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ABSTRACT 

Developing VR applications is a challenging and reward-
ing endeavor, complicated by the variety and complexity 
of the available VR platforms.  Furthermore, efficiencies 
realized in a specific platform may be lost if the application 
is migrated to a different platform.  In this paper, we intro-
duce and investigate the Common Scene Definition 
Framework (CSDF), a modeling representation consisting 
of a superset of capabilities taken from a collection of ex-
isting VR platforms.  The purpose of CSDF is to serve a 
quick prototype framework for synthesizing an interactive 
virtual environment for a particular platform while at-
tempting to optimize the translation to leverage strengths 
of the target platform.  In an implementation independent 
fashion, the CSDF is envisioned to extensibly represent all 
geometry, appearance, interaction, and behavior for a VR 
application.  Finally, an example is provided demonstration 
these basic ideas among the VRML 1.0, VRML97 and 
Java3D platforms.   

1 INTRODUCTION 

Virtual reality (VR) applications are used in a wide range 
of disciplines to provide new and different perspectives 
and also improve upon existing processes of the respective 
domains (Vince 1995).  Advances in computer systems and 
processing power (Belfore 2001), improved network 
bandwidth, advances in the gaming industry have enabled 
easier and more widespread deployment of virtual worlds. 
Development of VR applications has always been chal-
lenging often requiring application developers to have ex-
pertise in the different VR technologies. Indeed, new VR 
technologies impose significant learning curves for even 
the most experienced VR developer. VR applications bring 
together a diverse range of hardware platforms, software 
tools and algorithms. Making these disparate components 
work together in one system is a required aspect of VR and 
making VR applications challenging to develop (Bierbaum 
2001). Furthermore, one may need to choose a target VR 
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platform based on limited knowledge of that platform.  
Automating some aspects of the creation of prototype ap-
plications can enhance the ability to develop high quality 
VR applications. 

In this paper, we introduce the Common Scene Defini-
tion Framework (CSDF) that represents in an implementa-
tion independent fashion the capabilities (solid modeling, 
appearance, interaction, and behaviors) of a number of VR 
platforms and provides the ability to synthesize to a desired 
target platforms.  The goal of the CSDF is to make possible 
the evaluation of function and performance of an applica-
tion developed on a familiar platform on an unfamiliar  
platform while minimizing the time necessary to perform 
that evaluation and optimizing to limit the performance 
impact.   

Several other approaches can provide a similar capa-
bility.  First, powerful commercial applications such as 3D 
Studio Max, support a wide range of capabilities and are 
intended as both an authoring and rendering platforms hav-
ing all of the expected supporting functionality.  In the 
event design requirements force the selection of a different 
rendering platform, models developed from 3D Studio 
Max may need to be converted or reauthored to support the 
new platform.  Second,  VR Juggler (Bierbaum 2001) de-
fines a virtual platform upon which the VR application is 
built.  The virtual platform hides the complexities of low 
level details allowing the developer to construct an applica-
tion from a collection of objects.  In addition, the virtual 
platform enables the description of the application in a 
fashion that is independent of the implementation platform, 
enabling a VR Juggler application to run on a variety of 
platforms.  Third, DIVERSE (Device Independent Virtual 
Environments-Reconfigurable, Scalable, Extensible) is an 
API that provides the ability to operate on a span of plat-
forms from laptops through high end CAVE platforms 
without modification (Arsenault 2001).  Furthermore, 
DIVERSE includes the ability to abstract the integration of 
several devices and provides the ability for an application 
to is an open source framework developed to facilitate the 
creation of distributed interactive simulations.  

 

985



Belfore, Krishnan, and Baydogan 

 

The proposed CSDF offers several benefits over these 
approaches.  First, the CSDF offers application language 
and format independence.  Second, a path exists whereby 
an existing world on a different platform can be imported 
into CSDF preserving the institutional investment incurred 
in its development.  Third, in the synthesis step, the devel-
oper can receive early feedback on whether the capabilities 
of the target platform matches the source platform.  Fourth, 
and finally, the synthesis step offers an optimization step 
whereby the module interfaces can be optimized. 

