerField()
IsEnabled()
setEnabled()
setVRMLEnabled()

C

C

CSDFNode

CSDFNode()
GetParent()
addChild()
dump()
getChild()
getName()
getNumChildren()
setName()
setParent()
toString()

C

C

Figure 4: Class Diagram Representing Base Class CSDFNode and Some Derived Classes
989

n, and Baydogan
Belfore, Krishna

getRadius()
setRadius()
setVRMLRadius()

C CSDFBox

CSDFBox()
getContainerField()
getSize()
setSize()
setVRMLSize()

CSDFPointSet

CSDFPointSet()
getContainerField()

I CSDFGeometryInterface
<<interface>>

CC CSDFSphere

CSDFSphere()
getContainerField()

Figure 5: CSDFGeometry Interface Class Diagram with
Example Implementations

Java3DSynthesizer

recurseTree()
synthesize()

I
<<interface>>

CSDFSynthesisInterface

synthesize()

C VRML20Synthesizer

recurseTree()
synthesize()

C X3DSynthesizer

recurseTree()
synthesize()

C

Figure 6: CSDF Synthesis Interface Class Diagram with
Example Implementations

of the rapid prototyping system. In the VRML parser, part
of the translation is performed as part of the type checking
and the rest is done within the framework classes. Another
set of translations of data occurs during the synthesis
phase. The output of the translation phase is the CSDF rep-
resentation of the scene represented in the input environ-
ment.

The synthesis phase of the prototyping methodology
maps a conceptual model of the virtual world (CSDF) to a
visual output virtual world as shown in Figure 7.

Figure 7: Simplified Synthesis Pipeline

Depending on the target VR platform, the synthesis

module may filter information, aggregate lower level capa-
bilities into higher level abstractions, or deaggregate higher
level abstractions into lower level capabilities. These
transformations are driven by the requirement specification
of the application. For the synthesis of the virtual world
into an output format, the scene graph hierarchy makes it
logically simple to synthesize individual components
within the model. The synthesis into an output format that
does not have a scene graph organization of components is
challenging. The virtual world as represented by the com-
mon scene format has all the information necessary to syn-
thesize the world. Hence, starting from the root node, it is
theoretically possible to extract this information stored at
different levels of the hierarchy by traversing the scene

19
graph up and down the scene graph and transform this
scene to the required output format.

The synthesis modules are independent of the frame-
work. The synthesis module for each VR platform takes
the CSDFFramework object as input and synthesizes the
output virtual world. The hierarchical organization makes
the synthesis process simple in the following way. The
synthesis module invokes the synthesis function on the root
node of the scene. The root node in turn recursively in-
vokes the synthesis function for each of the child nodes.
When the control returns from the synthesis function of the
root node, synthesis is complete. All synthesis modules
must implement the CSDFSynthesisInterface. This inter-
face shows the method specification for the synthesis func-
tion. Currently the prototyping system is able to synthesize
a subset of the features of VRML1.0, VRML97, X3D, and
Java3D.

Figure 8 shows the example virtual world that demon-
strates the several important capabilities including the abil-
ity to create aggregate objects from geometry primitives, a
demonstration of drag behavior from one platform synthe-
sized in another, appropriately represent and then synthe-
size solid model appearances, and maintaining similar
navigation functions.

Figure 8: Input VRML97 Scene Running in Mozilla Fire-
fox Browser using Contact VRML Plug-In.

The scene consists of a sphere and a box textured with

two different images. In the scene, a plane sensor node is
associated with the sphere. The effect of the plane sensor is
routed to the box object. When the user drags the sphere,
the box moves in magnitude and direction of the drag on
the sphere. For example, such functionality may be part of
a slider control in a user interface. In VRML97, the drag
behavior is implemented using the PlaneSensor node. By
adding a ROUTE statement to route events to the target
node, the actions on the PlaneSensor node are translated to
the target node. The above VRML97 scene is parsed by
the VRML Parser and the corresponding CSDF tree was
90

Belfore, Krishnan, and Baydogan

generated. Next, the scene is synthesized into VRML 1.0,
VRML97, X3D, and Java3D formats. The input parser for
VRML97 populated the CSDF framework classes with the
attributes and behaviors of the corresponding VRML97 in-
put scene and synthesized to X3D and Java3D format
without any losses of information. Figure 9 and Figure 10
shows the screen shots of the synthesis to X3D and Java3D
respectively. The synthesis of the X3D is straightforward
following from the CSDF framework.

In a VRML97 and other VR environments, some fea-
tures, such as lighting and navigation, are automatically
provided by the environment. In a Java3D world, the de-
veloper must provide all these essential features to the
scene. This expertise in the specific virtual world platform
is incorporated into the synthesized world by the synthesis
module of the framework. After comparison with VRML
and Java3D environments, zoom and rotate characteristics
have been enabled in all Java3D scenes. The zoom capabil-
ity allows a user to view the virtual world from different
distances. The rotate capability allows a user to rotate the
viewpoint of the user. Also a light source is incorporated
by default in the synthesized scene for illumination of ob-
jects within the scene.

Figure 9: Synthesis to X3D Platform

In addition, the VRML drag capability has no direct

counterpart in Java3D, requiring the implementation of a
compatible drag functionality. This drag behavior was
then inserted into the Java source and connected into the
Java3D scene graph. The framework can be extended by
implementing other common sensor capabilities as defined
by X3D specification. This sample example thus highlights
the usefulness of the proposed prototyping system.