This paper is organized into five sections including an 
introduction, an introduction to the CSDF, the prototyping 
in the CSDF, an example implementation, and a section 
with the summary and future work. 

2 THE COMMON SCENE DEFINITION 
FRAMEWORK 

In addition to the capabilities previously described, two 
key CSDF capabilities are described in more detail.  CSDF 
is ultimately envisioned to support the following: 

 
1. Platform dependent optimizations across module 

interfaces, 
2. Synthesis integration of modules from heterogene-

ous platforms. 
 
Supporting Item 1 results in a synthesized application 

that achieves higher performances than what might be ex-
pected from a direct functional transformation.  More im-
portantly, target platform specific optimizations are trans-
parently handled by the synthesis.  Supporting Item 2 
provides the ability to pull content from disparate plat-
forms by representing the content in CSDF as an interme-
diate form.  Furthermore, by employing synthesis in the 
integration process, some inefficiencies lost by purely inte-
gration methods may be mitigated.   

The CSDF further enables the support of short design 
cycles by making development possible on a familiar plat-
form and then synthesizing a compatible version on a de-
sired target platform.  Since technology and standards are 
constantly evolving, developers are constantly challenged 
to keep up. 

Technologies have different and potentially incom-
patible functionality.  The virtual world developer may 
wish to evaluate among these different technologies to 
choose a virtual world technology to best satisfy require-
ments. These requirements serve as the thrust for applying 
CSDF for creating prototypes virtual worlds. Such an ap-
proach can enable a virtual world developer to develop the 
virtual world application in the VR technology of his ex-
pertise and have the framework to automate the migration 
of the application to the new virtual world plat-
form/technology and thus significantly reduce the time to 
develop a working prototype. 
19
 Employing the CSDF as described enhances the de-
velopment process in several ways.  First, such a method-
ology would alleviate situations where a developer may 
need to use a VR technology that he or she is not familiar 
for various reasons such as project constraints specific ap-
plication specific needs, and etc. As employed in several 
domains such as the manufacturing sector, the developer 
may need a prototype to serve as a proof of concept dem-
onstration using an unfamiliar technology. By using syn-
thesis tools to automate the process of creating an applica-
tion on the unfamiliar platform, a prototype may be quickly 
developed on that VR platform. The synthesized prototype 
is likely less efficient than an hand crafted version, but 
may assist the developer in making high level design deci-
sions that may reduce the overall design time for the final 
product. This insight gained from the prototyping phase 
can enable the creation of a more robust and efficient final 
virtual world and also enable verification of requirements 
and specification of the virtual world implementation. 

3 THE CSDF PROTOTYPING FRAMEWORK 

The ultimate goal of this research is to develop a frame-
work that provides the capability to quickly generate an ef-
ficient virtual world prototype either from an existing vir-
tual world or from a collection of components imported 
from several platforms.. To build such a virtual world pro-
totyping system, a component-based approach is proposed. 
The following section provides a conceptual discussion of 
this proposed virtual world prototyping system. A repre-
sentation of the proposed solution is shown in Figure 1.  
The prototyping framework requires the development of 
several capabilities that are described in the following sub-
sections. 

3.1 Prototyping Methodology 

The prototyping methodology applied to the design of vir-
tual worlds is elaborated. Figure 2 shows the top level view 
of any virtual world. 

Creating virtual worlds requires composition and im-
plementing interactions. Scene composition functions 
might include integrating geometric primitives, sensors, 
textures, and etc. specific to the world being modeled. In-
teraction might involve specifying behavior for entities 
composed in the virtual world scene. The scene composi-
tion and interactions will dictate the capabilities of the vir-
tual world. 

Virtual world creation and deployment on an unfamil-
iar platform may require an extended learning period for 
the developer. For a specific deployment, the developer 
may have to choose among several virtual world technolo-
gies and find the platform that best meets the application 
requirements. To reduce the development cycle time, the
86
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Figure 1: Virtual World Creation Methodology 

 
 
 

 
Figure 2: Virtual World Top Level View 

 
developer can implement a subset of the virtual world ca-
pability in a familiar technology and follow an iterative, 
incremental prototyping methodology to implement the 
virtual world. This approach cannot be considered as mi-
gration to a target platform as it is incremental in nature. 
After all the required capabilities are realized in the syn-
thesized prototype, it may result in the evolving prototype 
being accepted as the final end product.  Even so, the ap-
proach to developing the virtual world system is incre-
mental, iterative and requires an evolving prototype at each 
stage. This development process is shown in Figure 1. 
198
3.2 CSDF Synthesis and Class Structure 

The overall flow of the prototyping process as shown in 
Figure 3 is summarized as follows. The virtual world de-
veloped in a VR technology by the virtual world developer 
is imported into the framework as described in the next 
section. The framework synthesizes a working prototype 
based on the user requirement for the specific output syn-
thesis platform. One of the important design objectives in  
the framework is maintain modularity by developing a 
consistent set of interfaces and functional modules to im-
plement these interfaces. These interfaces also provide an 
easy mechanism to extend the framework. 

To synthesize a virtual world meeting the design and 
implementation requirements of the end user, the model 
must be isolated from its implementation specification.   
Since the model of the virtual world is independent of the 
target synthesis platform, the framework may collectively 
have capabilities represented that do not exist in any of the 
individual output synthesis formats. As an example of the 
prototyping process, an end user may design a complex 3D 
model using a commercial product such as 3D Studio Max 
and export the model as a VRML file. This model may be 
part of a virtual world scene that may be synthesized in dif-
ferent output formats such as OPENGL, X3D, Java3D, and 
etc. In order to achieve this goal, the model needs to be 
imported into the CSDF. 

In order to synthesize the scene in the target platform, 
the synthesis module is required to handle the capabilities
7
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Figure 3: Conceptual Representation of the Target Virtual World Synthesis 
 
 

and features of the target platform. The synthesis process is 
a mapping from the requirement specification represented 
by CSDF to the target hardware/software virtual world ar-
chitecture. Some of these mappings may be infeasible for 
various reasons. Since the prototyping system has complete 
knowledge of the capabilities of the synthesis architecture, 
the prototyping system can give immediate feedback on 
whether the requirement specification can be satisfied for 
the selected output platform. Consider, for example, the 
requirement for keyboard input from the user. If VRML is 
the synthesis target, the prototyping system can report that 
standard VRML does not support keyboard data entry. 

In contrast to the approach of programming the pro-
vided API in both the VR Juggler (Bierbaum 2001) and 
Diverse (Arsenault 2001) systems, the proposed prototyp-
ing system can leverage the expertise in one patform to an-
other platform through CSDF and synthesis.  Thus, the de-
veloper is able to reuse virtual world models in a platform 
independent fashion, saving the developer from the steep 
learning curve in the new environment/platform. The au-
thoring process may occur on the platform from which 
models are imported or may continue on the target plat-
form as expertise is gained. An important feature that can 
be implemented within CSDF is the ability to alert the de-
veloper of limitations in the target synthesis platform. This 
can help the developer to make correct choices in selecting 
target synthesis platforms to meet the requirement specifi-
cation for the VR application. This approach fits with the 
current approach followed by most virtual world develop-
ers to design the geometry models and animations in com-
1

mercial off the shelf (COTS) design tools such as 3D Stu-
dio Max and Maya and later import these models into their 
virtual worlds. A possible future component of the proto-
typing system may be a graphical authoring tool that helps 
a virtual world developer to link multiple models within 
the common scene framework. This component can poten-
tially reduce several iterations from the development proc-
ess. 

Some VR platforms may provide the developer with 
primitives with complex capabilities. This may correspond 
to an assembly of simpler capabilities in the target plat-
form.  The gist is that the prototyping system must bridge 
the differences in inherent capabilities of the synthesis plat-
form and that needed to represent the virtual world.  The 
prototyping system has complete knowledge of the capa-
bilities and limitations of the synthesis platform, the syn-
thesis modules may have opportunities to approximate 
some capabilities in the synthesized world. For example, 
the system may approximate movie textures by a simple 
image to keep the virtual world lighter on a less powerful 
device such as a PDA. In addition, a higher resolution im-
age requiring a higher network download time may be ap-
proximated by a lower resolution image.  Furthermore, in 
the synthesis step, optimization opportunities may be 
available, i.e. to remove software layers and optimize inter-
faces, that an integration tool cannot provide. 