VRML 1.0 has capabilities to represent geometric
shapes and apply textures to surfaces, but does not have
any capabilities for dynamic interactions. The input scene
has features that cannot be represented on the target
platform. Hence, this functionality cannot be represented in

19

Figure 10: Synthesis to Java3D Platform

the output format. In this context, CSDF synthesizes the
content that is implementable and reports on those capa-
bilities that cannot be implemented.

5 SUMMARY AND FUTURE WORK

The research summarized in this paper provided two out-
comes. The Common Scene Definition Framework
(CSDF) has been defined to serve as an implementation
independent repository for VR platform functionality. The
CSDF provides the ability to represent applications in a
platform independent fashion. The CSDF provides a
pathway for the synthesis of virtual worlds to different
platforms. Synthesis implies that the developer need not
know the target platform. Furthermore, synthesis implies
that optimizations are performed to produce efficient pro-
totype applications. An example application was created
to demonstrate the CSDF concept using subsets of the
VRML 1.0, VRML97, and X3D platforms. The example
also demonstrated that the framework could provide early
feedback on the limitations in the capabilities of a particu-
lar synthesis platform. This early feedback could help the
virtual world developer to evaluate different choices of VR
technologies to meet the user requirement.

A limited set of VR platforms and capabilities were
selected to demonstrate the core concept. The focus ini-
tially was to start with geometric primitives and composite
shapes and demonstrate the capability of the framework to
transform from selected VR platforms to others. In addi-
tion, a few selected behaviors that are common to many
virtual worlds were incorporated into the framework. Addi-
tional behavioral capabilities such as proximity sensors,
timers and, etc. need to be implemented into the frame-
work to enable the synthesis of more complex virtual
worlds. The framework may also be extended to support
import and synthesis to other VR platforms such as
OpenGL, Macromedia Flash, and etc. The framework can
be extended to facilitate the synthesis of distributed virtual
91

, and Baydogan
Belfore, Krishnan

world by incorporating, different interconnect mechanisms
such as Sockets, HLA, DIS, etc. into the framework. An
important thread of research must be conducted to assess
the validity of the transformations and representations. For
example, a process needs to be developed for the validation
of sensitivities of the different sensors in different VR plat-
forms. Also, default values of attributes need to be normal-
ized across different VR platforms.

REFERENCES

Arsenault, L., J. Kelso, R. Kriz, F. D. Neves. 2001.
DIVERSE: A software toolkit to integrate distributed
simulations with heterogeneous virtual environments.
White Paper.

Belfore II, L. A. 2001. An architecture for constructing
large VRML worlds. Transactions of the Society for
Modeling and Simulation, 18 (1): 24-40.

Bierbaum, A., C. Just, P. Hartling, K. Meinert, A. Baker,
and C. Cruz-Neira. VR Juggler: A virtual platform for
virtual reality application development. In Proceed-
ings of IEEE Virtual Reality 2001. Piscataway, New
Jersey: Institute of Electrical and Electronics Engi-
neers, 89-96.

Greanier, T. 2000. Flatten Your Objects: Discover the se-
crets of the Java serialization API. JavaWorld.
<http://www.javaworld.com/javaworld/
jw-07-2000/jw-0714-flatten.html> [Ac-
cessed on 15 July 2005].

Vince, J. 1995. Virtual reality systems. Reading, Massa-
chusetts: Addison Wesley.

Web3D Consortium. 2005. Overview of X3D
<http://www.web3d.org/x3d/overview.h
tml> [Accessed on 15 July 2005].

Web3D Consortium. 2003. Extensible 3D (X3D) specifica-
tion <http://www.web3d.org/x3d/speci-
fications/ISO-IEC-19775-IS-
X3DabstractSpecification> [Accessed on
15 July 2005].

World Wide Web Consortium (W3C). 2002. Web services
activities page <http://www.w3.org/2002
/ws/> [Accessed on 15 July 2005].

19
AUTHOR BIOGRAPHIES

LEE A. BELFORE, II is an associate professor in the
Department of Electrical and Computer Engineering at Old
Dominion University. He received his BS degree in elec-
trical engineering from Virginia Tech, his MSE Degree in
electrical engineering and computer science from Princeton
University, and his Ph.D. degree from the University of
Virginia in 1990 in electrical engineering. His research in-
terests include virtual reality, medical modeling and simu-
lation. Dr. Belfore is a Senior Member of the IEEE and
members of ASEE, Sigma Xi, and AUVSI. His e-mail ad-
dress is <lbelfore@odu.edu>

PRABHU V. KRISHNAN is a graduate student in the
Department of Electrical and Computer Engineering at Old
Dominion University. His research interests include virtual
reality systems and enterprise business solutions. His e-
mail address is <prabhu.Krishnan@gmail.com>.

EMRE BAYDOGAN is a doctoral student in the Depart-
ment of Electrical and Computer Engineering at Old Do-
minion University. His research interests include virtual
reality, 3D visualization, and simulation. He is a member
of IEEE. His e-mail address is
<ebayd001@odu.edu>.
92

http://www.javaworld.com/javaworld/jw-07-2000/jw-0714-flatten.html
http://www.javaworld.com/javaworld/jw-07-2000/jw-0714-flatten.html
http://www.web3d.org/x3d/overview.html
http://www.web3d.org/x3d/overview.html
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-IS-X3DAbstractSpecification
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-IS-X3DAbstractSpecification
http://www.web3d.org/x3d/specifications/ISO-IEC-19775-IS-X3DAbstractSpecification
http://www.w3.org/2002/ws/
http://www.w3.org/2002/ws/
mailto:<lbelfore@odu.edu>
mailto:prabhu.krishnan@gmail.com
mailto:ebayd001@odu.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