The X3D specification has been the basis for the selec-
tion of the nodes and skeletal structure that constitutes the 
CSDF.  Significantly, X3D is under active development 
and review by the Web3D consortium.  Thus, basing the 
framework on X3D makes it easier to remain consistent 
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with the latest developments proposed by the Web3D con-
sortium (2003,2005).  Furthermore, X3D includes a rich 
set of primitives for modeling 3D geometry, behaviors and 
interactions and thus, X3D is an ideal starting point with 
respect to synthesis to all output VR formats.  Supporting 
an evolving CSDF, X3D is an extensible open standard 
text based XML-encoded scene graph.  Finally, in web 
services, the programmatic interfaces for application to ap-
plication communication on the internet use XML tech-
nologies to construct messages that can be exchanged us-
ing a variety of underlying protocols. This helps to make 
integration with web services easier as specified by the 
World Wide Web Consortium (2002). 

Figure 4 is the class diagram showing the base class 
CSDFNode and several derived CSDF classes. CSDFNode 
is the node class that defines the tree structure for the 
framework. All classes extend this base class CSDFNode. 

Serialization in Java is the process by which the JVM 
converts an object instance and all the references the object 
contains, into a linear stream of bytes, which can then be 
sent through a communication socket, stored to a file or da-
tabase (Greanier 2000). Java also has the capability to read 
these bytes and restore the Java object represented by the 
bytes. The base class CSDFNode implements the Serializ-
able interface. All the CSDF classes that extend the 
CSDFNode class thus automatically become serializable. 
This feature is used by the framework to save an input vir-
tual world parsed into the framework for later restoration 
and use. The CSDFNode class has a collection class mem-
ber and methods to manipulate the tree structure. 

The framework has a number of interfaces to support 
the nodes defined in the X3D specification. Figure 5 shows 
1

the class diagram of some example CSDF classes imple-
menting the CSDFGeometry interface. During the parse 
phase of an input VRML or X3D scene, the CSDFGeome-
try interface is used to verify that only a valid geometry 
class is assigned as the geometry field of a Shape object. 
Similarly another interface defined in CSDF is the 
CSDFTexture interface to handle texture fields. The X3D 
specification allows geometries to be textured with differ-
ent types of textures such as an ImageTexture, a 
MovieTexture or a PixelTexture.  The CSDF nodes for the 
ImageTexture, MovieTexture and PixelTexture nodes im-
plement the CSDFTexture interface. Figure 6 shows the 
class diagram of a few synthesis modules implementing the 
CSDFSynthesis interface. All synthesis modules in rapid 
prototyping system must implement the CSDFSynthesis 
interface. 

4 IMPLEMENTATION 

The example CSDF framework was implemented in Java 
using JavaCC, a Java compiler-compiler, and JDOM API.  
The translation phase is the phase in which the parser 
translates the input file into an abstract syntax independent 
of the syntax of the output platform. Within the context of 
the rapid prototyping system, this abstract syntax refers to 
the CSDF. The translation can be done after type checking 
or it can be done at the same time. For example, to import 
a scene in an alternate scene format that uses Cartesian co-
ordinates, the parser for that format must translate the co-
ordinate data in order to store in the common scene format
 

CSDFShape

CSDFShape()
addChild()
getAmbientIntensity()
getCsdfAppearance()
getCsdfGeometry()
getUse()
getNumChildren()
setCsdfAppearance()
setCsdfGeometry()
setUse()

C

C

CSDFBox

CSDFBox()
getContainerField()
getSize()
setSize()
setVRMLSize()

C

C

CSDFGroup

CSDFGroup()
getBboxcenter()
getBboxsize()
setBboxcenter()
setBboxsize()
setVRMLBboxcenter()
setVRMLBboxsize()

C

C

CSDFTouchSensor

CSDFTouchSensor()
getContainerField()
IsEnabled()
setEnabled()
setVRMLEnabled()

C

C

CSDFNode

CSDFNode()
GetParent()
addChild()
dump()
getChild()
getName()
getNumChildren()
setName()
setParent()
toString()

C

C

 
Figure 4: Class Diagram Representing Base Class CSDFNode and Some Derived Classes
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getRadius()
setRadius()
setVRMLRadius()

C CSDFBox

CSDFBox()
getContainerField()
getSize()
setSize()
setVRMLSize()

CSDFPointSet

CSDFPointSet()
getContainerField()

I CSDFGeometryInterface
<<interface>>

CC CSDFSphere

CSDFSphere()
getContainerField()

 
Figure 5: CSDFGeometry Interface Class Diagram with 
Example Implementations 

 

Java3DSynthesizer

recurseTree()
synthesize()

I
<<interface>>

CSDFSynthesisInterface

synthesize()

C VRML20Synthesizer

recurseTree()
synthesize()

C X3DSynthesizer

recurseTree()
synthesize()

C

 
Figure 6: CSDF Synthesis Interface Class Diagram with 
Example Implementations 

 
of the rapid prototyping system.  In the VRML parser, part 
of the translation is performed as part of the type checking 
and the rest is done within the framework classes. Another 
set of translations of data occurs during the synthesis 
phase. The output of the translation phase is the CSDF rep-
resentation of the scene represented in the input environ-
ment.   

The synthesis phase of the prototyping methodology 
maps a conceptual model of the virtual world (CSDF) to a 
visual output virtual world as shown in Figure 7. 

 

 
Figure 7: Simplified Synthesis Pipeline 

 
Depending on the target VR platform, the synthesis 

module may filter information, aggregate lower level capa-
bilities into higher level abstractions, or deaggregate higher 
level abstractions into lower level capabilities.  These 
transformations are driven by the requirement specification 
of the application. For the synthesis of the virtual world 
into an output format, the scene graph hierarchy makes it 
logically simple to synthesize individual components 
within the model. The synthesis into an output format that 
does not have a scene graph organization of components is 
challenging. The virtual world as represented by the com-
mon scene format has all the information necessary to syn-
thesize the world. Hence, starting from the root node, it is 
theoretically possible to extract this information stored at 
different levels of the hierarchy by traversing the scene 
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graph up and down the scene graph and transform this 
scene to the required output format. 

The synthesis modules are independent of the frame-
work. The synthesis module for each VR platform takes 
the CSDFFramework object as input and synthesizes the 
output virtual world. The hierarchical organization makes 
the synthesis process simple in the following way.  The 
synthesis module invokes the synthesis function on the root 
node of the scene. The root node in turn recursively in-
vokes the synthesis function for each of the child nodes. 
When the control returns from the synthesis function of the 
root node, synthesis is complete. All synthesis modules 
must implement the CSDFSynthesisInterface. This inter-
face shows the method specification for the synthesis func-
tion. Currently the prototyping system is able to synthesize 
a subset of the features of VRML1.0, VRML97, X3D, and 
Java3D. 

Figure 8 shows the example virtual world that demon-
strates the several important capabilities including the abil-
ity to create aggregate objects from geometry primitives, a 
demonstration of drag behavior from one platform synthe-
sized in another, appropriately represent and then synthe-
size solid model appearances, and maintaining similar 
navigation functions. 
 

 
Figure 8: Input VRML97 Scene Running in Mozilla Fire-
fox Browser using Contact VRML Plug-In. 

 
The scene consists of a sphere and a box textured with 

two different images. In the scene, a plane sensor node is 
associated with the sphere. The effect of the plane sensor is 
routed to the box object. When the user drags the sphere, 
the box moves in magnitude and direction of the drag on 
the sphere. For example, such functionality may be part of 
a slider control in a user interface. In VRML97, the drag 
behavior is implemented using the PlaneSensor node. By 
adding a ROUTE statement to route events to the target 
node, the actions on the PlaneSensor node are translated to 
the target node.  The above VRML97 scene is parsed by 
the VRML Parser and the corresponding CSDF tree was 
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generated. Next, the scene is synthesized into VRML 1.0, 
VRML97, X3D, and Java3D formats.  The input parser for 
VRML97 populated the CSDF framework classes with the 
attributes and behaviors of the corresponding VRML97 in-
put scene and synthesized to X3D and Java3D format 
without any losses of information.  Figure 9 and Figure 10 
shows the screen shots of the synthesis to X3D and Java3D 
respectively.  The synthesis of the X3D is straightforward 
following from the CSDF framework. 

In a VRML97 and other VR environments, some fea-
tures, such as lighting and navigation, are automatically 
provided by the environment.  In a Java3D world, the de-
veloper must provide all these essential features to the 
scene. This expertise in the specific virtual world platform 
is incorporated into the synthesized world by the synthesis 
module of the framework.  After comparison with VRML 
and Java3D environments, zoom and rotate characteristics 
have been enabled in all Java3D scenes. The zoom capabil-
ity allows a user to view the virtual world from different 
distances. The rotate capability allows a user to rotate the 
viewpoint of the user. Also a light source is incorporated 
by default in the synthesized scene for illumination of ob-
jects within the scene. 

 

 
Figure 9: Synthesis to X3D Platform 

 
In addition, the VRML drag capability has no direct 

counterpart in Java3D, requiring the implementation of a 
compatible drag functionality.  This drag behavior was 
then inserted into the Java source and connected into the 
Java3D scene graph. The framework can be extended by 
implementing other common sensor capabilities as defined 
by X3D specification. This sample example thus highlights 
the usefulness of the proposed prototyping system. 

VRML 1.0 has capabilities to represent geometric 
shapes and apply textures to surfaces, but does not have 
any capabilities for dynamic interactions. The input scene 
has features that cannot be represented on the target  
platform. Hence, this functionality cannot be represented in 
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Figure 10: Synthesis to Java3D Platform 

 
the output format.  In this context, CSDF synthesizes the 
content that is implementable and reports on those capa-
bilities that cannot be implemented. 

5 SUMMARY AND FUTURE WORK 

The research summarized in this paper provided two out-
comes.  The Common Scene Definition Framework 
(CSDF) has been defined to serve as an implementation 
independent repository for VR platform functionality.  The 
CSDF provides the ability to represent applications in a 
platform independent fashion.  The CSDF provides a 
pathway for  the synthesis of virtual worlds to different 
platforms.  Synthesis implies that the developer need not 
know the target platform.  Furthermore, synthesis implies 
that optimizations are performed to produce efficient pro-
totype applications.  An example application was created 
to demonstrate the CSDF concept using subsets of the 
VRML 1.0, VRML97, and X3D platforms.  The example 
also demonstrated that the framework could provide early 
feedback on the limitations in the capabilities of a particu-
lar synthesis platform. This early feedback could help the 
virtual world developer to evaluate different choices of VR 
technologies to meet the user requirement. 

A limited set of VR platforms and capabilities were 
selected to demonstrate the core concept. The focus ini-
tially was to start with geometric primitives and composite 
shapes and demonstrate the capability of the framework to 
transform from selected VR platforms to others. In addi-
tion, a few selected behaviors that are common to many 
virtual worlds were incorporated into the framework. Addi-
tional behavioral capabilities such as proximity sensors, 
timers and, etc. need to be implemented into the frame-
work to enable the synthesis of more complex virtual 
worlds. The framework may also be extended to support 
import and synthesis to other VR platforms such as 
OpenGL, Macromedia Flash, and etc. The framework can 
be extended to facilitate the synthesis of distributed virtual 
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world by incorporating, different interconnect mechanisms 
such as Sockets, HLA, DIS, etc. into the framework.  An 
important thread of research must be conducted to assess 
the validity of the transformations and representations. For 
example, a process needs to be developed for the validation 
of sensitivities of the different sensors in different VR plat-
forms. Also, default values of attributes need to be normal-
ized across different VR platforms. 
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